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Four decades ago, when I started working as a bridge engineer in Prague, the material 
models and methods of structural analysis for concrete, as well as rocks, ice, fiber composites 
and other materials that are now called quasibrittle, were from today’s viewpoint rather 
simplistic. The progressive softening damage due to distributed cracking was either ignored or 
misrepresented as plasticity. The size effect on the strength and ductility of structures made of 
these materials was mostly unknown or disregarded, and when its existence was admitted it was 
perceived as solely statistical and thus appropriate for being buried in the safety factors. 

The advent of computers and the finite element method changed everything. It put the 
entire field of material modeling in flux. In January 1969, I arrived at Boris Bresler’s invitation 
to the University of California in Berkeley, to join what was at that time the leading center for 
structural engineering. As I learned, the finite element method captivated everybody’s mind. 
Being already curious about the fracturing of concrete and laminates, thanks to my previous 
fellowship under L’Hermite, my mentor in Paris, I became fascinated by Rashid’s idea to 
simulate by finite elements the cracking in a nuclear reactor vessel in a smeared manner - 
through the stress-strain relation. 

I discovered, however, that all this excitement in Davis Hall was not shared in Etcheverry 
Hall across the street. I think I was the only one from Davis hall to frequent the seminars in that 
separate world of the mechanics department. Professor Naghdi, the chairman and one of the 
gurus of continuum mechanics at that time, noticed me and asked: “By the way, what’s your 
interest?” “Strain-softening, to model distributed cracking of concrete and rock”, I replied. Then, 
in a mildly sarcastic tone, he advised me: “Young man, taking such a controversial path, you will 
never achieve tenure. A tangential moduli tensor whose matrix is not positive definite is not a 
sound concept. Materials with such a property do not exist; they would be unstable and could not 
propagate waves.” Soon I realized that Prager and other continuum mechanics giants thought 
likewise, and that there were classical works beginning with Hadamard to support this viewpoint. 
So I decided to play it safe and focused my efforts at Berkeley on thermodynamics of creep and 
nano-pore water in concrete, another big issue for concrete reactor vessels. 

In the faculty group at Northwestern University, which I joined after Berkeley, the major 
thrust of research was not finite elements. Rather, it was fracture mechanics. So I tried to educate 
myself on the subject. In 1972, while browsing in our library, one paper in the Indian Concrete 
Journal caught my eye. P.F. Walsh, a young Australian, then unknown to me, reported 

                                                 
* AAM Fellow. This is an updated version of an article, translated into Japanese, which was originally prepared 
on invitation from Japan Concrete Institute for its anniversary issue.  Far from attempting a comprehensive and 
balanced account of the evolution of the field of distributed softening damage, quasibrittle fracture and its scaling, 
the author reminisces in an anecdotal form on his and his collaborators’ efforts to contribute to the resolution of 
various problems. 
 



II 

 

remarkable fracture experiments on notched concrete beams. They revealed a strong size effect. 
But that size effect did not follow a power law and thus conflicted with the Weibull statistical 
theory, then reigning supreme. Moreover, the observed size effect was much too strong to be 
explained by that theory. So it was clear that brittle heterogeneous materials called for a different 
size effect theory. 

Being at Northwestern, I had the benefit of an outstanding solid mechanics group, which 
was young, competitive and collaborative. The group spread over several departments, and there 
were lively mechanics seminars to bring us together on Fridays, followed by parties long into the 
night. In one memorable seminar, with the provocative title ‘Red Herring and Sundry Fish in 
Continuum Mechanics’ (which actually attracted some biologists), Ronald Rivlin ridiculed some 
anointed principles of continuum mechanics, such as the ‘principle of equipresence’. For me the 
effect was to lose my fear of delving into the taboo of strain softening (were I still behind the 
Iron Curtain, it would have been different, because wasting the resources of socialism on a study 
of strain softening was actually prohibited by an omnipotent committee of the Academy). 
Besides, I realized that the physicists were not afraid of models akin to strain softening (such as 
the classical van der Waals phase transition in the pressure-volume diagram of steam). 

Jim Rice came to Northwestern, and his enthusiastic seminars, as well as the discussions 
that followed, were an eye-opener. I became intrigued by his idea (developed with his student 
John Rudnicki who later became my colleague at Northwestern) that the cause of localization of 
plastic strain into shear bands is the geometrically nonlinear effect of finite strain, and by his 
work with Andrew Palmer showing the size effect implied by their Mode II cohesive crack 
model for slides in overconsolidated clay. I realized that softening inelastic strain tends to 
localize, and that some sort of characteristic length of the material would have to govern it. 

By 1975, efforts to analyze stability and bifurcation based on the second-order work, 
partially inspired by some earlier bifurcation studies of softening by Giulio Maier in Milano, 
eventually led me to realize that smeared cracking, or strain softening, makes sense only if the 
width of a localizing diffuse cracking band in a continuum is limited to a certain minimum, 
representing a material property, termed the characteristic length. Naturally, this further implied 
a deterministic size effect not unlike that discovered experimentally by Walsh. 

By lucky coincidence, in 1974 Stan Fistedis invited me to draft a research proposal to 
AEC on problems of failure analysis of concrete vessels and containments under various 
hypothetical scenarios of nuclear accidents in a liquid-metal-cooled breeder reactor. Once 
granted, that naturally led to my long-term consulting for Stan’s group at Argonne National 
Laboratory. “How should we extrapolate from normal-scale laboratory specimens to these very 
large, and politically very sensitive, structures?”, Stan quizzed me. It was necessary to somehow 
realistically take into account distributed cracking. For that, it was inevitable to postulate strain-
softening, which gives rise to a deterministic size effect. 

In 1976, Arne Hillerborg, in his unpretentious manner, delivered a memorable seminar at 
Northwestern in which he presented his fictitious crack model for concrete— an adaptation of the 
cohesive crack model that evolved from Barenblatt’s 1979 model for fracture on the atomic scale 
and whose relation to fracture energy was previously clarified by Rice. Arne showed that, unlike 
ductile-brittle materials, non-ductile softening materials such as concrete allow using the 
cohesive crack model not only for the propagation of an existing crack but also for the initiation 
of a crack anywhere in the material. He demonstrated by finite elements that his model, devoid 
of any strength randomness, could capture the size effect on the flexural strength of unnotched 
concrete beams, in agreement with experiments. Subsequently, at a dinner in the great ‘Cafe 
Provencal’, Arne and I argued gently about the relative merits of his model and the crack band 
model. 
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In retrospect, these arguments appear to have been unnecessary, because both models 
turned out to be essentially equivalent and give about the same results, the choice between them 
being principally a matter of convenience. The cohesive crack model is convenient for exploiting 
elastic solutions and connecting to linear elastic fracture mechanics (LEFM) concepts, while the 
crack band model is convenient for implementation in existing finite element programs and can 
simulate wide non-localized zones of cracking. 

An inevitable conclusion from the stability and bifurcation studies of strain-softening 
constitutive models was that finite element analyses utilizing such models, which became 
enormously popular during the 1970s, were unobjective in the sense of mesh bias, particularly 
their spurious sensitivity to mesh refinement. Upon refining the mesh size to zero, such analyses 
would predict the failure to occur with zero energy dissipation. This turned out to be an 
inflammatory proposition, which elicited vociferous opposition from structural engineering 
practitioners. This was the situation, for example, at the US National Congress of T&AM in 
Boulder 1974 and the SMiRT conference in London in 1975, where I began to debate this 
subject with Stein Sture, Kaspar Willam, Kurt Gerstle, Tony Ingraffea, and Karl Pister and 
others, and later in San Francisco, Berlin and Paris and various ASCE meetings. At one of them, 
in Waterloo, I met Luigi Cedolin, who agreed with me. In 1977, he came to Evanston for his 
sabbatical, to help me with his insight and persistence in formulating and verifying the initial 
energy-based crack band model. Subsequently, with the invaluable help of Byung Oh, this was 
extended to a damage constitutive model with progressive strain softening. Bhat, S.-S. Kim, 
Tsubaki, J.-C. Chern and F.-B. Lin provided further valuable assistance in extending plasticity to 
develop refined constitutive models for gradual strain softening of concrete. Conceptually, the 
phenomenon of fracture localization was at Northwestern also clarified by stability analysis of a 
system of parallel thermal or drying cracks, pursued jointly with Ohtsubo, who came from the 
University of Tokyo, and initially also with my colleague Sia Nemat-Nasser with whom I had a 
joint DoE grant aimed at exploring the proposed hot-dry-rock geothermal energy scheme. 

The crack band model, however, was not seen as a panacea by continuum mechanicians. 
At Atluri’s NSF workshop at Stone Mountain in 1982, Ivan Sandler objected: “If your crack 
band model does not permit the element size to be reduced to zero, how do you define 
convergence? What is the mathematical connection to the boundary value problem, which would 
be ill-posed anyway?” At that workshop, the preceding one at General Butler Park in 1980, and 
other meetings, similar comments were made by Read, Hegemier, Valanis, Leckie and others. I 
had to concede that the boundary value problem had to be somehow regularized. 

At Northwestern, I debated possible remedies with my friend and rival Ted Belytschko, 
and eventually we joined forces under our shared AFOSR and DNA grants. This led in 1983 
(with the assistance of T.-P. Chang) to the nonlocal model for strain-softening, along with its 
second-gradient approximation, the idea of nonlocality in solids being borrowed from the earlier 
elastic and plastic-hardening theories of Eringen, Edelen, Kroner and others. But the first version 
(termed ‘imbricate’) turned out to be cumbersome to program and prone to diverge in periodic 
zero-energy instability modes, which had to be suppressed by an artificial parallel coupling. 

A better answer materialized soon through a ‘gift’ from France - Gilles Pijaudier-Cabot 
came to satisfy his military service as my doctoral student. I had to report on his progress to a 
French colonel, and the progress was good. Once in 1986, Gilles rushed into my office, 
exclaiming: “Since the nonlocality of total strain is what causes all the trouble, why don’t we 
treat as nonlocal only the inelastic strain?” And that worked (recently, though, the numerical 
microplane studies of di Luzio at Northwestern revealed that it is nevertheless useful to resurrect 
the total strain in a kind of ‘over- nonlocal’ form, provided that it is used to control only the 
softening yield limits, and not the elastic strains). 
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The size effect law for structures developing large cracks prior to the maximum load, 
formulated in 1983, was initially hard to defend, even at home. For instance, after my seminar, 
my colleague and friend Toshio Mura commented in his caustically friendly manner: “Zdenek, 
your size effect formula is too simple. It has to be an oversimplification at best. And your 
derivation was not rigorous at all!” It was hard to counter that. So, in my group of able assistants, 
we worked strenuously to check this law by numerical simulations using crack-band and 
nonlocal finite element models as well as micromechanical random particle (lattice) models, and 
to verify and calibrate it experimentally. 

The availability of a size effect formula made it possible to determine (with the assistance 
of Pfeiffer and later Kazemi) the fracture energy and other fracture parameters by measuring 
only the peak loads, which is easier and thus less prone to errors than post-peak measurements. 
In the mid- 1990s, my esteemed friend and collaborator Jaime Planas, together with Elices and 
Guinea, extended this idea to determining solely from maximum loads the initial softening slope 
of the softening curve of cohesive crack (or crack band). This slope, unlike the tail of that curve, 
is the important parameter for calculating the load capacities of structures. 

My interaction with these first-rate researchers in Spain (which began in 1985 with 
Manuel Elices’ idea of tapping the funds obtained by Spain for renting their air bases to the 
Americans, funds that were required by the treaty to be channeled into joint research) bore much 
fruit  - for example the verification of the size effect method of fracture testing and clarification 
of the effects of temperature, moisture content and loading rate on concrete fracture 
characteristics - efforts to which also my assistants J.K. Kim, Phil Pfeiffer and Ravindra Gettu 
contributed mightily. 

On the theoretical side, more rigorous derivations of the scaling law were attempted as 
well, based on the asymptotics of the cohesive crack model and on the asymptotic matching 
between the equivalent LEFM and plasticity. The efforts succeeded. They clarified the limits of 
applicability, and led to ramifications for brittle shear and compression failures, borehole 
breakout in rock, and triggering of snow avalanches. The asymptotic matching, a technique of 
`interpolation’ between opposite infinities borrowed from fluid mechanics which I am now 
pursuing, makes it possible to obtain good approximate analytical solutions for the practical size 
range on the basis of the asymptotic solutions of cohesive crack model (or crack band model) for 
both very small and very large sizes – solutions which are in many cases much easier to obtain (a 
similar asymptotic matching approach just led to interesting results in my work with Guo on the 
scaling of strain gradient plasticity of metals on approach to nanoscale).  

“The size effect could not be purely deterministic. Since the material is random, there 
must exist a component that is statistical, and that component must be of Weibull type,” was 
another kind of criticism, which I faced at the probabilistic conferences of ASCE and ICOSSAR. 
Throughout the 1990s, Yunping Xi and Drahos Novak helped me to clarify this point, both for 
failures after large crack growth, typical of reinforced concrete, and for failures at crack 
initiation, typified by the modulus of rupture test. In latter case, this led to an amalgamated 
energetic-statistical formula for size effect, whose one justification was found in the previous 
results of Rokugo in Gifu, and later those of Koide in Sendai, Rocco in Madrid, and others. 

From the beginning, the computational modeling of distributed fracture in concrete has 
been one of primary objectives and the main driving forces of progress. I was privileged to be at 
perhaps the earliest workshop on this subject, organized by Luigi Cedolin in Milano in 1978, 
under the auspices of Fratelli Pesenti Foundation, and one year later at an exciting workshop 
organized by Mang in Vienna. 

The early computational models for distributed cracking, quasibrittle fracture and size 
effect were greatly refined during the 1990s, for example, in the works of Jirásek in Lausanne 
and Mang in Vienna. Rots in Delft and Cervenkas in Prague developed powerful commercial 
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software for distributed cracking in concrete based on the crack band model (DIANA, SBETA, 
ATENA). Another practical approach, initiated by Leroy and Ortiz, and refined by Belytschko, 
Fish, Shing, Jirásek, etc., is to embed discontinuities in the finite elements. A very effective 
second-gradient model, which transfers the second gradient to a separate differential equation 
(Hemholtz equation) in order to avoid finite elements of a higher-order continuity, and which can 
be physically justified as an approximation to the integral-type nonlocal model, was developed 
by de Borst, Peerlings and other researchers in Delft. The nonlocal and gradient models were 
recognized as one good way to predict, with sufficient mesh refinement, the crack propagation 
direction and path. An entirely different approach is the meshless method and partition-of-unity 
formulations pioneered by Belytschko and his collaborators. The field, however, has become too 
broad to give proper mention to all of the effective models and contributors. 

“Does your nonlocal approach have any physical justification?” was one question thrown 
at me at Northwestern by Toshio Mura. Initially I had no clear answer, but about a decade ago, 
the answer materialized in material heterogeneity, the energy release by microcracks, and the 
interactions of adjacent cracks. The last, however, pointed out the need for a more complex 
nonlocal model with orientation dependence, which can distinguish mutual crack shielding and 
amplification. Jirásek and Ozbolt were of great help in calibrating and implementing this model. 
Thanks to the assistance of Zubelewicz, Pijaudier-Cabot, Tabbara, Jirásek and Cusatis, further 
physical justification was gained since the mid 1980s by means simulating the fracture process 
zone and the size effect in concrete and sea ice with the random particle models, and very 
recently the shear-confinement lattice model. The latter attempts to break a long-standing barrier 
– how to capture tensile and compression fracturing and hydrostatic response with the same 
model? The key idea, developed with Cusatis, is to consider that the struts of a three-dimensional 
particle-connecting lattice not only soften in tension but also exhibit frictional slip and that both 
responses are sensitive to the lateral confining pressure on the strut. But can we deduce a 
microstructural lattice model from the physical features of material microstructure? Can we use 
lattice models to simulate the failure of whole structures? No. This still remains an elusive goal.  

To make sophisticated analyses of distributed cracking and material damage meaningful, 
realistic constitutive models had to be developed. One fashionable trend, initiated by the late 
Kachanov and championed by Lemaitre and many others, has been continuum damage 
mechanics. Most formulations on the abstract side, however, did not include a characteristic 
length. Some of us in concrete wondered: “Mustn’t this length be inserted in such formulations 
to make sense for strain softening?” Of course it must, and the models for concrete (e.g., that 
developed at Northwestern with the help of Pijaudier-Cabot and of Carol, and another formulated 
in France by Mazars) adhered to this essential requirement. 

Efforts to maximize conceptual simplicity of damage models and capture physical 
phenomena such as crack opening and frictional slip in the microstructure led to a sequence of 
progressively refined microplane constitutive models, which represents a modification of Taylor 
models (inspired by a 1938 idea of the great G.I. Taylor) and have been developed at 
Northwestern since the early 1980s with the help of Oh, Prat, Carol, Ozbolt, Xiang, Jirásek, 
Caner and Brocca. What in this approach facilitates capturing the physical phenomena? It is the 
fact that the microplane constitutive law is formulated not in terms of the stress and strain 
tensors, but in terms of the stress and strain vectors acting on kinematically constrained planes of 
all possible orientations in the material, for which the term ‘microplanes’ was coined.  The 
Taylor models for plasticity of metals and soils have been greatly refined in the works of Rice, 
Hill, Hutchinson, Needleman, Asaro, Bronkhorst, McDowell, McMeeking, Anand, Zienkiewicz, 
Pande and others, and have been also developed with great success by my new colleague 
Horacio Espinosa for large-scale dynamic explicit simulations of  fracturing and pulverization of 
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ceramics under missile impact, with the distributed multidirectional nature of fracturing 
stabilized by rate dependence of crack growth.     

In Taylor models, the stresses on the planes in the microstructure are generally assumed 
to be projections of the continuum stress tensor, which is called a static constraint, and the elastic 
part of strain is kept separate and calculated tensorially. In our early attempts in 1982, Oh and I 
became disillusioned, finding that the static constraint under static loading provokes instability in 
which multirectional cracking and softening frictional slip localizes, under static loading, into 
one microplane, which conflicts with experiments on quasibrittle materials (an exception to this 
problem is a rate-dependent dynamic version, in which such localization is approached only 
gradually and often negligibly within the time range of interest). How to overcome this problem? 
The basic idea was to adopt for microplane model a kinematic constraint, i.e., consider the 
microplane strains to be the projections of the continuum strain tensor (in the latest ongoing 
studies, a hybrid microplane model, M5, having mixed static and kinematic constraints is 
proving to be superior when the tensile cracking on all microplanes obeys the cohesive crack 
model, but certain severe restrictions on the time step algorithm and the element size must be 
observed).  In the case of kinematic constraint, the microplane stresses in general cannot be the 
projections of the stress tensor. Therefore, a variational constraint was adopted to relate the stress 
tensor to the microplane stresses. As another departure from Taylor models, it appeared 
necessary to include the elastic part of the stress-strain relation on the microplane level.   

Because of strain softening, numerical integration over the set of discrete microplanes of 
various spatial orientations was found to necessitate a more accurate and more efficient formula 
than used in Taylor models for hardening plasticity. Initially unaware of the existing works of 
Stroud and others, Oh and I struggled to derive optimal gaussian integration formulas for a 
spherical surface, only to discover that most of our results were already well known to 
mathematicians. This is an inevitable penalty for someone who believes that knowing the 
literature too well takes away much fun in research and inhibits discovery.  But had we scanned 
the literature thoroughly beforehand, rather than afterwards, we would not have obtained some 
new more effective formulas integrating exactly polynomials of the 9th, 11th and 13th degree 
(which later also found use in molecular chemistry and nuclear engineering).  

Capturing with the same microplane model not only tensile fracturing but also the 
fracturing caused by uniaxial and multiaxial compression was in the mid 1980s a frustrating 
endeavor. When my assistant Pere Prat matched the tensile strength of concrete or rock, the 
predicted compression strength of concrete or rock was always an order of magnitude too high, 
the postpeak softening was sudden rather then gradual, and the absence of strength limit under 
hydrostatic pressure and uniaxial compressive strain could not be simulated.  The solution that 
eventually worked was to split the normal microplane strains into their volumetric and deviatoric 
parts and write for each a separate microplane constitutive relations, reflecting the fact that the 
lateral expansion under compression induces axial cracking and softening frictional slip. The 
volumetric-deviatoric split required other problems to overcome, mechanical and numerical. The 
numerical problems were not completely resolved until a decade later, with the help of Xiang, by 
introducing strain-softening boundaries (i.e., softening yield limits) for the normal and deviatoric 
strains on the microplanes.  The mechanical problems were overcome, with the help of Ignacio 
Carol, by introducing separate volumetric and deviatoric variational constraints between the 
microplane stresses and the stress tensor. The split also caused an excess of elastic constants, 
which we eliminated by imposing a condition that the fourth-order damage tensor implied by the 
microplane model should be purely geometric, i.e., independent of material constitutive 
properties. The latest efforts of Ignacio Carol and Milan Jirásek showed that the microplane 
model logically ensues from the hypothesis that the free energy density is a sum of free energy 
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densities associated with microplanes of different orientations.  This then led to a coherent 
thermodynamic framework for the microplane model. 

“But aren’t the computational demands of microplane model prohibitive?” was a frequent 
objection. Not any more, thanks to the relentless increase in computer power. At WES in 
Vicksburg, Mark Adley and Steve Akers managed realistic simulations of impact, groundshock 
and blast with  version M4 of the microplane model using an explicit finite element program 
with several million finite elements. What makes the microplane model effective for large-scale 
computation is that the kinematic constraint facilitates the use of explicit time step integration 
schemes.  The power of microplane model, originally developed for concrete, is now being 
exploited for the constitutive modeling of rocks, clays, sands, rigid foams, anisotropic fiber 
composites, metals and shape-memory alloys (developed with Prat, Carol, Zi and Brocca, and 
the last with my colleague Cate Brinson). 

While the microplane model attempts to capture for microstructural interactions among 
orientations, nonlocality attempts to capture microstructural interactions at distance. A nonlocal 
generalization of the microplane model, worked our with the help of Ozbolt and di Luzio, proved 
not too difficult for initial tensile cracking but harder for transition to complete fracture (a 
problem in which Milan Jirásek has recently achieved significant results) and especially for 
compression fracturing. 

 A difficult challenge, which has so far met with only minor success, has been to 
convince the concrete engineering societies to take into account in their design codes the 
deterministic (energetic) size effect, which is the main practical consequence of both the 
cohesive and crack band models, as well as the nonlocal softening damage models. Experimental 
demonstrations and calibrations were obviously necessary. With this aim, various reduced-scale 
tests of size effect in various types of failure (beam shear and torsion, bar pull-out and splices, 
column failure) have been conducted at Northwestern during the last two decades. The most 
impressive tests, however, were made in Japan. At the Japan-US Workshop at the University of 
Tokyo in 1985, organized by Okamura, we Americans privately wondered: “How come that 
these Japanese companies, Shimizu and Kajima, are able and willing to spend such big money on 
size effect tests of shear failure of prestressed concrete beams and slabs of enormous sizes 
(ranging up to 36 m and 20 m, respectively)?” Subsequently, many innovative practical 
developments in the modeling of cracking and fracture of concrete structures appeared in Japan; 
e.g., Tanabe’s analysis of high temperature exposure, or Horii’s analysis of shotcrete linings of 
tunnels (the latter was recently refined by Mang, Hellmich and Ulm in Vienna). It was also in 
Japan that the first conference devoted exclusively to size effects in concrete structures was 
organized (by Mihashi, at Tohoku, in 1993). 

As a result of size effect demonstration at Shimizu (reported in 1985 by Iguro, Shiyoa, 
Nojiri and Akiyama), Japan became the first country to introduce in 1986, through Okamura’s 
persuasion, a size effect formula into the design code for reinforced concrete. However, the form 
of this formula, a power law of exponent –1/4, needs now a revision based on later researches.  
This power law is motivated by Weibull weakest link model which presumes the failure to occur 
as soon as the first macroscopic crack initiates, while in reality the crack grows stably and at 
maximum load reaches typically through 80% of the cross section of a reinforced beam. This 
discrepancy was at first not experimentally documented because the Shimizu tests were not 
geometrically scaled. Scaled shear failure tests of reinforced concrete beams, not contaminated 
by variation of poorly understood parameters other than the size, were carried out only much 
later – on reduced-scale beams at Northwestern in 1991 and on full-scale beams in Toronto in 
2002.  These tests confirmed the theoretical deduction that the size effect in beam shear must 
approach for large sizes the LEFM scaling, i.e., a power law of exponent –1/2. After long 
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polemics in committees, there is now a hope that the American Concrete Institute might become 
the first code-making body to adopt such correct size effect for its beam shear specifications.  

Going by past experience, large concrete dams can be very dangerous to the population 
down-stream, and so they naturally became one problem of heightened concern. During 1990–
1994, Wittmann, Saouma and Mazars organized a series of workshops in Lugano, Boulder and 
Chambery. The discussions were animated. “Why should we bother about fracture mechanics. 
We play it safe, treating concrete as a ‘no-tension’ material, for which plasticity-type analysis 
with no size effect is satisfactory,” objected some dam designers. Yet the need for fracture and 
size effect analysis was eventually established (most convincingly, in my opinion, through the 
nonlocal and cohesive finite element studies, particularly those of my former star student Milan 
Jirásek in Lausanne, as well as Wittmann, Brühwiller and Saouma in Lausanne and Boulder, and 
Elices’s group in Madrid). Thanks to Saouma’s efforts, a requirement for analyzing cracked 
dams by fracture mechanics was incorporated into design regulations (and thus the U.S. became 
probably the first country where this kind of requirement was introduced into mandatory 
regulations for concrete). 

Expanding the deterministic (energetic) size effect characterization from concrete and 
rock to other quasibrittle materials has been an uphill fight as well. Similar to the earlier situation 
with concrete, fracture mechanics was in the mid 1980s generally believed to be inapplicable to 
sea ice, and the only size effect was thought to be statistical. The Navy was interested in 
navigation in the Arctic and especially in the surfacing of submarines, while the oil companies 
needed to understand the forces on oil platforms and the load capacity of floating ice. I made 
efforts to convince the Office of Naval Research (ONR) to start a new initiative on fracture and 
size effect in sea ice, and then competed with John Dempsey, my friend at Clarkson whom I 
knew from his previous stay at Northwestern, to get the money. He won the bigger share of it. 
But we collaborated, and in 1993 I was thrilled to go with John and his large team to the Arctic 
Ocean to participate, near Cornwallis Island, in his record-breaking size effect experiments in 
which floating notched ice specimens of dimensions up to 80m x 80m x 1.8m were fractured 
under crack opening control. Despite scatter, the measured trend neatly agreed with the simple 
size effect law. It was a confirmation that sea ice, too, is a quasibrittle material, which, on a large 
scale, obeys fracture mechanics and exhibits a nonstatistical size effect. This changed the field of 
ice mechanics. The size effect confirmed by John’s test results, for example, helped to explain 
why the measured horizontal forces exerted by moving ice on oil platforms are an order of 
magnitude smaller than those predicted by elasto-plastic finite element analysis based on the 
measured laboratory strength of ice. Y.-N. Li and J.-J. H. Kim at Northwestern pursued computer 
modeling of fracture in vertical penetration of floating sea ice, which also confirmed a strong 
size effect. 

The story with fiber-polymer composites and sandwich structures has been similar. 
Again, fracture mechanics was by the mid 1990s still perceived as inapplicable. It was not used 
in practice, and was not addressed in textbooks. The size effect was generally either disregarded 
or regarded as strictly statistical. But the Navy became interested in using these composites and 
sandwich structures to build large ships, and Yapa Rajapakse at ONR was skeptical of the status 
quo and very sympathetic to funding a program to get a better grasp of fracture scaling. My 
colleague and friend Isaac Daniel was a skeptic, too, and so we teamed up. Together with our 
capable assistants Li, Kim, Zhou, we again found the size effect in large specimens of fiber 
composites to be deterministic (energetic), both for failures at crack initiation and those after 
large crack growth, and in both tension and compression (particularly, in kink-band 
microbuckling). For sandwich shells with foam cores, similar conclusions are emerging. The 
objective is now to deduce conclusions for large load-bearing aircraft panel, e.g., for the 
fuselage, which is the subject of my current joint grant with Isaac from FAA. Of course, difficult 
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challenges still exist, posed for example by anisotropy, delamination and micromechanics of 
fiber slip and breakage. 

The struggle for improvement in concrete design codes continues today, but the climate 
has improved. Until recently, the code making committees, consisting mainly of practicing 
engineers and practice oriented academics, were adamantly opposed to introducing fracture-
based size effect formulas, which would imply abandoning the entrenched limit-state design 
philosophy based on plasticity. Today, though, many members of these committees admit that 
size effects in concrete structures indeed exist and are important. The size effect is no longer 
seen as a nuisance, but as a necessity. What is now disputed is which formula to adopt among 
various proposed alternatives, some purely empirical. Regrettably, there is an enduring tendency 
to prefer strictly empirical formulas with no theoretical basis over formulas based on some 
deeper theory (which would have to be learned). 

How can we formulate the simple size effect corrections required for design code 
equations? In my view, they should be derived by asymptotic matching, i.e., smooth 
‘interpolation’ between an approximate LEFM-based formula applicable for large sizes and the 
existing limit-state formula applicable for small sizes. When forced to match the correct 
asymptotic trends, even if far outside the practical range, an approximate formula is far more 
likely to have general applicability, covering practical situations beyond the scope of the test data 
used for calibration. An empirical formula is unlikely to achieve that, except by sheer luck. 

On the probabilistic side, a major problem looms ahead. Based on statistical data, the 
current safety factors applied to the self-weight of large structures, unlike those applied to the 
live load, are excessive, and by far. Since the self-weight in large structures contributes a much 
greater portion of the internal forces than in small ones, the excessive load factor for self-weight 
(1.4 in America) implies a hidden size effect, which can be as large as 30%. 

Doesn’t this hidden size effect compensate for the lack of an explicit size effect in the 
existing limit-state design formulas? In a broad sense, it does, but it does so in an irrational way. 
To guard against certain kinds of failures (e.g., the ductile bending failure due to yielding of 
reinforcement), no such compensation is needed, while for others (e.g., the diagonal shear failure 
or any failure due to crushing of a ‘compression strut’ in the strut-and-tie model), a much larger 
compensation may be needed. For high-strength concrete structures or prestressed structures, 
which are lighter, the size effect compensation hidden in the excessive dead load factor is less 
than that for normal-strength structures or unprestressed ones, yet the size effect is stronger 
because of higher brittleness. Simply, burying the size effect in the dead load factor is not a 
smart idea. 

At the ‘fib’ congress in Prague, a noted engineer asked in a doubtful tone: “Has the size 
effect ever caused any structural failures?” It surely has, but it has not been the exclusive cause. 
The size effect (ranging from 25% to 55%) has likely been a significant contributing factor in 
many famous catastrophes, for example, the failures of Malpasset dam in the Alps (1959), St. 
Francis dam in California (1928), Schoharie Creek Bridge on the New York Thruway (1987), 
Sleipner oil platform in Norway (1991), Han-Shin viaduct in the Kobe earthquake (1995), 
Cypress viaduct in Oakland in the Loma Prieta earthquake (1989), and the bridge columns in Los 
Angeles in the Northridge earthquake (1984). So why, with the exception of the Schoharie Creek 
bridge, has the size effect not been recognized by the investigating committee of experts? The 
reason must be that the safety factors in civil engineering, in contrast to aeronautical engineering, 
are very large. Normally several kinds of errors must conspire to bring down a bridge or 
building, while only one error (perhaps such as neglecting to take into account the size effect in a 
large aircraft tail made entirely of fiber composites) suffices to doom an airliner. 

Let me end by returning to the statistics of self-weight errors. Should we accept the recent 
proposals to reduce the dead load factor to a much lower value, as justified by statistics? 
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Absolutely not. Such a reduction would be dangerous unless the size effect would at the same 
time be incorporated into the code provisions. Vice versa, it must be admitted that it would 
excessively penalize large structures if the size effect were introduced into the design code 
without reducing the dead load factor for self-weight to a realistic value. 

Likewise, the purpose of a detailed finite element analysis of fracture and size effect in a 
large concrete structure is defeated if one applies the excessive dead load factor prescribed by 
current codes. With that kind of irrational safety factor, a simple back-of-the-envelope 
calculation might be just as good. 

A computational enthusiast suggested to me: “Why don’t you ignore the safety factors in 
the code and turn to the stochastic finite elements?” That is a tempting proposition, but it is not 
feasible at present. The existing stochastic finite element formulations, in their current state, 
cannot provide a realistic value of loads of extremely small failure probability, such as 10-7, 
because the tail structure of the probability distribution is not correct (to wit, if these 
formulations were correct, then, for the case of a structure failing at fracture initiation, 
exemplified by the modulus of rupture test, they would have to converge to the Weibull-type size 
effect, but they do not). What’s the problem? The distribution tails are essentially exponential, 
while to be correct they must be of Weibull type, as dictated by extreme value statistics. It would 
be necessary to devise a stochastic finite element method in which the probability of the first 
eigenvalue of the tangential stiffness matrix being nonpositive becomes Weibull distributed as 
the failure is approached. This is still an open problem. At present, the stochastic finite elements 
can realistically predict loads with failure probability of about 5%, but hardly much less. 
Obviously, synergistic efforts by fracture experts, statistical reliability experts, and 
computational mechanics experts are needed. 

The struggle is far from over, but further progress will make it worthwhile. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


