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The article attempts a broad review of the problem of size effect or scaling of
failure, which has recently come to the forefront of attention because of its
importance for concrete and geotechnical engineering, geomechanics, and
arctic ice engineering, as well as in designing large load-bearing parts made of
advanced ceramics and composites, e.g., for aircraft or ships. First the main
results of the Weibull statistical theory of random strength are briefly
summarized and its applicability and limitations described. In this theory as
well as plasticity, elasticity with a strength limit, and linear elastic fracture
mechanics (LEFM), the size effect is a simple power law because no
characteristic size or length is present. Attention is then focused on the
deterministic size effect in quasi-brittle materials which, because of
the existence of a non-negligible material length characterizing the size
of the fracture process zone, represents the bridging between the simple
power-law size effects of plasticity and of LEFM. The energetic theory of
quasi-brittle size effect in the bridging region is explained, and then a host of

1.3 Size Effect on Structural Strength 31



recent refinements, extensions, and ramifications are discussed. Comments on
other types of size effect, including that which might be associated with
the fractal geometry of fracture, are also made. The historical development
of the size effect theories is outlined, and the recent trends of research
are emphasized.

1.3.1 INTRODUCTION

The size effect is a problem of scaling, which is central to every physical
theory. In fluid mechanics research, the problem of scaling continuously
played a prominent role for over a hundred years. In solid mechanics
research, though, the attention to scaling had many interruptions and became
intense only during the last decade.

Not surprisingly, the modern studies of nonclassical size effect, begun in
the 1970s, were stimulated by the problems of concrete structures, for which
there inevitably is a large gap between the scales of large structures (e.g.,
dams, reactor containments, bridges) and scales of laboratory tests. This gap
involves in such structures about one order of magnitude (even in the rare
cases when a full-scale test is carried out, it is impossible to acquire a
sufficient statistical basis on the full scale).

The question of size effect recently became a crucial consideration in the
efforts to use advanced fiber composites and sandwiches for large ship hulls,
bulkheads, decks, stacks, and masts, as well as for large load-bearing fuselage
panels. The scaling problems are even greater in geotechnical engineering,
arctic engineering, and geomechanics. In analyzing the safety of an excavation
wall or a tunnel, the risk of a mountain slide, the risk of slip of a fault in the
earth crust, or the force exerted on an oil platform in the Arctic by a moving
mile-size ice floe, the scale jump from the laboratory spans many orders
of magnitude.

In most mechanical and aerospace engineering, on the other hand, the
problem of scaling has been less pressing because the structural components
can usually be tested at full size. It must be recognized, however, that even in
that case the scaling implied by the theory must be correct. Scaling is the most
fundamental characteristics of any physical theory. If the scaling properties of
a theory are incorrect, the theory itself is incorrect.

The size effect in solid mechanics is understood as the effect of the
characteristic structure size (dimension) D on the nominal strength sN of
structure when geometrically similar structures are compared. The nominal
stress (or strength, in case of maximum load) is defined as sN ¼ cNP=bD or
cNP=D2 for two- or three-dimensional similarity, respectively; P¼ load
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(or load parameter), b structure thickness, and cN arbitrary coefficient chosen
for convenience (normally cN ¼ 1). So sN is not a real stress but a
load parameter having the dimension of stress. The definition of D can be
arbitrary (e.g., the beam depth or half-depth, the beam span, the diagonal
dimension, etc.) because it does not matter for comparing geometrically
similar structures.

The basic scaling laws in physics are power laws in terms of D, for which
no characteristics size (or length) exists. The classical Weibull [113] theory of
statistical size effect caused by randomness of material strength is of this type.
During the 1970s it was found that a major deterministic size effect,
overwhelming the statistical size effect, can be caused by stress redistributions
caused by stable propagation of fracture or damage and the inherent
energy release. The law of the deterministic stable effect provides a way of
bridging two different power laws applicable in two adjacent size ranges. The
structure size at which this bridging transition occurs represents charac-
teristics size.

The material for which this new kind of size effect was identified first, and
studied in the greatest depth and with the largest experimental effort by far, is
concrete. In general, a size effect that bridges the small-scale power law for
nonbrittle (plastic, ductile) behavior and the large-scale power law for brittle
behavior signals the presence of a certain non-negligible characteristics length
of the material. This length, which represents the quintessential property of
quasi-brittle materials, characterizes the typical size of material inhomogene-
ities or the fracture process zone (FPZ). Aside from concrete, other quasi-
brittle materials include rocks, cement mortars, ice (especially sea ice),
consolidated snow, tough fiber composites and particulate composites,
toughened ceramics, fiber-reinforced concretes, dental cements, bone and
cartilage, biological shells, stiff clays, cemented sands, grouted soils, coal,
paper, wood, wood particle board, various refractories and filled elastomers,
and some special tough metal alloys. Keen interest in the size effect
and scaling is now emerging for various ‘‘high-tech’’ applications of
these materials.

Quasi-brittle behavior can be attained by creating or enhancing material
inhomogeneities. Such behavior is desirable because it endows the structure
made from a material incapable of plastic yielding with a significant energy
absorption capability. Long ago, civil engineers subconsciously but cleverly
engineered concrete structures to achieve and enhance quasi-brittle
characteristics. Most modern ‘‘high-tech’’ materials achieve quasi-brittle
characteristics in much the same way } by means of inclusions, embedded
reinforcement, and intentional microcracking (as in transformation toughen-
ing of ceramics, analogous to shrinkage microcracking of concrete). In effect,
they emulate concrete.
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In materials science, an inverse size effect spanning several orders of
magnitude must be tackled in passing from normal laboratory tests of material
strength to microelectronic components and micromechanisms. A material
that follows linear elastic fracture mechanics (LEFM) on the scale of
laboratory specimens of sizes from 1 to 10 cm may exhibit quasi-brittle or
even ductile (plastic) failure on the scale of 0.1 to 100 microns.

The purpose of this article is to present a brief review of the basic results
and their history. For an in-depth review with several hundred literature
references, the recent article by Ba$zant and Chen [18] may be consulted. A
full exposition of most of the material reviewed here is found in the recent
book by Ba$zant and Planas [32], henceforth simply referenced as [BP]. The
problem of scale bridging in the micromechanics of materials, e.g., the
relation of dislocation theory of continuum plasticity, is beyond the scope of
this review (it is treated in this volume by Hutchinson).

1.3.2 HISTORY OF SIZE EFFECT
UP TO WEIBULL

Speculations about the size effect can be traced back to Leonardo da Vinci
(1500s) [118]. He observed that ‘‘among cords of equal thickness the
longest is the least strong,’’ and proposed that ‘‘a cord is so much stronger as it
is shorter,’’ implying inverse proportionality. A century later, Galileo Galilei
[64] the inventor of the concept of stress, argued that Leonardo’s size effect
cannot be true. He further discussed the effect of the size of an animal
on the shape of its bones, remarking that bulkiness of bones is the weakness of
the giants.

A major idea was spawned by Mariotte [82]. Based on his extensive
experiments, he observed that ‘‘a long rope and a short one always support the
same weight unless that in a long rope there may happen to be some faulty
place in which it will break sooner than in a shorter,’’ and proposed the
principle of ‘‘the inequality of matter whose absolute resistance is less in one
place than another.’’ In other words, the larger the structure, the greater is the
probability of encountering in it an element of low strength. This is the basic
idea of the statistical theory of size effect.

Despite no lack of attention, not much progress was achieved for two and
half centuries, until the remarkable work of Griffith [66] the founder of
fracture mechanics. He showed experimentally that the nominal strength of
glass fibers was raised from 42,300 psi to 491,000 psi when the diameter
decreased from 0.0042 in. to 0.00013 in., and concluded that ‘‘the weakness of
isotropic solids . . . is due to the presence of discontinuities or flaws. . . . The
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effective strength of technical materials could be increased 10 or 20 times at
least if these flaws could be eliminated.’’ In Griffith’s view, however, the flaws
or cracks at the moment of failure were still only microscopic; their random
distribution controlled the macroscopic strength of the material but did not
invalidate the concept of strength. Thus, Griffith discovered the physical basis
of Mariotte’s statistical idea but not a new kind of size effect.

The statistical theory of size effect began to emerge after Peirce [92]
formulated the weakest-link model for a chain and introduced the extreme
value statistics which was originated by Tippett [107] and Fr!echet [57] and
completely described by Fischer and Tippett [58], who derived the Weibull
distribution and proved that it represents the distribution of the minimum of
any set of very many random variables that have a threshold and approach the
threshold asymptotically as a power function of any positive exponent.
Refinements were made by von Mises [108] and others (see also
[62, 63, 103, 56]. The capstone of the statistical theory of strength was laid
by Weibull [113] (also [114–116]). On a heuristic and experimental basis, he
concluded that the tail distribution of low strength values with an extremely
small probability could not be adequately represented by any of the previously
known distributions and assumed the cumulative probability distribution of
the strength of a small material element to be a power function of the strength
difference form a finite or zero threshold. The resulting distribution of
minimum strength, which was the same as that derived by Fischer and Tippet
[58] in a completely different context, came to be known as the Weibull
distribution. Others [62, 103] later offered a theoretical justification by means
of a statistical distribution of microscopic flaws or microcracks. Refinements
and applications to metals and ceramics (fatigue embrittlement, cleavage
toughness of steels at a low and brittle-ductile transition temperatures,
evaluation of scatter of fracture toughness data) have continued until today
[37, 56, 77, 101]. Applications of Weibull’s theory to fatigue embrittled metals
and to ceramics have been researched thoroughly [75, 76]. Applications to
concrete, where the size effect has been of the greatest concern, have been
studied by Zaitsev and Wittmann [122], Mihashi and Izumi [88], Wittmann
and Zaitsev [121], Zech and Wittmann [123], Mihashi [84], Mihashi and
Izumi [85] Carpinteri [41, 42], and others.

Until about 1985, most mechanicians paid almost no attention to the
possibility of a deterministic size effect. Whenever a size effect was detected in
tests, it was automatically assumed to be statistical, and thus its study was
supposed to belong to statisticians rather than mechanicians. The reason
probably was that no size effect is exhibited by the classical continuum
mechanics in which the failure criterion is written in terms of stresses and
strains (elasticity with strength limit, plasticity and viscoplasticity, as well
as fracture mechanics of bodies containing only microscopic cracks or
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flaws) [8]. The subject was not even mentioned by S. P. Timoshenko in 1953
in his monumental History of the Strength of Materials.

The attitude, however, changed drastically in the 1980s. In consequence of the
well-funded research in concrete structures for nuclear power plants, theories
exhibiting a deterministic size effect have developed. We will discuss it later.

1.3.3 POWER SCALING AND THE CASE OF
NO SIZE EFFECT

It is proper to explain first the simple scaling applicable to all physical systems
that involve no characteristic length. Let us consider geometrically similar
systems, for example, the beams shown in Figure 1.3.1a, and seek to deduce
the response Y (e.g., the maximum stress or the maximum deflection) as a
function of the characteristic size (dimension) D of the structure; Y ¼ Y0f ðDÞ

FIGURE 1.3.1 a. Top left: Geometrically similar structures of different sizes. b. Top right: Power

scaling laws. c. Bottom. Size effect law for quasi-brittle failures bridging the power law of plasticity

(horizontal asymptote) and the power law of LEFM (inclined asymptote).

Ba$zant36



where u is the chosen unit of measurement (e.g., 1 m, 1 mm). We imagine
three structure sizes 1, D, and D0 (Figure 1.3.1a). If we take size 1 as the
reference size, the responses for sizes D and D0 are Y ¼ f ðDÞ and Y 0 ¼ f ðD0Þ.
However, since there is no characteristic length, we can also take size D as the
reference size. Consequently, the equation

fðD0Þ=f ðDÞ ¼ fðD0=DÞ ð1Þ

must hold ([8, 18]; for fluid mechanics [2, 102]). This is a functional equation
for the unknown scaling law f ðDÞ. It has one and only one solution, namely,
the power law:

fðDÞ ¼ ðD=c1Þs ð2Þ

where s ¼ constant and c1 is a constant which is always implied as a unit of
length measurement (e.g., 1 m, 1 mm). Note that c1 cancels out of Eq. 2 when
the power function (Eq. 1) is substituted.

On the other hand, when, for instance, fðDÞ ¼ logðD=c1Þ, Eq. 1 is not
satisfied and the unit of measurement, c1, does not cancel out. So, the
logarithmic scaling could be possible only if the system possessed a
characteristic length related to c1.

The power scaling must apply for every physical theory in which there is
no characteristic length. In solid mechanics such failure theories include
elasticity with a strength limit, elastoplasticity, and viscoplasticity, as well as
LEFM (for which the FPZ is assumed shrunken into a point).

To determine exponent s, the failure criterion of the material must be taken
into account. For elasticity with a strength limit (strength theory), or
plasticity (or elastoplasticity) with a yield surface expressed in terms of
stresses or strains, or both, one finds that s ¼ 0 when response Y represents
the stress or strain (for example, the maximum stress, or the stress at certain
homologous points, or the nominal stress at failure) [8]. Thus, if there is no
characteristic dimension, all geometrically similar structures of different sizes
must fail at the same nominal stress. By convention, this came to be known as
the case of no size effect.

In LEFM, on the other hand, s ¼ �1=2, provided that the geometrically
similar structures with geometrically similar cracks or notches are considered.
This may be generally demonstrated with the help of Rice’s J-integral [8].

If log sN is plotted versus log D, the power law is a straight line (Figure
1.3.1b). For plasticity, or elasticity with a strength limit, the exponent of the
power law vanishes, i.e., the slope of this line is 0, while for LEFM the slope is
�1/2 [8]. An emerging ‘‘hot’’ subject is the quasi-brittle materials and
structures, for which the size effect bridges these two power laws.

It is interesting to note that critical stress for elastic buckling of beams,
frames, and plates exhibits also no size effect, i.e., is the same for
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geometrically similar structures of different sizes. However, this is not true for
beams on elastic foundation and for shells [16].

1.3.4 WEIBULL STATISTICAL SIZE EFFECT

The classical theory of size effect has been statistical. Three-dimensional
continuous generalization of the weakest link model for the failure of a chain
of links of random strength (Fig. 1.3.2a) leads to the distribution

Pf ðsNÞ ¼ 1� exp �
Z

V

c½rðvÞ; sNÞ�dVðvÞ
	 


s

which represents the probability that a structure that fails as soon as
macroscopic fracture initiates from a microcrack (or a some flaw) somewhere
in the structure; s ¼ stress tensor field just before failure, v ¼ coordinate
vector, V ¼ volume of structure, and cðrÞ ¼function giving the spatial
concentration of failure probability of material (¼ V�1

r � failure probability of
material representative volume Vr) [62]; cðrÞ �

P
i P1ðsiÞ=V0 where

si¼ principal stresses (i ¼ 1; 2; 3) and P1ðsÞ¼ failure probability (cumula-
tive) of the smallest possible test specimen of volume V0 (or representative

FIGURE 1.3.2 a. Left: Chain with many links of random strength. b. Right top: Failure

probability of a small element. c. Right bottom: Structures with many microcracks of different

probabilities to become critical.
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volume of the material) subject to uniaxial tensile stress s;

P1ðsÞ ¼
s� su

s0

� 
m

ð4Þ

[113] where m, s0, s1 ¼ material constants (m ¼Weibull modulus, usually
between 5 and 50; s0 ¼ scale parameter; su ¼ strength threshold, which may
usually be taken as 0) and V0 ¼ reference volume understood as the volume
of specimens on which cðsÞ was measured. For specimens under uniform
uniaxial stress (and su ¼ 0), Eqs. 3 and 4 lead to the following simple
expressions for the mean and coefficient of variation of the nominal strength:

%sN ¼ s0Gð1þ m�1ÞðV0=VÞ1=m

o ¼ ½Gð1þ 2m�1Þ=G2ð1þ m�1Þ � 1�1=2
ð5Þ

where G is the gamma function. Since o depends only on m, it is often used
for determining m form the observed statistical scatter of strength of identical
test specimens. The expression for %sN includes the effect of volume V which
depends on size D. In general, for structures with nonuniform multi-
dimensional stress, the size effect of Weibull theory (for sr � 0) is
of the type

%sN / D�nd=m ð6Þ

where nd ¼ 1, 2, or 3 for uni-, two- or three-dimensional similarity.
In view of Eq. 5, the value sW ¼ sNðV=V0Þ1=m for a uniformity stressed

specimen can be adopted as a size-independent stress measure called the
Weibull stress. Taking this viewpoint, Beremin [37] proposed taking into
account the nonuniform stress in a large crack-tip plastic zone by the so-
called Weibull stress:

sW ¼
X

i

sIm
i

Vi

V0

 !1=m

ð7Þ

where Vi ði ¼ 1; 2; . . . NWÞ are elements of the plastic zone having maximum
principal stress sIi. Ruggieri and Dodds [101] replaced the sum in Eq. 5 by an
integral; see also Lei et al. [77]. Equation 7, however, considers only the
crack-tip plastic zone whose size which is almost independent of D.
Consequently, Eq. 7 is applicable only if the crack at the moment of failure
is not yet macroscopic, still being negligible compared to structural dimensions.

As far as quasi-brittle structures are concerned, applications of the classic
Weibull theory face a number of serious objections:

1. The fact that in Eq. 6 the size effect is a power law implies the absence of
any characteristic length. But this cannot be true if the material contains
sizable inhomogeneities.
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2. The energy release due to stress redistributions caused by macroscopic
FPZ or stable crack growth before Pmax gives rise to a deterministic size
effect which is ignored. Thus the Weibull theory is valid only if the
structure fails as soon as a microscopic crack becomes macroscopic.

3. Every structure is mathematically equivalent to a uniaxially stressed bar
(or chain, Fig. 1.3.2), which means that no information on the
structural geometry and failure mechanism is taken into account.

4. The size effect differences between two- and three-dimensional
similarity (nd ¼ 2 or 3) are predicted much too large.

5. Many tests of quasi-brittle materials (e.g., diagonal shear failure of
reinforced concrete beams) show a much stronger size effect than
predicted by the Weibull theory ([BP]), and the review in Ba$zant [9]).

6. The classical theory neglects the spatial correlations of material failure
probabilities of neighboring elements caused by nonlocal properties of
damage evolution (while generalizations based on some phenomen-
ological load-sharing hypotheses have been divorced from mechanics).

7. When Eq. 5 is fitted to the test data on statistical scatter for specimens of
one size (V ¼ const.) and when Eq. 6 is fitted to the mean test data on
the effect of size or V (of unnotched plain concrete specimens), the
optimum values of Weibull exponent m are very different, namely,
m ¼ 12 and m ¼ 24, respectively. If the theory were applicable, these
values would have to coincide.

In view of these limitations, among concrete structures Weibull theory
appears applicable to some extremely thick plain (unreinforced) structures,
e.g., the flexure of an arch dam acting as a horizontal beam (but not for
vertical bending of arch dams or gravity dams because large vertical
compressive stresses cause long cracks to grow stably before the maximum
load). Most other plain concrete structures are not thick enough to prevent
the deterministic size effect from dominating. Steel or fiber reinforcement
prevents it as well.

1.3.5 QUASI-BRITTLE SIZE EFFECT BRIDGING
PLASTICITY AND LEFM, AND ITS HISTORY

Qausi-brittle materials are those that obey on a small scale the theory of
plasticity (or strength theory), characterized by material strength or yield
limit s0, and on a large scale the LEFM, characterized by fracture energy Gf.
While plasticity alone, as well as LEFM alone, possesses no characteristics
length, the combination of both, which must be considered for the bridging of
plasticity and LEFM, does. Combination of s0 and Gf yields Irwin’s (1958)
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characteristic length (material length):

‘0 ¼
EGf

s2
0

ð8Þ

which approximately characterizes the size of the FPZ (E ¼ Young0s elastic
modulus). So the key to the deterministic quasi-brittle size effect is a
combination of the concept of strength or yield with fracture mechanics.
In dynamics, this further implies the existence of a characteristic time
(material time):

t0 ¼ ‘0=v ð9Þ

representing the time a wave of velocity v takes to propagate the distance ‘0.
After LEFM was first applied to concrete [72], it was found to disagree with

test results [74, 78, 111, 112]. Leicester [78] tested geometrically similar
notched beams of different sizes, fitted the results by a power law, sN / D2n,
and observed that the optimum n was less than 1/2, the value required by
LEFM. The power law with a reduced exponent of course fits the test data in
the central part of the transitional size range well but does not provide the
bridging of the ductile and LEFM size effects. An attempt was made to explain
the reduced exponent value by notches of a finite angle, which, however, is
objectionable for two reasons: (i) notches of a finite angle cannot propagate
(rather, a crack must emanate from the notch tip), and (ii) the singular stress
field of finite-angle notches gives a zero flux of energy into the notch tip. Like
Weibull theory, Leicester’s power law also implied the nonexistence of a
characteristic length (see Ba$zant and Chen [18], Eqs. 1–3), which cannot be
the case for concrete because of the large size of its inhomogeneities. More
extensive tests of notched geometrically similar concrete beams of different
sizes were carried out by Walsh [111, 112]. Although he did not attempt a
mathematical formulation, he was first to make the doubly logarithmic plot of
nominal strength versus size and observe that it is was transitional between
plasticity and LEFM.

An important advance was made by Hillerborg et al. [68] (also Peterson
[93]). Inspired by the softening and plastic FPZ models of Barenblatt [2, 3]
and Dugdale [55], they formulated the cohesive (or fictitious) crack model
characterized by a softening stress-displacement law for the crack opening
and showed by finite element calculations that the failures of unnotched plain
concrete beams in bending exhibit a deterministic size effect, in agreement
with tests of the modulus of rupture.

Analyzing distributed (smeared) cracking damage, Ba$zant [4] demon-
strated that its localization into a crack band engenders a deterministic size
effect on the postpeak deflections and energy dissipation of structures. The
effect of the crack band is approximately equivalent to that of a long fracture
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with a sizable FPZ at the tip. Subsequently, using an approximate energy
release analysis, Ba$zant [5] derived for the quasi-brittle size effect in
structures failing after large stable crack growth the following approximate
size effect law:

sN ¼ Bs0 1þ D

D0

� ��1=2

þsR ð10Þ

or more generally : sN ¼ Bs0 1þ D

D0

� �r	 
�1=2r

þsR ð11Þ

in which r, B ¼ positive dimensionless constants; D0 ¼ constant representing
the transitional size (at which the power laws of plasticity and LEFM
intersect); and D0 and B characterize the structure geometry. Usually constant
sR ¼ 0, except when there is a residual crack-bridging stress sr outside the
FPZ (as in fiber composites), or when at large sizes some plastic mechanism
acting in parallel emerges and becomes dominant (as in the Brazilian split-
cylinder test).

Equation 10 was shown to be closely followed by the numerical results for
the crack band model [4, 30] as well as for the nonlocal continuum damage
models, which are capable of realistically simulating the localization of strain-
softening damage and avoiding spurious mesh sensitivity; see the article on
Stability in this volume.

Beginning in the mid-1980s, the interest in the quasi-brittle size effect of
concrete structures surged enormously and many researchers made note-
worthy contributions, including Planas and Elices [94–96], Petersson [93],
and Carpinteri [41]. The size effect has recently become a major theme at
conferences on concrete fracture [7, 35, 86, 87, 120].

Measurements of the size effect on Pmax were shown to offer a simple way to
determine the fracture characteristics of quasi-brittle materials, including the
fracture energy, the effective FPZ length, and the (geometry dependent) R-curve.

1.3.6 SIZE EFFECT MECHANISM: STRESS
REDISTRIBUTION AND ENERGY RELEASE

Let us now describe the gist of the deterministic quasi-brittle size effect.
LEFM applies when the FPZ is negligibly small compared to structural
dimension D and can be considered as a point. Thus the LEFM solutions can
be obtained by methods of elasticity. The salient characteristic of quasi-brittle
materials is that there exists a sizable FPZ with distributed cracking or other
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softening damage that is not negligibly small compared to structural
dimension D. This makes the problem nonlinear, although approximately
equivalent LEFM solutions can be applied unless FPZ reaches near the
structure boundaries.

The existence of a large FPZ means that the distance between the tip
of the actual (traction-free) crack and the tip of the equivalent LEFM
crack at Pmax is equal to a certain characteristics length cf (roughly one half of
the FPZ size) that is not negligible compared to D. This causes a
non-negligible macroscopic stress redistribution with energy release from
the structure.

With respect to the fracture length a0 (distance from the mouth of notch or
crack to the beginning of the FPZ), two basic cases may now be distinguished:
(i) a0 ¼ 0, which means that Pmax occurs at the initiation of macroscopic
fracture propagation, and (ii) a0 is finite and not negligible compared to D,
which means that Pmax occurs after large stable fracture growth.

1.3.6.1 SCALING FOR FAILURE AT CRACK INITIATION

An example of the first case is the modulus of rupture test, which consists
in the bending of a simply supported beam of span L with a rectangular cross
section of depth D and width b, subjected to concentrated load P; the
maximum load is not decided by the stress s1 ¼ 3PL=2bD2 at the tensile face,
but by the stress value %s roughly at distance cf=2 from the tensile face
(which is at the middle of FPZ). Because %s ¼ s1 � s01cf=2 where s01 ¼ stress
gradient¼ 2s1=D, and also because %s ¼ s ¼ intrinsic tensile strength of the
material, the failure condition %s ¼ s0 yields P=bD ¼ sN ¼ s0=ð1� Db=DÞ
where Db ¼ ð3L=2DÞcf , which is a constant because for geometrically
similar beams L=D ¼ constant. This expression, however, is unacceptable
for D � Db. But since the derivation is valid only for small enough cf=D,
one may replace it by the following asymptotically equivalent size
effect formula:

sN ¼ s0 1þ rDb

D

� �1=r

ð12Þ

which happens to be acceptable for the whole range of D (including D! 0);
r is any positive constant. The values r ¼ 1 or 2 have been used for concrete
[12], while r � 1:45 is optimum according to Ba$zant and Nov!ak’s latest
analysis of test data at Northwestern University (yet unpublished).
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1.3.6.2 SCALING FOR FAILURES WITH A LONG

CRACK OR NOTCH

Let us now give a simple explanation of the second case of structures failing
only after stable formation of large cracks, or notched fracture specimens.
Failures of this type, exhibiting a strong size effect ([BP], [21, 65, 69, 83, 104,
110]) are typical of reinforced concrete structures or fiber composites [119],
and are also exhibited by some unreinforced structures (e.g., dams, due to the
effect of vertical compression, or floating ice plates in the Arctic). Consider
the rectangular panel in Fig. 1.3.3, which is initially under a uniform stress
equal to sN. Introduction of a crack of length a with a FPZ of a certain length
and width h may be approximately imagined to relieve the stress, and thus
release the strain energy, from the shaded triangles on the flanks of the crack
band shown in Figure 1.3.3. The slope k of the effective boundary of the stress
relief zone need not be determined; what is important is that k is independent
of the size D.

For the usual ranges of interest, the length of the crack at maximum load
may normally be assumed approximately proportional to the structure size D,
while the size h of the FPZ is essentially a constant, related to the
inhomogeneity size in the material. This has been verified for many cases
by experiments (showing similar failure modes for small and large speci-
mens) and finite element solutions based on crack band, cohesive, or
nonlocal models.

The stress reduction in the triangular zones of areas ka2=2 (Fig. 1.3.3)
causes (for the case b ¼ 1) the energy release Ua ¼ 2�ðka2=2Þs2

N=2E. The
stress drop within the crack band of width h causes further energy release

FIGURE 1.3.3 Approximate zones of stress relief due to fracture.
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Ub ¼ has2
N=E. The total energy dissipated by the fracture is W ¼ aGf ,

where Gf is the fracture energy, a material property representing the energy
dissipated per unit area of the fracture surface. Energy balance during static
failure requires that @ðUa þ UbÞ=@a ¼ dW=da. Setting a ¼ Dða=DÞ where a=D
is approximately a constant if the failures for different structure
sizes are geometrically similar, the solution of the last equation for gma;N
yields Ba$zant’s [5] approximate size effect law in Eq. 10 with sR ¼ 0
(Fig. 1.3.1c).

More rigorous derivations of this law, applicable to arbitrary structure
geometry, have been given in terms of asymptotic analysis–based equivalent
LEFM [10] or on Rice’s path-independent J-integral [32]. This law has also
been verified by nonlocal finite element analysis and by random particle (or
discrete element) models. The experimental verifications, among which the
earliest is found in the famous Walsh’s [111, 112] tests of notched concrete
beams, have by now become abundant (e.g., Fig. 1.3.4).

For very large sizes (D� D0), the size effect law in Eq. 10 reduces to the
power law sN / D�1=2, which represents the size effect of LEFM (for
geometrically similar large cracks) and corresponds to the inclined asymptote
of slope �1/2 in Figure 1.3.1c. For very small sizes (D�D0), this law reduces
to sN ¼ constant, which corresponds to the horizontal asymptote and means
that there is no size effect, as in plastic limit analysis.

The ratio b ¼ D=D0 is called the brittleness number of a structure.
For b!1 the structure is perfectly brittle (i.e., follows LEFM), in
which case the size effect is the strongest possible, while for b! 0 the
structure is nonbrittle (or ductile, plastic), in which case there is no size
effect. Quasi-brittle structures are those for which 0:1 � b � 10, in which
case the size effect represents a smooth transition (or interpolation) that
bridges the power law size effects for the two asymptotic cases. The law
(Eq. 10) has the character of asymptotic matching and serves to provide the
bridging of scales. In the quasi-brittle range, the stress analysis is of
course nonlinear, calling for the cohesive crack model or the crack band
model (which are mutually almost equivalent), or some of the nonlocal
damage models.

The meaning of the term quasi-brittle is relative. If the size of a
quasi-brittle structure becomes sufficiently large compared to material
inhomogeneities, the structure becomes perfectly brittle (for concrete
structures, only the global fracture of a large dam is describable by LEFM),
and if the size becomes sufficiently small, the structure becomes
nonbrittle (plastic, ductile) because the FPZ extends over the whole
cross section of the structure (thus a micromachine or a miniature electronic
device made of silicone or fine-grained ceramic may be quasi-brittle
or nonbrittle).
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FIGURE 1.3.4 Top: Comparisons of size effect law with Mode 1 test data obtained by various

investigators using notched specimens of different materials. Bottom: Size effect in compression

kink-band failures of geometrically similar notched carbon-PEEK specimens [ ].
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1.3.6.3 SIZE EFFECT ON POSTPEAK SOFTENING

AND DUCTILITY

The plots of nominal stress versus the relative structure deflection (normal-
ized so as to make the initial slope in Figure 1.3.5 size-independent) have, for
small and large structures, the shapes indicated in Figure 1.3.5. Apart from
the size effect on Pmax, there is also a size effect on the shape of the postpeak
descending load-deflection curve. For small structures the postpeak curves
descend slowly, for larger structures steeper, and for sufficiently large
structures they may exhibit a snapback, that is, a change of slope from
negative to positive.

If a structure is loaded under displacement control through an elastic
device with spring constant Cs, it loses stability and fails at the point where
the load-deflection diagram first attains the slope �Cs (if ever); Figure 1.3.5.
The ratio of the deflection at these points to the elastic deflection
characterizes the ductility of the structure. As is apparent from the figure,

FIGURE 1.3.5 Load-deflection curves of quasi-brittle structures of different sizes, scaled to the

same initial slope.
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small quasi-brittle structures have a large ductility, whereas large quasi-brittle
structures have small ductility.

The areas under the load-deflection curves in Figure 1.3.5 characterize the
energy absorption. The capability of a quasi-brittle structure to absorb energy
decreases, in relative terms, as the structure size increases. The size effect on
energy absorption capability is important for blast loads and impact.

The progressive steepening of the postpeak curves in Figure 1.3.5 with
increasing size and the development of a snapback can be most simply
described by the series coupling model, which assumes that the response of a
structure may be at least approximately modeled by the series coupling
of the cohesive crack or damage zone with a spring characterizing
the elastic unloading of the rest of the structure (Ba$zant and Cedolin [17],
Sec. 13.2).

1.3.6.4 ASYMPTOTIC ANALYSIS OF SIZE EFFECT BY

EQUIVALENT LEFM

To obtain simple approximate size effect formulae that give a complete
prediction of the failure load, including the effect of geometrical shape of the
structure, equivalent LEFM may be used. In this approach the tip of the
equivalent LEFM (sharp) crack is assumed to lie approximately a distance cf

ahead of the tip of the traction-free crack or notch, cf being a constant
(representing roughly one half of the length of the FPZ ahead of the tip. Two
cases are relatively simple: (i) If a large crack grows stably prior to Pmax or if
there is a long notch,

sN ¼
ffiffiffiffiffiffiffiffi
EGf

p
þ sY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ða0Þcf þ gða0ÞD

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ða0Þcf þ gða0ÞD

p ð13Þ

and (ii) if Pmax occurs at fracture initiation from a smooth surface

sN ¼

ffiffiffiffiffiffiffiffi
EGf

p
þ sY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ð0Þcf þ g00ð0Þðc2

f =2DÞ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ð0Þcf þ g00ð0Þðc2

f =2DÞ
q ð14Þ

[10, 12] where the primes denote derivatives; gða0Þ ¼ K2
IP=s

2
ND and gða0Þ ¼

K2
Is=s

2
YD are dimensionless energy release functions of LEFM of a ¼ a0=D

where a0 ¼ length of notch or crack up to the beginning of the FPZ; KIP,
KIs ¼ stress intensity factors for load P and for loading by uniform residual
crack-bridging stress sY , respectively; sY > 0 for tensile fracture, but sY 6¼ 0
in the case of compression fracture in concrete, kink band propagation in fiber
composites, and tensile fracture of composites reinforced by fibers short
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enough to undergo frictional pullout rather than breakage. The asymptotic
behavior of Eq. 13 for D!1 is of the LEFM type, sN � sY / D�1=2.
Equation 14 approaches for D!1 a finite asymptotic value. So does Eq. 13
if sY > 0.

1.3.6.5 SIZE EFFECT METHOD FOR MEASURING

MATERIAL CONSTANTS AND R-CURVE

Comparison of Eq. 13 with Eq. 10 yields the relations:

D0 ¼ cf g
0ða0Þ=gða0Þ Bs0 ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EGf=cf g0ða0Þ

q
ð15Þ

Therefore, by fitting Eq. 10 with sR ¼ 0 to the values of sN measured on test
specimens of different sizes with a sufficiently broad range of brittleness
numbers b ¼ D=D0, the values of Gf and cf can be identified [20, 31]. The
fitting can be best done by using the Levenberg-Marquardt nonlinear
optimization algorithm, but it can also be accomplished by a (properly
weighted) linear regression of s�2

N versus D. The specimens do not have to be
geometrically similar, although when they are the evaluation is simpler and
the error smaller. The lower the scatter of test results, the narrower is the
minimum necessary range of b (for concrete and fiber composites, the size
range 1:4 is the minimum).

The size effect method of measuring fracture characteristics has been
adopted for an international standard recommendation for concrete ([99],
[BP] Sec. 6.3), and has also been verified and used for various rocks, ceramics,
orthotropic fiber-polymer composites, sea ice, wood, tough metals, and other
quasi-brittle materials. The advantage of the size effect method is that the
tests, requiring only the maximum loads, are foolproof and easy to carry out.
With regard to the cohesive crack model, note that the size effect method
gives the energy value corresponding to the area under the initial tangent
of the softening stress-displacement curve, rather than the total area under
the curve.

The size effect method also permits determining the R-curve (resistance
curve) of the quasi-brittle material } a curve that represents the apparent
variation of fracture energy with crack extension for which LEFM becomes
approximately equivalent to the actual material with a large FPZ.
The R-curve, which (in contrast to the classical R-curve definition) depends
on the specimen geometry, can be obtained as the envelope of the curves of
the energy release rate at P ¼ Pmax (for each size) versus the crack extension
for specimens of various sizes. In general, this can easily be done numerically,
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and if the size effect law has the form in Eq. 10 with sR ¼ 0, a parametric
analytical expression for the R-curve exists ([20], [BP] Sec. 6.4).

The fracture model implied by the size effect law in Eq. 10 or Eq. 13 has
one independent characteristic length, cf , representing about one half of the
FPZ length. Because of Eq. 15, the value of ‘0 is implied by cf if s0 is known.
The value of cf controls the size D0 at the center of the bridging region
(intersection of the power-law asymptotes in Figure 1.3.1c, and s0 or Gf

controls a vertical shift of the size effect curve at constant D0. The location of
the large-size asymptote depends only on Kc and geometry, and the location of
the small-size asymptote depends only on s0 and geometry.

1.3.6.6 CRITICAL CRACK-TIP OPENING

DISPLACEMENT, dCTOD

The quasi-brittle size effect, bridging plasticity and LEFM, can also be
simulated by the fracture models characterized by the critical stress intensity
factor Kc (fracture toughness) and dCTOD; for metals see Wells [117] and
Cottrell [50], and for concrete Jenq and Shah [70]. Jenq and Shah’s model,
called the two-parameter fracture model, has been shown to give essentially
the same results as the R-curve derived from the size effect law in Eq. 10 with
sR ¼ 0. The models are in practice equivalent because

Kc ¼
ffiffiffiffiffiffiffiffi
EGf

p
dCTOD ¼ ð1=pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Gf cf=E

q
ð16Þ

Using these formulae, the values of Kc and dCTOD can be easily identified by
fitting the size effect law (Eq. 10) to measured Pmax value.

Like the size effect law in Eq. 10 with sR ¼ 0, the two-parameter model has
only one independent characteristic length, ‘0 ¼ K2

c=s
2
0. If s0 is known, then

dCTOD is not an independent length because cf is implied by ‘0 and dCTOD then
follows from Eq. 16.

1.3.7 EXTENSIONS, RAMIFICATIONS,
AND APPLICATIONS

1.3.7.1 SIZE EFFECTS IN COMPRESSION FRACTURE

Loading by high compressive stress without sufficient lateral confining
stresses leads to damage in the form of axial splitting microcracks engendered
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by pores, inclusions, or inclined slip planes. This damage localizes into a band
that propagates either axially or laterally.

For axial propagation, the energy release from the band drives the
formation of the axial splitting fracture, and since this energy is proportional
to the length of the band, there is no size effect. For lateral propagation, the
stress in the zones on the sides of the damage band gets reduced, which causes
an energy release that grows in proportion to D2, while the energy consumed
and dissipated in the band grows in proportion to D. The mismatch of
energy release rates inevitably engenders a deterministic size effect
of the quasi-brittle type, analogous to the size effect associated with tensile
fracture. In consequence of the size effect, failure by lateral propagation
must prevail over the failure by axial propagation if a certain critical size
is exceeded.

The size effect can again be approximately described by the equivalent
LEFM. This leads to Eq. 13 in which sY is determined by analysis of the
microbuckling in the laterally propagating band of axial splitting cracks. The
spacing s of these cracks is in Eq. 13 assumed to be dictated by material
inhomogeneities. However, if the spacing is not dictated and is such that it
minimizes sN, then the size effect gets modified as

sN ¼ CD�2=5 þ s1 ð17Þ

([BP] Sec. 10.5.11) where C, s1 ¼ constants, the approximate values of
which have been calculated for the breakout of boreholes in rock.

1.3.7.2 FRACTURING TRUSS MODEL FOR CONCRETE

AND BOREHOLES IN ROCK

Propagation of compression fracture is what appears to control maximum
load in diagonal shear failure of reinforced concrete beams with or without
stirrups, for which a very strong size effect has been demonstrated
experimentally [9, 21, 69, 71, 91, 98, 104, 109, 110]. A long diagonal tension
crack grows stably under shear loading until the concrete near its tip gets
crushed. A simplified formula for the size effect can be obtained by energetic
modification of the classical truss model (strut-and-tie model) [9].

The explosive breakout of boreholes (or mining stopes) in rock under very
high pressures is known to also exhibit size effect, as revealed by the tests of
Carter [47], Carter et al. [48], Haimson and Herrick [67], and Nesetova and
Lajtai [90]. An approximate analytical solution can be obtained by exploiting
Eschelby’s theorem for eigenstresses in elliptical inclusions [27].
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1.3.7.3 KINK BANDS IN FIBER COMPOSITES

A link band, in which axial shear-splitting cracks develop between fibers
which undergo microbuckling, is one typical mode of compression failure of
composites or laminates with uniaxial fiber reinforcement. This failure mode,
whose theory was begun by Rosen [100] and Argon [1], was until recently
treated by the theory of plasticity, which implies no size effect. Recent
experimental and theoretical studies [40], however, revealed that the kink
band propagates sideway like a crack and the stress on the flanks of the band
gets reduced to a certain residual value, which is here denoted as sY and can
be estimated by the classical plasticity approach of Budiansky [39]. The
cracklike behavior implies a size effect, which is demonstrated by the latest
Ba$zant et al. [22, 24] laboratory tests of notched carbon-PEEK specimens
(Fig. 1.3.4); these tests also demonstrated the possibility of a stable growth of
a long kink band, which was achieved by rotational restraint at the ends).

There are again two types of size effect, depending on whether Pmax is
reached (i) when the FPZ of the kink band is attached to a smooth surface or
(ii) or when there exists either a notch or a long segment of kink band in
which the stress has been reduced to sY . Equations 13 and 14, respectively,
approximately describe the size effects for these two basic cases; in this case
Gf now plays the role of fracture energy of the kink band (area below the
stress-contraction curve of the kink bank and above the sY value), and cf the
role of the FPZ of the kink band, which is assumed to be approximately
constant, governed by material properties.

The aforementioned carbon-PEEK tests also confirm that case (ii), in
which a long kink band grows stably prior to Pmax, is possible (in those tests,
this is by virtue of a lateral shift of compression resultant in wide notched
prismatic specimens with ends restrained against rotation).

1.3.7.4 SIZE EFFECTS IN SEA ICE

Normal laboratory specimens of sea ice exhibit no notch sensitivity.
Therefore, failure of sea ice has been thought to be well described by plastic
limit analysis, which exhibits no size effect [73, 106]. This perception,
however, changed drastically after Dempsey carried out in 1993 on the Arctic
Ocean size effect tests of floating notched square specimens with an
unprecedented, record-breaking size range (with square sides ranging from
0.5 m to 80 m!) [52, 53, 89].

It is now clear that floating sea ice plates are quasi-brittle and their size
effect on the scale of 100 m approaches that of LEFM. Among other things,
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Dempsey’s major experimental result explains why the measured forces
exerted by moving ice on a fixed oil platform are one to two
orders of magnitude smaller than the predictions of plastic limit analysis
based on the laboratory strength of ice. The size effect law in Eq. 10
with sR ¼ 0, or in Eq. 13 (with sY ¼ 0), agree with these results well,
permitting the values of Gf and cf of sea ice to be extracted by
linear regression of the Pmax data. The value of cf is in the order of meters
(which can be explained by inhomogeneities such as brine pockets and
channels, as well as preexisting thermal cracks, bottom roughness of
the plate, warm and cold spots due to alternating snow drifts, etc.).
Information on the size effect in sea ice can also be extracted from acoustic
measurements [80].

Rapid cooling in the Arctic can produce in the floating plate bending
moments large enough to cause fracture. According to plasticity or elasticity
with a strength limit, the critical temperature difference DTcr across the plate
would have to be independent of plate thickness D. Fracture analysis,
however, indicated a quasi-brittle size effect. Curiously, its asymptotic form is
not DTcr / D�1=2 but

DTcr / D�3=8 ð18Þ

[10]. The reason is that D is not a characteristic dimension in the plane
of the boundary value problem of plate bending; rather, it is the flexural
wavelength of a plate on elastic foundation, which is proportional to D4/3

rather than D. It seems that Eq. 18 may explain why long cracks of length 10
to 100 km, which suddenly form in the fall in the Arctic ice cover, often run
through thick ice floes and do not follow the thinly refrozen water leads
around the floes.

In analyzing the vertical penetration of floating ice plate (load capacity
for heavy objects on ice, or the maximum force P required for penetration
from below), one must take into account that bending cracks are reached
only through part of the thickness, their ligaments transmitting compressive
forces, which produces a dome effect. Because at maximum load that
part-through bending crack (of variable depth profile) is growing vertically,
the asymptotic size effect is not P=D2 ¼ sN / D�3=8 [105] but sN / D�1=2.
This was determined by a simplified analytical solution (with a uniform crack
depth) by Dempsey et al. [54], and confirmed by a detailed numerical solution
with a variable crack depth profile [23]. The latter also led to an approximate
prediction formula for the entire practical range of D, which is of the type of
Eq. 10 with sN ¼ 0. This formula was shown to agree with the existing field
test [59, 60, 81].
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1.3.7.5 REVERSE SIZE EFFECT IN BUCKLING OF

FLOATING ICE OR CYLINDRICAL SHELL

An interesting anomalous case is the size effect on the critical stress for elastic
buckling of floating ice, i.e., a beam or plate on Winkler foundation. Consider
floating ice pushing against an obstacle of size d in the horizontal direction.
Dimensional analysis [102] suffices to determine the form of the buckling
formula and the scaling. There are five variables in the problem, h ¼ ice plate
thickness, Pcr , E0, r, h, d, and the solution must be have the form
F(Pcr , E0, r, h, d,)¼ 0, where Pcr ¼ force applied on the obstacle, r ¼
specific weight of sea water (or foundation modulus), and E0 ¼ E=ð1� n2Þ,
n being the Poisson ratio. There are, however, only two independent physical
dimensions in the problem, namely, the length and the force. Therefore,
according to Buckingham’s P theorem of dimensional analysis [102], the
solution must be expressible in terms of 5�2, i.e., 3 dimensionless
parameters. They may be taken as Pcr=E0hd,

ffiffiffiffiffiffi
rD
p

=E0h, and d=h, where
D ¼ E0h3=12 ¼ cylindrical stiffness of the ice plate. If the ice is treated as
elastic, Pcr=E0hd must be proportional to

ffiffiffiffiffiffiffi
rE0
p

=E0h and d=h. Denoting
sNcr ¼ Pcr=hd which represents the nominal buckling strength (or the average
critical stress applied on the obstacle by the moving ice plate), we conclude
that the buckling solution must have the form

sNcr ¼ kðd=hÞ
ffiffiffiffiffiffiffi
rE0

p ffiffiffi
h
p

ð19Þ

where k is a dimensionless parameter depending on d=h as well as the
boundary conditions.

The interesting property of Eq. 19 is that sNcr increases, rather than
decreases, with ice thickness h. So there is a reverse size effect. Consequently,
the buckling of the ice plate can control the force exerted on a stationary
structure only when the plate is sufficiently thin. The reason for the reverse
size effect is that the buckling wavelength (the distance between the inflexion
points of the deflection profile), which is Lcr ¼ pðD=rÞ1=4 (as follows from
dimensional analysis or nondimensionalization of the differential equation
of plate buckling), is not proportional to h; rather, Lcr=h/ h�1/4,
i.e., Lcr decreases with h. This contrasts with the structural buckling
problems of columns, frames, and plates, in which Lcr is proportional to the
structure size.

The axisymmetric buckling of a cylindrical shell under axial compression
is a problem analogous to the beam on elastic foundation. Therefore,
Eq. (refl-cr) must apply to it as well. Since the lowest critical stress for
nonaxisymmetric buckling loads is nearly equal to that for the axisymmetric
mode, the reverse size effect given by Eq. 19 must also apply.
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1.3.7.6 INFLUENCE OF CRACK SEPARATION RATE,
CREEP, AND VISCOSITY

There are two mechanisms in which the loading rate affects fracture growth:
(i) creep of the material outside the FPZ, and (ii) rate dependence of the
severance of material bonds in the FPZ. The latter may be modeled as a rate
process controlled by activation energy, with Arrhenius-type temperature
dependence. This leads to a dependence of the softening stress-separation
relation of the cohesive crack model on the rate of opening displacement. In
an equivalent LEFM approach, the latter is modeled by considering the crack
extension rate to be a power function of the ratio of the stress intensity factor
to its critical R-curve value.

For quasi-brittle materials exhibiting creep (e.g., concretes and polymer
composites, but not rocks or ceramics), the consequence of mechanism 1
(creep) is that a decrease of loading rate, or an increase of duration of a
sustained load, causes a decrease of the effective length of the FPZ. This in
turn means an increase of the brittleness number manifested by a leftward
rigid-body shift of the size effect curve in the plot of log sN versus log D, i.e., a
decrease of effective D0. For slow or long-time loading, quasi-brittle structures
become more brittle and exhibit a stronger size effect [26].

Mechanism 2 (rate dependence of separation) causes it to happen that an
increase of loading rate, or a decrease of sustained load duration, leads to an
upward vertical shift of the size effect curve for log sN but has no effect D0 and
thus on brittleness (this mechanism also explains an interesting recently
discovered phenomenon } a reversal of softening to hardening after a sudden
increase of the loading rate, which cannot be explained by creep).

So far all our discussions have dealt with statics. In dynamics problems,
any type of viscosity Z of the material (present in models for creep,
viscoelasticity, or viscoplasticity) implies a characteristic length. Indeed, since
Z ¼ stress=strainrate � kg=m s, and the Young’s modulus E and mass density
r have dimensions E� kg=m s2 and r� kg=m3, the material length associated
with viscosity is given by

‘v ¼
Z
nr

v ¼
ffiffiffi
E

r

s
ð20Þ

where v ¼ wave velocity. Consequently, any rate dependence in the
constitutive law implies a size effect (and a nonlocal behavior as well). There
is, however, an important difference. Unlike the size effect associated with ‘0

or cf, the viscosity-induced size effect (as well as the width of damage
localization zones) is not time-independent. It varies with the rates of loading
and deformation of the structure and vanishes as the rates drop to zero. For
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this reason, an artificial viscosity or rate effect can approximate the
nonviscous size effect and localization only within a narrow range of time
delays and rates, but not generally.

1.3.7.7 SIZE EFFECT IN FATIGUE CRACK GROWTH

Cracks slowly grow under fatigue (repeated) loading. This is for metals and
ceramics described by the Paris (or Paris-Erdogan) law, which states that plot
of the logarithm of the crack length increment per cycle versus the amplitude
of the stress intensity factor is a rising straight line. For quasi-brittle material
it turns out that a size increase causes this straight line to shift to the right, the
shift being derivable from the size effect law in Eq. 10 ([BP] Sec. 11.7).

1.3.7.8 SIZE EFFECT FOR COHESIVE CRACK MODEL

AND CRACK BAND MODEL

The cohesive (or fictitious) crack model (called by Hillerborg et al. [68] and
Petersson [93] the fictitious crack model) is more accurate yet less simple
than the equivalent LEFM. It is based on the hypothesis that there exists a
unique decreasing function w ¼ gðsÞ relating the crack opening displacement
w (separation of crack faces) to the crack bridging stress s in the FPZ. The
obvious way to determine the size effect is to solve Pmax by numerical
integration for step-by-step loading [93].

The size effect plot, however, can be solved directly if one inverts the
problem, searching the size D for which a given relative crack length a¼ a=D
corresponds to Pmax. This leads to the equations

D
R a
a0

Cssðx; x0Þvðx0Þ dx0 ¼ �g0½sðxÞ�vðxÞ

Pmax ¼
R a
a0
vðxÞdx

D
R a
a0

CsPðxÞvðxÞdx
ð21Þ

where the first represents an eigenvalue problem for a homogeneous Fredholm
integral equation, with D as the eigenvalue and vðxÞ as the eigenfunction;
x ¼ x=D, x ¼ coordinate along the crack (Fig. 1.3.6); a ¼ a=D, a0 ¼ a0=D;
a; a0 ¼ total crack length and traction-free crack length (or notch length); and
Css(x, x0), CsP(x)¼ compliance functions of structure for crack surface force
and given load P. Choosing a sequence of a-values, for each one obtains from
Eq. 21 the corresponding values of D and Pmax. These results have also been
generalized to obtain directly the load and displacement corresponding, on
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the load-deflection curve, to a point with any given tangential stiffness,
including the displacement at the snapback point which characterizes the
ductility of the structure.

The cohesive crack model possesses at least one, but for concrete typically
two, independent characteristic lengths: ‘0 ¼ EGf=s2

0 and ‘1 ¼ EGF=s2
0 where

GF ¼ area under the entire softening stress-displacement curve s ¼ fðwÞ, and
Gf ¼ area under the initial tangent to this curve, which is equal to GF only if
the curve is simplified as linear (typically GF� 2Gf). The bilinear stress-
displacement law used for concrete involves further parameters of the length
dimension } the opening displacement wf when the stress is reduced to zero
at the displacement at the change of slope, but their values are implied by Gf,
GF, s0 and the stress at the change of slope.

The scatter of size effect measurements within a practicable size range (up
to 1:30) normally does not permit identifying more than one characteristic
length (measurements of postpeak behavior are used for that purpose). Vice
versa, when only the maximum loads of structures in the bridging region
between plasticity and LEFM are of interest, hardly more than one
characteristic length (namely, cf) is needed.

The crack band model, which is easier to implement is used in commercial
codes (e.g., DIANA, SBETA) [49], is for localized cracking or fracture, nearly
equivalent to the cohesive crack model ([BP], [97]), provided that the
effective (average) transverse strain in the crack band is taken as ey ¼ w=h
where h is the width of the band. All that has been said about the cohesive
crack model also applies to the crack band model. Width h, of course,

FIGURE 1.3.6 Cohesive crack and distribution of crack-bridging stresses.
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represents an additional characteristic length, ‘4 ¼ h. It matters only when the
cracking is not localized but distributed (e.g., due to the effect of dense
and strong enough reinforcement), and it governs the spacings of parallel
rocks. Their spacing cannot be unambiguously captured by the cohesive
crack model.

1.3.7.9 SIZE EFFECT VIA NONLOCAL, GRADIENT, OR

DISCRETE ELEMENT MODELS

The hypostatic feature of any model capable of bridging the power law size
effects of plasticity and LEFM is the presence of some characteristic length, ‘.
In the equivalent LEFM associated with the size effect law in Eq. 10, cf serves
as a characteristic length of the material, although this length can equivalently
be identified with dCTOD in Wells-Cottrell or Jenq-Shah models, or with the
crack opening wf at which the stress in the cohesive crack model (or crack
band model) is reduced to zero (for size effect analysis with the cohesive
crack model, see [BP] and Ba$zant and Li [25]).

In the integral-type nonlocal continuum damage models, ‘ represents the
effective size of the representative volume of the material, which in turn plays
the role of the effective size of the averaging domain in nonlocal material
models. In the second-gradient nonlocal damage models, which may be
derived as an approximation of the nonlocal damage models, a material length
is involved in the relation of the strain to its Laplacian. In damage simulation
by the discrete element (or random particle) models, the material length is
represented by the statistical average of particle size.

The existence of ‘ in these models engenders a quasi-brittle size effect that
bridges the power-law size effects of plasticity and LEFM and follows closely
Eq. 10 with sN ¼ 0, as documented by numerous finite element simulations.
It also poses a lower bound on the energy dissipation during failure, prevents
spurious excessive localization of softening continuum damage, and
eliminates spurious mesh sensitivity ([BP], ch. 13).

These important subjects will not be discussed here any further because
there exists a recent extensive review [ ].

1.3.7.10 NONLOCAL STATISTICAL GENERALIZATION

OF THE WEIBULL THEORY

Two cases need to be distinguished: (a) The front of the fracture that causes
failure can be at only one place in the structure, or (b) the front can lie, with
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different probabilities, at many different places. The former case occurs
when a long crack whose path is dictated by fracture mechanics grows
before the maximum load, or if a notch is cut in a test specimen. The
latter case occurs when the maximum load is achieved at the initiation of
fracture growth.

In both cases, the existence of a large FPZ calls for a modification of the
Weibull concept: The failure probability P1 at a given point of the continuous
structure depends not on the local stress at that point, but on the nonlocal
strain, which is calculated as the average of the local strains within the
neighborhood of the point constituting the representative volume of the
material. The nonlocal approach broadens the applicability of the Weibull
concept to the case notches or long cracks, for which the existence of crack-
tip singularity causes the classical Weibull probability integral to diverge
at realistic m-values (in cleavage fracture of metals, the problem of
crack singularity has been circumvented differently } by dividing the
crack-tip plastic zone into small elements and superposing their Weibull
contributions [77]).

Using the nonlocal Weibull theory, one can show that the proper statistical
generalizations of Eq. 10 (with sR ¼ 0) and Eq. 12 having the correct
asymptotic forms for D!1, D! 0, and m!1 are (Fig. 1.3.7):

Case ðaÞ: sN ¼ Bs0ðb2rnd=m þ brÞ�1=2r b ¼ D=D0 ð22Þ

Case ðbÞ: sN ¼ s0z
nd=mð1þ rz1�rnd=mÞ1=r z ¼ Db=D ð23Þ

where it is assumed that rnd5m, which is normally the case.
The first formula, which was obtained for r ¼ 1 by Ba$zant and Xi [36] and

refined for n 6¼ 1 by Planas, has the property that the statistical influence on
the size effect disappears asymptotically for large D. The reason is that, for
long cracks or notches with stress singularity, a significant contribution to the
Weibull probability integral comes only from the FPZ, whose size does not
vary much with D. The second formula has the property that the statistical
influence asymptotically disappears for small sizes. The reason is that the FPZ
occupies much of the structure volume.

Numerical analyses of test data for concrete show that the size ranges in
which the statistical influence on the size effect in case (a) as well as (b)
would be significant do not lie within the range of practical interest. Thus the
deterministic size effect dominates and its statistical correction in Eqs. 22 and
23 may be ignored for concrete, except in the rare situations where the
deterministic size effect vanishes, which occurs rarely (e.g., for centric tension
of an unreinforced bar).
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1.3.8 OTHER SIZE EFFECTS

1.3.8.1 HYPOTHESIS OF FRACTAL ORIGIN

OF SIZE EFFECT

The partly fractal nature of crack surfaces and of the distribution of
microcracks in concrete has recently been advanced as the physical origin of
the size effects observed on concrete structures. Bhat [38] discussed a possible
role of fractality in size effects in sea ice. Carpinteri [43, 44], Carpinteri and
Ferro [38], Carpinteri et al. [45], and Carpinteri and Chiaia [46] proposed the
so-called multifractal scaling law (MFSL) for failures occurring at fracture
initiation from a smooth surface, which reads

sN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ ðA2=DÞ

p
ð24Þ

where A1, A2¼ constants. There are, however, four objections to the fractal
theory [11]: (i) A mechanical analysis (of either invasive or lacunar fractals)

FIGURE 1.3.7 Scaling laws according to nonlocal generalization of Weibull theory for failures

after long stable crack growth (top) or a crack initiation (right).
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predicts a different size effect trend than Eq. 24, disagreeing with
experimental observations. (ii) The fractality of the final fracture surface
should not matter because typically about 99% of energy is dissipated by
microcracks and frictional slips on the sides of this surface. (iii) The fractal
theory does not predict how A1 and A2 should depend on the geometry of the
structure, which makes the MFSL not too useful for design application. (iv)
The MFSL is a special case of the second formula in Eq. 12 for r ¼ 2, which
logically follows from fracture mechanics;

A1 ¼ EGf=cf g
0ð0Þ A2 ¼ �EGf g

00ð0Þ=2cf ½g0ð0Þ�3 ð25Þ

[12]. Unlike fractality, the fracture explanation of Eq. 24 has the advantage
that, by virtue of these formulae, the geometry dependence of the size effect
coefficients can be determined.

1.3.8.2 BOUNDARY LAYER, SINGULARITY,
AND DIFFUSION

Aside from the statistical and quasi-brittle size effects, there are three further
types of size effect that influence nominal strength:

1. The boundary layer effect, which is due to material heterogeneity (i.e.,
the fact that the surface layer of heterogeneous material such as concrete
has a different composition because the aggregates cannot protrude
through the surface), and to the Poisson effect (i.e., the fact that a plane
strain state on planes parallel to the surface can exist in the core of the
test specimen but not at its surface).

2. The existence of a three-dimensional stress singularity at the intersec-
tion of crack edge with a surface, which is also caused by the Poisson
effect ([BP], Sec. 1.3). This causes the portion of the FPZ near the
surface to behave differently from that in the interior.

3. The time-dependent size effects caused by diffusion phenomena such as
the transport of heat or the transport of moisture and chemical agents in
porous solids (this is manifested, e.g., in the effect of size on shrinkage
and drying creep, due to size dependence of the drying half-time) and
its effect on shrinkage cracking [96].

1.3.9 CLOSING REMARKS

Substantial though the recent progress has been, the understanding of the
scaling problems of solid mechanics is nevertheless far from complete.
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Mastering the size effect that bridges different behaviors on adjacent scales in
the microstructure of material will be contingent upon the development of
realistic material models that possess a material length (or characteristic
length). The theory of nonlocal continuum damage will have to move beyond
the present phenomenological approach based on isotropic spatial averaging,
and take into account the directional and tensorial interactions between the
effects causing nonlocality. A statistical description of such interactions will
have to be developed. Discrete element models of the microstructure of
fracturing or damaging materials will be needed to shed more light on the
mechanics of what is actually happening inside the material and separate
the important processes from the unimportant ones.
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