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Chapter 2 

Material Models for Structural 
Creep Analysist 

2.1 INTRODUCTION 

Creep and shrinkage of concrete is an intricate phenomenon, and a constitutive 
equation which is both generally applicable and realistic is difficult to formulate. 
Before the computer era, this task was not really an issue because no structural 
analysis problems could be solved with a sophisticated constitutive model. After 
1970, however, large computer codes that could accept a complicated constitu­
tive model became available. Yet nothing useful could be done with these large 
codes if a good constitutive model was unavailable. Thus, computers have been 
providing an impetus for development of realistic constitutive relations for 
concrete creep and shrinkage, and tremendous progress has taken place during 
the last fifteen years. . 

The purpose of this chapter is to review the progress, spell out the fundamental 
concepts, and emphasize some recent developments that are just becoming ready 
for computational applications. Since two comprehensive reviews of a similar 
nature appeared several years ago (ASCE, 1982; Bazant, 1982b), the subjects 
discussed in depth in these reviews will be covered concisely, while the most 
recent developments, such as the modeling of creep at variable humidity, will be 
covered in more detail. 

2.2 CONCRETE AS AGING VISCOELASTIC MATERIAL 

2.2.1 Compliance function 

The total strain of a uniaxially loaded concrete specimen at age t may be 
subdivided as 

e(t) = cElt) + Edt) + Es(t) + ET(t) = edt) + e"(t) 

= EE(t) + edt) + EO(t) = eu(t) + eO(t) (2.1) 

in which edt) is the instantaneous strain, which is elastic (reversible) if the stress is 

t Principal author: Z. P. BaZant. Prepared by RILEM TC69 Subcommittee 2, the members of 
which were Z. P. Bazant (Chairman), J. Dougill, C. Huet, T. Tsubaki. and F. Wittmann. 
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small, cdt) is the creep strain, cs(t) is the shrinkage (or swelling), CT(t) is the thermal 
expansion (or dilatation), cO (t) is the stress-independent inelastic strain, c" (t) is the 
inelastic (stress-dependent) strain, and cAt) is the stress-produced strain, also 
called the mechanical strain. Strain CE(t) is reversible (recoverable) immediately 
after the moment ofloading. Later, however, it is irreversible due to ageing caused 
by hydration, as well as by other time-dependent changes in the microstructure; 
see Section 1.3. 

According to these strain definitions, measurement of creep generally requires 
two identical specimens subjected to exactly the same environmental histories, 
one specimen being loaded and the other (the companion specimen) being load­
free. The difference between the deformations of these two specimens defines the 
mechanical strain, consisting of creep plus the instantaneous (elastic) 
deformation. 

In this section, we consider only creep at constant stress. By measuring strains 
of test specimens loaded to different stress levels, and plotting the creep 
isochrones, representing the curves of stress versus strain for various fixed load 
durations (see Fig. 2.1), one finds that within the service stress range, i.e. for 
stresses less than about 0.4 ofthe strength, these curves are approximately linear. 
Thus, 

c(t) = (J J (t, t') + (JO(t) (2.2) 

in which (J represents the uniaxial stress, c is the axial strain, t is the time, normally 
chosen to represent the age of concrete, and J(t, t') is the compliance function 
(often also called the creep function); this function represents the strain (elastic 
plus creep) at time t caused by a unit constant uniaxial stress that has been acting 
since time t'. Within the linear range, the creep at uniaxial stress is completely 
characterized by function J(t, t'). The typical shape of this function is sketched in 
Fig. 2.1. The compliance function is often expressed as a sum of the elastic 
(instant) compliance l/E(t') and the creep compliance C(t, t') (also called the 
specific creep), i.e. 

, 1 , 1 + ¢(t, t') 
J(t, t ) = E(t') + C(t, t ) = E(t') (2.3) 

where E(t') is the elastic modulus characterizing the instantaneous deformation 
at age t', and ¢(t, t') = E(t')J(t, t') - 1 is the ratio of the creep deformation to the 
initial elastic deformation, called the creep coefficient. The values of ¢ for long 
times such as 30 years usually lie between 1 and 6, with 2.5-3 as typical values. 
The long-time values of the shrinkage strain, included in cO (Eq. 2.2), are normally 
between 0.0002 and 0.0008. 

The values of the compliance function and shrinkage are influenced by many 
factors, which may be divided into intrinsic and extrinsic. The intrinsic factors are 
those that become fixed when the concrete is cast; they include the concrete mix 
parameters, such as the aggregate fraction, the elastic modulus of aggregate, the 
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Figure 2.1 Creep isochrones (top), and compliance curves for various ages t' at loading (bottom) 

cement content, the water-cement ratio, and the maximum aggregate size, as well 
as the design strength. The extrinsic factors are those that can be changed 
externally after the concrete has been cast; they include temperature and the 
specific water content (including their histories), the age when loading begins, the 
degree of hydration, etc. The mathematieal expressions for the compliance 
function and the influencing factors will be discussed in more detail in Section 2.5 
and in the meantime it will be assumed that the compliance function J(t, t') is 
known, being given either by an analytical formula, or a graph, or a table of values 
(Fig. 2.2). 

An important property of the compliance function of concrete is that it is a 
function of two variables, the current age, t, and the age at loading t' (Fig. 2.1). It is 
a salient characteristic of concrete that the compliance function cannot be 
considered as a function of one variable, i.e. the time-lag t - t', as is customary in 
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Figure 2.2 Compliance data measured concrete cylinders by Hanson and 
Harboe, and curves obtained after smoothing with ageing Maxwell chain. 
(after Bazant and Wu, 1974b. Hanson (1953) and Hanson and Harboe (1958) 

classical viscoelasticity for other materials, e.g. polymers. The ageing is a 
considerable obstacle to analytical solutions of structural problems, and necessi­
tates that most real problems have to be solved by numerical methods. 

2.2.2 Principle of superposition 

As a consequence of creep and shrinkage, the stress in redundant structures 
usually varies with time even if the load is constant. The calculation of creep 
caused by variable stress is greatly facilitated by the principle of superposition. 
This principle is usually assumed to apply to concrete within the service stress 
range, and its use in design is permitted by contemporary building codes and 
recommendations of engineering societies. The principle of superposition, which 
is equivalent to the hypothesis oflinearity of the constitutive equation that relates 
the stress and strain histories, states that the response to a sum of two stress (or 
strain) histories is the sum of the responses to each of them taken separately. 
According to this principle, the strain caused by stress history cr(t) may be 
obtained by decomposing the history into .small increments du(t' ) applied at 
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Figure 2.3 Decomposition of stress history into stress steps (left) or stress impulses (right) 

times t', and summing (as illustrated in Fig. 2.3) the corresponding strains which 
equal da(t'), J(t, t/) on the basis of Eq. (2.2): 

e(t) = f~ J(t, t')da(t') + £O(t) (2.4) 

This equation is a general uniaxial constitutive relation defining concrete as an 
ageing viscoelastic material. The integral in this equation should be understood 
as the Stieltjes integral, which is preferable to the usual Riemann integral since it 
applies not only for continuous but also discontinuous stress histories. When u(t) 
is continuous, we may substitute du(t/) = [dcr(t')/dt' ] dt' which yields the usual 
(Riemann) integral. For each finite sudden jump L1cr(t) at time ti , the term 
J(t, tj) L1u(tj ) is implied by the Stieltjes integral and must be added to the Riemann 
integral. The principle of superposition (Eq. 2.4) was proposed by Boltzmann 
(1876) for non-ageing materials, and by Volterra (1913) for ageing materials. 
Equation (2.1) was introduced for concrete by McHenry (1943). 

The principle of superposition (Eq. 2.4) yields accurate predictions only under 
the following conditions: 

1. The stresses are within the service stress range, i.e. less than about 0.4 of the 
strength. 

2. Unloading, i.e. strain of decreasing magnitude, does not take place (although 
the stress may decrease, as in relaxation). 

3. There is no significant change in moisture content distribution during creep. 
4. There is no large sudden stress increase long after the initial loading (this is the 

least important condition). 

In practice, the superposition principle is often used even when conditions 
(2)-(4) are violated; however, the predictions may then be rather crude. It may be 
noted that the proportionality property for creep under constant stress (Eq. 2.2) 
appears to have a broader applicability than the principle of superposition 
(cf. Section 2.4.1). It may be also noted that a certain simple non-linear 
generalization of the principle of superposition extends the applicability range 
significantly; see Addendum to this chapter. 
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Substituting da(t') = [da(t')/dt']dt' and integrating by parts, one may trans­
form Eq. (2.4) to the following equivalent form, introduced for concrete by 
Maslov (1941): 

a(t) I' B(t) = E(t) + ° L(t, t'}a(t')dt' + BO(t) (2.5) 

in which L(t, t') = - oJ(t, t')/ct'. Geometrically, this equation means that the 
stress history is decomposed into vertical strips each of which is considered as an 
impuls~ funct.ion of stress (Dirac o-function); see Fig. 2.3. Thus, L(t, t') represents 
the stram at tIme t caused by a unit stress impulse at time t' and is called the stress 
impulse memory function. 
. Differentiating Eq. (2.4), we see that the strain rate is expressed by the history 
mtegral, 

.() &(t) I' oJ(t, t') B t = - + --da(t') 
E(t) ° ot 

(2.6) 

where superior dots denote time derivatives. 
The principle of superposition may be equivalently expressed in terms of the 

relaxation function, R(t, t') (also called the relaxation modulus), which represents 
t?e un!axial stress a at time t caused by a unit constant axial strain imposed at 
tIme t and held constant afterwards. lmaging the strain history B(t) to be 
decomposed.i?to small strain increments dB(t') imposed at times t', the principle 
of superposItIOn means that the responses to these increments, gIven as 
R(t, t') dB(t'), may be superimposed. This yields the constitutive relation of 
ageing viscoelasticity in the form 

a(t) = I~ R(t, t')[dB(t') - dBO(t')] (2.7) 

in which the shrinkage (and thermal expansion) increments dBo(t') must be 
subtracted from dB(t') since, by definition, they produce no stress. 
T~e .typical r~laxation function of concrete is plotted in Fig. 2.4. Note again 

that It IS a functIOn of two variables t and t', and cannot be expressed as a function 

R (t, t') E(t') --- R (I, t') 

/ 

t' 
t log (/-t') 

Figure 2.4 Curves of the relaxation function for various ages t' at strain 
imposition 
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of one variable, the time-lag t - t', as is customary in classical viscoelasticity of 
non-ageing materials. 

When the strain history is given, Eq. (2.4) represents a Volterra integral 
equation for the strain history B(t). By solving this equation for the strain history 
specified as a step function (a constant unit strain imposed at age t'), one may 
calculate the stress histories for various t' (relaxation curves), and thus obtain the 
relaxation function. For realistic forms of J (t, t'), this solution must be carried out 
numerically. Conversely, Eq. (2.7) represents a Volterra integral equation for e(t). 
By solving this equation for the stress history in the form of a step function, i.e. a 
constant unit stress applied at age t', one may calculate the individual creep 
curves, which together define the compliance function. Equation (2.7) is said to be 
the resolvent of Eq. (2.4) and vice versa. Functions J(t, t') and R(t, t'), called the 
kernels of the integral equations, are complementary to each other, and if one of 
them is specified the other one follows. 

For the creep functions typical of concrete, the relaxation function may be 
approximately calculated from Bahnt and Kim's formula (Bazant and Kim, 
1979): 

, 1-.10 0.115 (J(t-A,t') 1) 
R(t, t ) = J(t, t') - J(t, t - 1) J(t, t' + A) -

(2.8) 

in which A = (t - t')/2, .10 ~ 0.008, and times must be given in days. Compared to 
the exact solution of the Volterra' integral equation, the error of this formula is 
normally within 1 per cent of the initial value of the relaxation curve. A 
comparison of this formula with the accurately calculated relaxation curves is 
shown in Fig. 2.5 based on BaZant and Kim (1979) (with a correction by Chiorino 
et al. 1984, p. 150). Also plotted is the estimate R(t, t') ~ l/1(t, t') = Eeff = efTect­
tive modulus, which is often used in classical, non-ageing viscoelasticity. For no 
ageing, the use of Eeff yields good results, but not if ageing is present as Fig. 2.5 
confirms. Development of an approximate formula for R (t, t') was also proposed 
by Chiorino et al. (1972) and others. 

Although Eqs (2.4) and (2.7) are equivalent, description of concrete creep 
behaviour in terms of the relaxation function is adopted rarely. The principal 
reason is that good experimental data on R(t, t') (Hansen, 1964; Ross, 1958a; 
Harboe et al. 1958; Hanson, 1953; Klug and Wittman, 1970; Rostasy et al. 1972; 
Davies et al. 1957) are much more limited, since the relaxation tests are not as easy 
to carry out as the creep tests. However, for certain types of problems it is 
advantageous to first determine R(t, t') from J(t, t') and then carry out the 
structural analysis on the basis of R(t, t'). 

There is solid experimental evidence (e.g. Hanson and Harboe, 1958; Hanson, 
1953) showing that the conversion of creep function into the relaxation function 
according to the principle of superposition is quite accurate, provided that 
simultaneous drying or wetting does not cause significant deviations from 
linearity and the stress is not high; see Fig. 2.6. 
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Figure 2.5 Comparison of approximate formula for relaxation function (dash-dot 
lines) with exact solution of relaxation function (solid lines) for various ages t' at 
loading, obtained from a smooth compliance function fitted to various data (a-e) or 
determined from ACI 1971 model (f). Dashed lines show effective modulus predictions. 
Where indistinguishable, dashed and dash-dot lines coincide with solid lines. (after 
Bazant and Kim, 1979; data from L'Hermite, Mamillan and Lefevre, 1965, 

supplemented by private communication, Mamillan, 1971). 

Multiaxial generalization of all the preceding relations is obtained easily, by 
virtue of the fact that the material is essentially isotropic. Based on the hypothesis 
of linearity (principle of superposition), Eqs (2.4) and (2.5) are generalized as 

E(t) = f~ BJ(t, t')dO'(t') + EO(t) (2.9) 

or as 

a(t) ft 
E(t) = B E(t) +. ° BL(t, t')O'(t') dt' + EO(t') (2.10) 
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Figure 2.6 Relaxation measurements on concrete cylinders by Hanson (1953) and Harboe et al. 
(1958), compared to exact relax:J.tion function curves for various ages t' at loading, calculated by 
superposition principle fwm smoothed compliance function measurements (one of the best proofs 

that the superposition principle correctly predicts relaxation; after B~lzant and Wu, 1974b) 

in which 

EO = (eO, eO, 80, 0, 0, O)T 

and 

B= 

-v -v 0 
-v 0 

0 
l+v 

0 0 
0 0 
0 0 (2.11 ) 

0 0 

1 + v 0 
l+v 

The numerical subscription of a and 8 denote the components of the stress and 
strain tensors in cartesian coordinates xi(i = 1,2,3), superscript T denotes the 
transpose of a matrix, and v is the Poisson ratio generalized for viscoelastic 
behaviour, with v(t, t) representing the elastic Poisson ratio at age t. 

In the service stress range, and under the conditions stated above, the test data 
on shear creep (torsion) and biaxial creep (McDonald, 1972; York, 1970; 
Arthanari, 1967; Neville and Dilger, 1973, 1981; Meyer, 1969; Illston, 1972, etc.) 
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approximately agree with the additivity of the responses to various multiaxial 
stresses implied in Eq. (2.9). 

Most generally, the Poisson ratio in Eq. (2.11) could be a function, v = v(t, t'). 
However, it so happens that at constant humidity (basic creep) this ratio is almost 
constant (approximately v ~ 0.18), and then matrix B can be moved in front of the 
integrals in Eq. (2.9). However, when creep during variable moisture content is 
considered and is described by means of a mean compliance for the entire cross­
section (Section 2.5.4), then the corresponding apparent overall Poisson ratio of 
the cross-section is quite variable and can drop almost to zero (Bazant and Wu, 
1974a). Unfortunately, no unique function v(t, t') then exists, since the evolution 
of v depends on the humidity history and the cross-section size. Moreover, 
matrix B then takes, strictly speaking, the form of a compliance matrix for 
anisotropic materials. 

The multiaxial stress-strain relations may also be written without matrix 
symbolism, as separate relations for the volumetric components and for the 
deviatoric components of the stress and strain tensors (Bazant, 1975, 1982b; 
ASCE, 1982). These equations are similar to Eqs (2.4) and (2.5), the uniaxial 
compliance function J (t, t') being replaced by the volumetric compliance function 
]V (t, t') = 3(1 - 2v)J(t, t') and by the deviatoric compliance function JD(t, t') = 
2(1 + v)J(t, t'). The matrix formulation in Eqs (2.9) and (2.10) relates more 
directly to the way finite element programs are written. 

Sometimes it is convenient to define creep operator E -1 and relaxation 
operator ~ by writing Eqs (2.4) and (2.7) in the forms-£ = E - 1a + £0 and 
a = ~(£ - £0). The multiaxial generalizations are then simply w~itten as 

in which 
£=BE- 1a+£0 or a=B- 1E(£-£0) (2.12) 

1, v/(l - v), v/(1- v), 0, 0, ° 1, v/(l - v), 0, 0, ° £(1 - v) 1, 0, 0, ° B- 1 = 
(1 + v)(1 - 2\') v* 0, ° , 

v*, ° v* 
1-2v 

v* = 
2(1- v) (2.13) 

The relaxation operator ~ is the inverse of the creep operator E -1. These 
operators can be manipulated according to the rules of linear algebra (with 
certain minor limitations, particularly the lack of commutativity, which is due to 
ageing). This property may be exploited to prove an extension of the elastic­
viscoelastic analogy to ageing viscoelastic materials, which permits converting 
any equation of linear elasticity to an analogous equation for ageing creep 
(Mandel, 1958; Bazant, 1961b, 1966, 1975; Huet, 1980) (see also Chapter 3). 
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2.2.3 Differential-type constitutive relations 
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Numerical creep analysis of large structural systems may be greatly facilitated, 
and analytical solutions of some problems may be rendered possible, if the 
integral-type constitutive equations from the preceding section are converted to a 
differential-type form consisting of a system of first-order ordinary differential 
equations in time. Such a conversion is possible if the kernel J(t, t') or R(t, t') has 
the degenerate form, i.e. consists of a sum of products of functions of single 
variables t and t'. The most general forms of the degenerate kernels may be 
written as 

N 1 
J(t, t') = L -( ') {l- exp [YI'(t') - YI'(t)]} 

1'=1 CI' t 
(2.14) 

N 

R(t, t') = L £1'(t')exp[YI'(t') - YI'(t)] (2.15) 
1'=1 

Here CI'(t') and £I'(t') are functions of one variable, called the reduced times. 
They may be considered as 

(J1. = 1,2, ... , N) (2.16) 

in which ql' are positive exponents::::; 1. Here TI' are constants called either the 
retardation times in the case of Eq. (2.14), or the relaxation times in the case of 
Eq. (2.15). The expansion in Eqs (2.14) and (2.15) represents a series of real 
exponentials, called the Dirichlet series (also called the Prony series) (Hardy and 
Riesz 1915, Lancosz 1964, Cost 1964, Schapery 1%2, Williams 1964). 

The expansion in Eq. (2.14) is normally made to include as its first term the 
instantaneous (elastic) part of the compliance function. This is achieved by 
choosing an extremely small first retardation time T dJ1. = 1), e.g. 1'1 = 10 - 9 day. 
Then the first term of the series in Eq. (2.14) is in all practical situations almost 
exactly 1/C 1 (t'), which represents the instantaneous compliance, C 1 (t') = £(t'). 
Using very small but non-zero T 1 is more convenient for computer programming 
than writing in Eq. (2.14) a separate instantaneous term which differs from the 
other terms of the sum. 

If the compliance function is given, it is not difficult to calculate functions C!'(t') 
or £!'(t') for which Eqs (2.14) or (2.15) are close approximations. The calculation 
procedure is discussed in detail in Bazant et al. (1981) and a simple computer 
program for this purpose is given in Bazant (1982) (and with a manual and 
examples in Ha, H., Osman, M. A. and Huterer, J. (1984), User's Guide). 

For certain special forms of the compliance function, such as the double power 
law or the logarithmic law, explicit expressions for C!'(t) exist; see Bazant and 
Wu (1973a), Bazant (1977, 1982b). In general, functions CI'(t') or £I'(t') can be 
calculated by the method of least squares. As for 1'1" however, they cannot be 
calculated from measured creep data but must be suitably chosen in advance. (If 
calculation of TI' on the basis of the least-squares condition is attempted, a 
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system of ill-conditioned equations results.) The choice of Til cannot be arbitary 
but must satisfy certain conditions. The values of Til must not be spaced too 
sparsely in the log(t - t') scale, and they must cover the entire time range of 
interest, in particular, the smallest Til must be such that T 2 ~ 3Tmin and the largest 
Til must be such that TN ~ 0.5Tmax, in which Tmin and Tmax are the smallest and the 
largest time delay after instantaneous load application for which the response is 
of interest. Moreover, the smallest Til must be sufficiently smaller than the age of 
concrete to when the structure is first loaded; T 2 ~ 0.1 to (otherwise the irreversible 
effect of concrete ageing at small ages would be missed in calculations. 

The Til-values that give a close fit of given J(t, t') data are not unique. Equally 
good fits of the given compliance function data can be obtained for many possible 
choices of Til-values which are uniformly spaced in the logarithmic time scale and 
cover the entire time range of interest. This is. of course. the reason that an 
attempt to determine Til from a least-squares condition leads to an iII-conditioned 
system of equations. 

Exponents qll in Eq. (2.16) may be always chosen as 1, in which case 

Yll(t) = tlTIl (2.17) 

However, the compliance function of concrete can be approximated with fewer 
terms in the sum of Eq. (2.14) when the value of qll is chosen as roughly 2/3 
(Bazant and Chern. 19R4c). In that case the spacing of Tu may be chosen according 
to the rule 

(II = 3, 4, ... , tv) (2.18) 

Although usually not the most efficient, the values of q" in Eq. (2.16) may be 
chosen as I; then the reduced times are proportional to the actual time, i.e. 
Y Il(t) = tlT" and 

(J.l = 1, 2, ... , N - 1) (2.19) 

in which case the Til values are spaced by decades in the log-time scale. The 
individual terms of the Dirichlet expansion are then exponential curves which 
have the shape indicated in Fig. 2.7(a), consisting of a spread-out step. It so 
happens that this step extends over only about one decade in the log-time scale. 
For this reason the number 10 in Eq. (2.19) or (2.18) cannot be replaced by a larger 
number, i.e. the Til-values cannot be spaced apart farther than by decades. The 
approximation of the creep curve or relaxation curve may then be imagined as a 
sum of many spread-out steps as shown in Fig. 2.7(b) or 2.7(c). 

The plot of CIl(t) or EIl(t) versus log Til is called the retardation spectrum or the 
relaxation spectrum. Its example is plotted in Fig. 2.8. 

The Dirichlet series expansion should be regarded only as an approximation to 
the compliance function, motivated by computational convenience, rather than 
as a fundamental law. The expansion contains unnecessarily many material 
parameters defining all the functions C,,(t') or £Il(t'). The input for a computer 
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program should consist of the coefficients of a simple formula for l(t, tf), such 
as the log-double power law. The coefficients defining the Dirichlet 
series expansion should be generated from this formula by the computer 
(Bazant, 1982a; Day et al., 1984). 

As already mentioned, the purpose of the Dirichlet series expansion is to 
convert a constitutive equation of an integral type to one of a differential type. 
For an ageing material, this conversion is somewhat simpler when the relaxation 
function rather than the compliance function is used. Equation (2.7) with R(t, t') 
given by Eq. (2.15) may be rewritten as 

IV 

O'(t) = I 0'1'(t) (2.20) 
1'=1 

in which 

O'I'(t) = e-y.(t) L eY.(r')B- 1 EI'(t') [dt(t f
) - dtO(tf

)] (2.21) 

Now, expressing the derivative dO'I'/dyl" we may verify that the column vectors 
0'1" called the partial stresses (internal variables), satisfy the differential equations 

Crl' + YI'(t)O'/1 = B- 1 E,,(t)(t - to) (2.22) 

Consider now the well-known Maxwell chain model (Fig. 2.9(b», in which 0'" is 
interpreted as the stress in the pth Maxwell unit. The strain rate in the ageing 
spring is a,,/E,.(t), and that in the dashpbt is ajrf,,(t), where rf" represents the 
age-dependent viscosity of the pth dash pot. Summing these strain rates, we get 
B- 1 (t-to)=(Cr,,/E/1)+(0'/1/rf/t)' which may be written as . 

Crl' + E/t((t» 0'1' = B- 1 E/t (t)(t - to) (2.23) 
rf I' t 

Comparing the coefficients of this equation with Eq. (2.22), we see that the spring 
moduli E/t(t) of the Maxwell chain are identical to the functions E/t(t) used in the 
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Figure 2.9 Kelvin chain model (left), Maxwell chain model (middle), and Maxwell chain model 
enhanced with cracking element on top and shrinkage element at bottom (right) 
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Dirichlet series expansions (Eq. 2.15), and that the viscosity of the /lth dash pot is 

11)t) = EI'(t)/Y/t(t) (2.24) 

In particular, for Y/t = (t/TI')q we have rf/t(t) = T~E!l(t)tq-1/q (Bahnt and Chern, 
1984c), and for q = I we have rf/t(t) = TI'E)t), a relation which has been used in 
most works so far. 

The differential-type constitutive relation for concrete creep has also been 
termed the rate-type constitutive relation. However, the latter term is used by 
some authors in theoretical continuum mechanics (e.g. Truesdell) to refer to a 
different formulation in which a is a function of 1:, e, ii, . ... 

A similar conversion to a differential-type form may be achieved for the 
Dirichlet series expansion of the compliance function (Eq. 2.14); see, e.g. Bazant 
(197Ic, 1975, 1982b), Bazant and Chern (1984c), Bazant and Wu (1973b). The 
resulting differential-type constitutive law may be written as 

IV 

with 

t(t) = I tl'(t) + tOft) 
1'=1 

(2.25) 

(2.26) 

and 

(2.27) 

See Bazant and Chern (1984c). Equations (2.25)-(2.27) may be recognized as 
the differential-type constitutive equation based on the Kelvin or Kelvin-Voigt 
chain model Fig. 2.7(a). Indeed, the rate of stress in the /lth spring is E/t(t)e", while 
the rate of stress in the /lth dash pot is rfl' (t)e". Setting the sum of these two stress 
rates equal to Cr, we get Eq. (2.26). 

Note that the differential equation for Kelvin chain (Eq. 2.26) is of the second 
order, while for a non-ageing material it is of the first order. This is a disadvantage 
in comparison to the differential-type formulation based on Maxwell (rather than 
Kelvin) chain, obtained from the Dirichlet series expansion of the relaxation 
function. 

A further disadvantage of the Kelvin chain formulation is that, due to the 
presence of the minus sign, Eq. (2.27) can yield a negative spring modulus Ell' 
Although this is not thermodynamically inadmissible (the thermodynamic 
restrictions apply only to the overall material moduli, not to the partial moduli 
EI')' we then do not have a guarantee that thermodynamic restrictions are 
satisfied overall. This is certainly disturbing. 

The Kelvin chain formulation may also be converted to a system of first-order 
differential equations. 

(/l = 1,2, ... , n) (2.28) 
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However, unlike E", the variables ,,,(t) do not have any direct physical 
interpretation, merely defined by the relation y" = e" + tT/C,,(t). Nevertheless, the 
numerical step-by-step algorithm for the Kelvin chain model may be based on the 
first-order equation (Eq. 2.28) rather than the second-order equation (Eq. 2.26); 
see Bazant (1971c, 1975, 1982b), Bazant and Wu (1973b). 

Variables (1" or £" represent what· is known in continuum thermodynamics as 
the internal variables, i.e. state variables that cannot be directly measured. (They 
were originally called by Biot t1955) the 'hidden' variables.) The current values of 
these variables characterize the effect of the past history of the material, thus 
replacing the history integral. Only a few current values of (1" or £" are needed to 
sufficiently characterize a long past history, e.g. only four values suffice for the 
history from t - t' = I day until IQ4 days. Another term for (1" is the hidden 
stresses or partial stresses, and for £" is the hidden strains or partial strains. 

Fig. 2.10 shows that the unit creep curves (compliance function) according to 
the Maxwell chain model are smooth curves which can be made to fit very closely 
the test data; e.g., those of Pirtz (1968), Hanson (1953) and Harboe et al. (1958). 

From th~ previous discussion it may be concluded that either the Maxwell 
chain Or the Kelvin chain can approximate the integral-type creep law of ageing 
viscoelasticity with any desired accuracy. Therefore, these two models are 
mutually equivalent, and they must also be' equivalent to any other spring­
dashpot model. For non-ageing rpaterials this was rigorously proven long ago by 
Roscoe (1950). 

Certain subtle questions nevertheless remain in the case of agt<ing materials. It 
may happen that, for the same J(t, t'), the spring moduli and the dashpot 
viscosities are always positive for one model but could become negative in some 
time periods for another model. If this is disallowed, the rheologic models for 
ageing materials are not completely equivalent (BaZant, 1979). 

The fact that the Kelvin chain model leads to a second-order differential 
equation and is more likely to give negative spring moduli or viscosities than the 
Maxwell model is caused by the fact that the equation for the ageing spring must 
be written as ci,. = E"(t}e,,, not as o-,.(t) = E,.(t)e,.. The latter equation would be 
thermodynamically correct for a chemically softening material (e.g. dehydrating 
concrete at very high temperatures), while the former equation is required for a 
material that is chemically hardening, as is concrete due to hydration (see 
Section 2.4.4) (BaZant, 1966a, b, 1979). 

Remark 

After completion of the committee's work, Baiant discovered a new creep model 
for which a Kelvin chain with age-independent properties (constant E,.) can be 
used. The age-dependence is taken into account separately, by certain transform­
ations of time-dependent variables. This new model appears to be much more 
efficient and better justified physically than the existing models just described; see 
the Addendum to this chapter. 
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2.2.4 Incremental quasi-elastic stress-strain relations 

The most effective approach to numerical step-by-step structural creep analysis is 
to approximate the stress-strain relation for the time step as an incremental 
quasi-elastic relation, and then solve the structural creep ~roblem as a sequence 
of elasticity problems. This can be done both for the mtegral-type and the 
differential-type formulations. . . 

Let time t be subdivided by discrete times t, (r = 0, 1,2, ... ) mto time steps 
Llt, = t, - t'-l (Fig. 2.11). Time to coincides w~t~ the inst~nt of first loading: If 
there is an abrupt load change at any time t" It IS convement for programmmg 
to use a time step of zero (or almost zero) duration, i.e. set ts+ 1 = ts (or, e.g. 
ts+ 1 = ts + 10- 4 day). Under constant loads, the strains and ~tresses v.ar.y 
at a rate which decreases roughly as the inverse of time, and for thiS reason It IS 

advantageous to use progressively increasing time steps M,. They are best c~ose,n 
so that the time step be kept constant in the log(t - t') scale. When Bazant s 
second-order algorithm described below (Eqs 2.31-2.32) is used, normally three 
or four-steps per decade in log-time suffice. 

Using the trapezoidal rule, the error of which is proportional to Llt
2

, we may 
approximate Eq. (2.9) as 

, 
" . 0 &,= L... Bl"S_I/Z Ll<Js +E, (2.29) 

s= I 

where the subscripts refer to 'the discrete times, and 5 - t refers to the middle of 
the time step Lls ; 1"s-1/2 may be interpreted either as \J,,'S:t J r.s - d/2, or as 
J(t" ts- I/Z )' Writing Eq. (2.29) also for E,-l ~nd sU.bt:actmg tt from Eq. (2.2~), 
Bazant (l972a) obtained the following quaSI-elastIc mcremental stress-stram 

relation: 

1 A II A<J, = E" B- 1 (At - Llt") Llt = - B Ll<J, + Llt or Ll Ll 
r E" 

(2.30) 

in which 

E" = 1/1r,r-I/Z' 
,-I 

Llt" = L B(Jr.s-l/Z - Jr-l,S- liZ )Ll<J + Llt? (2.31) 
s~ 1 

Here E" may be interpreted as the incremental elastic modulus, and Llt" as the 

crl~t 
o to I I t I! t I! J t 
r=O 4 5 6 7 8 

-(1) I I 2~ I ~~ I I I log (t - tol 
r=1 2 3 4 5 6 

Figure 2.11 Discrete subdivision of time with in­
creasing time steps 
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column matrix of the incremental inelastic strains because LlE" can be evaluated 
before the solution of the time step (t,_I, t,) begins. The creep structural analysis 
may thus be reduced to a sequence of elastic analyses performed in the individual 
time steps. Using the foregoing algorithm, Huet (1980) developed a general 
computer program for composite beams or frames. 

To make programming easy, Madsen (1979) formulated Bazant's second-order 
algorithm (Eqs 2.30-2.31) as a matrix relation between the column matrices of 
stresses and strains, such that the column matrix involves the stress or strain 
values at all discrete times. This formulation represents a matrix version of the 
elastic-viscoelastic analogy and makes it possible to obtain the solutions for 
creep simply by replacing the elastic modulus in the formulas of elasticity with the 
corresponding constitutive matrix (Madsen and Bahnt, 1983) (in more detail, see 
Chapter 3). However, the matrix solution is computationally even more ineffi­
cient than the step-by-step solution according to Eqs (2.30) and (2.31) and is 
suitable only for problems with a few unknowns. 

When large time steps are used, the accuracy of the foregoing second-order 
algorithm may be somewhat improved (Babnt, 1984) by using for the last time 
step Lla, the effective modulus Eerr = 1/J,.,_ I' The sum in Eq. (2.29) is then 
replaced by 

t, = BC~ 1, ... -1/2 Ll<Js + 1,.,-1 Ll<J,) + Llt? (2.32) 

Writing the equation also for t,_ I and subtracting it, one can obtain instead of 
Eq. (2.31), the r~lations 

E" = l/1r,,- I 

for r > 2: 
,-I 

Llt"= L (Jr,s-li2 -Jr-l.s-I/Z)Llas+(Jr,,-3/Z -Jr-1.r-z)Llar- 1 +Llt? (2.33) 
s= I 

for r = 2: 

Llt" = (J Z.IIZ - J l.o)Lla I + Ll£~; for r = 1: Llt" = Ll£? 

Algorithms that are based on a quasi-elastic incremental stress-strain relation 
corresponding to the use of the rectangle rule for the evaluation of the history 
integral have been used in practice. However, they are not significantly simpler, 
while their error, being of the first rather than the second order in M, is larger, and 
the convergence at diminishing M is markedly slower than for the second-order 
method (Bazant, 1972a). 

An approximation ofthe impulse memory integral (Eq. 2.9) with a sum leads to 
an algorithm which was used in some early works. However, this algorithm is 
computationally less efficient and does not permit increasing ~t to very long 
intervals as the stress variation is getting slower after a long period under dead 
load. 
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The incremental quasi-elastic stress-strain relation based on the history 
integral has the disadvantage that for each finite element one must store all the 
preceding values of all stress components, and at each time step one must 
evaluate long sums from all these values. This requires a very large storage 
capacity and a very long computing time. For this reason, it is much more efficient 
to base the incremental quasi-elastic stress-strain relation on the differential-type 
formulation. 

To obtain an efficient algorithm, the key idea is to use for the duration of the 
time step the exact integral of the differential equation obtained under the 
assumption that the coefficients of the differential equation and its right-hand 
side are constant during the time step, while they are permitted to change by 
jumps between the time steps. Thus, exact integration of Eq. (2.23) for the 
Maxwell chain yields (Bazant, 1971c; Bazant and Wu, 1974b): 

(2.34) 
in which 

(2.35) 

Substituting this into Eq. (2.20), we may obtain again the quasi-elastic incre­
mental stress-strain relation in Eq. (2.31) in which 

N 1 N 
E"- ~)"E AEH=n~(I-e-dy.)cs.. (2.36) -·'/;;'1 ,. ",-lt2 E "~1 ~ 

Note again that EN and AE" can be evaluated before the solution of the time step 
(t,-I, t,) begins. After solving the stress and strain increments in the time step by 
an elastic structural analysis, the new values of the partial stresses are obtained 
from Eq. (2.34). 

For the Kelvin chain model, exact integration of Eq. (2.29) yields (BaZant, 
1971c; BaZant and Wu, 1973a): 

.;.. 
1,... = 1",e-dY• + --" - BAcs (2.37) 

C"'_112 

which then again leads to the quasi-elastic incremental stress-strain relation in 
Eq. (2.31) with 

1 N I-A. 
- ~ " E"- f. C-' ,,-1 "'-1/2 

N 

AE" = L (1- e-dJp)"Y"'_1 + AE.° 
,.=1 

(2.38) 

The computational algorithm based on Eqs (2.30) and (234H2.36) or (2.37) and 
(2.38) is called the exponential algorithm. For At approaching zero, this 
algorithm becomes equivalent to the central difference approximation and 
converges at the same rate as this approximation, i.e. quadratically. The 
advantage of the exponential algorithms is in the possibility of using time steps 
that are much longer (even orders of magnitude longer) than the shortest 
relaxation or retardation time, '1, for which the usual central or forward 
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difference formulas would lead to numerical instability. The size ofthe time steps 
is subjected to no numerical stability limit. This can be instructively explained by 
examining the role of coefficient )." as follows. 

Among all '" there may be one, say, ... , which is ofthe same order of magnitude 
as the current time step At. Then for all ',,:S;;; 'III we have Ay,,» 1, exp( - Ay,,) ~ 0, 
and ).,,~O, whereas for all ,,,>1:,,, we have AY,,«l, exp(-Ay,,)~I, and 
A.,. ~ 1. Thus, we see that the chain moduli E" which contribute to the 
instantaneous incremental stiffness E" are only those for which 1: < 'III' Tbis is 
intuitively obvious because the stress in the Maxwell chain u~its for which 
tIl »At must get almost completely relaxed within a time period less than 
the step duration. So, the effect of )." as the time step is increased is gradually to 
'uncouple' the Maxwell chain units as their relaxation time becomes too small 
compared to At. 

A few historical comments are in order. A compliance function in the form of a 
single exponential was used in structural creep analysis by McHenry (1943), 
Maslov (1940) and Arutyunyan (1952), although for the purpose of converting the 
structural problem from integral to differential equations rather than for the 
purpose of avoiding the storage of stress history in step-by-step solution. The 
latter advantage of the degenerate kernel in the form of Dirichlet series was 
utilized by Selna (1967, 1968) and Bresler and Selna (1964); but their algorithm 
did not allow increasing the time step beyond a fraction of the smallest 
retardation time. The exponential algorithm which does not have this restriction 
was developed for non-ageing creep by Zienkiewicz and Watson (1966), Taylor 
et ai., (1970) and Mukaddam (1974). The exponential algorithms for ageing creep 
based on degenerate forms of the compliance as well as relaxation functions were 
developed by BaZant (1971c) and were applied in a finite element program by 
BaZant and Wu (1974a). 

Other forms of exponential algorithms which differ in some details were 
developed by Kabir and Scordelis (1979), Argyris eta/. (1977, 1978),.Pister etal . 
(1976), and Willam (1978) who also used these algorithms in large finite element 
programs. Based on the second-order differential equation for the stress-strain 
relation for Arutyunian's compliance function (given in BaZant, 1966b), Haas 
(1974b), and Schade and Haas (1975) developed a finite element program for 
spatial beam structures of composite construction, which avoids the storage of 
stress histories, applies to complex loading histories and to structures built 
through successive construction stages. This formulation was later improved 
(Haas, 1978) by introducing an increasing retardation time in order to get a better 
fit of measured compliance functions. 

Anderson (1980, 1982), Smith et al. (1977, 1978) implemented Baiant's 
algorithm (Bazant, 1971c, BaZant and Wu, 1973b) based on a degenerate form of 
the compliance function in the general-purpose finite element program 
NONSAP. The same was done for a degenerate form of the relaxation function in 
the general-purpose finite element program CREEP 80 by BaZant, Rossow and 



120 Mathematical Modeliny of Creep and Shrinkage 

Horrigmoe (Bazant and Rossow, 1981; BaZant et al., 1981) later refined and 
applied in various reactor vessel studies by Pfeiffer et al. (1985); and also in the 
finite element program SACAFEM by Jonasson (1977), who applied it in analyses 
of shrinkage effects in concrete top layers. The algorithm developed by Kabir and 
Scordelis (1979), also used by Van Zyl and Scordelis (1979), Van Greunen (1979) 
and Kang (1977), and Kang and Scordelis (1980), has been applied in large finite 
element programs. This algorithm, which likewise avoids the storage of the 
previous history by exploiting the Dirichlet series expansion of the compliance 
function, is similar to Zienkiewicz et al.'s (1968) algorithm for non-ageing 
materials; however, it has a lower order of accuracy than the exponential 
algorithms just described, since the approximation error is of the first order in M 
rather than the second order (this is because an approximation of the history 
integral by a rectangle rule is implied). This less accurate approximation 
nevertheless has the advantage that the same incremental elastic stiffness matrix 
of the structure may be used in every time step if the age of concrete is the same for 
all the finite elements, while the aforementioned exponential algorithms require 
changing the stiffness matrix in each time step. This advantage is lost, however, if 
the structure is of non-uniform age or if changes of stiffness due to cracking or 
other effects need to be considered. 

2.2.5 Age-adjusted effective modulus 

For many practical purposes, the structural creep analysis need not be very 
accurate. As a matter offact, it makes no sense to do it accurately if the stochastic 
nature of creep is ignored and no measures to reduce the statistical uncertainty 
are taken. Approximate methods of structural creep analysis are then appropri­
ate. The simplest approach is to obtain the time variation from algebraic 
relations, an approach which is usually formulated as some type of effective 
modulus. 

If the loads are steady, the most attractive method is to use a single, long step 
Ilt = t - to spanning from the moment of first loading, to, up to the current 
time, t, and consider for this step an effective quasi-elastic stress-strain relation: 

IlE = ~ B 1l0" + IlE N
, 

E" 
(2.39) 

in which IlE = E(t) - E(to), etc. If the shape of the stress curve from to to t is 
specified, En may be determined on the basis of the compliance function. 

It might seem that for determining E" the best assumption would be a linear 
stress variation from to to t, for which we would have 

EN = E(to)/[l + ¢(t, to)/2] 

Not so, however. A better estimate is to assume that the stress jumps 
discontinuously right after to and is then constant until the final time. Then one 
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obtains 

E" = Eefr = E(to)/[1 + ¢U, to)] = effective modulus 

(sustained modulus) (McMillan, 1916; Faber, 1927). 
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A still better assumption, which is much closer to the assumption that the stress 
is constant after a jump at to rather than to the assumption that the stress is 
linearly varying (Fig. 2.12), is to consider that the strain varies from to to t in 
proportion to the creep coefficient ¢(t, to)' or to J(t, tf). The stress history then is, 
exactly, a certain linear algebraic function of the relaxation function R(t, to), such 
that the stress-strain relation may be written in the algebraic form of Eq. (2.39) 
with 

En = E(to) - R(t, t!!2 
¢(t, to) 

(2.40) 

This result (see the theorem in Chapter 3) was proven by Bazant (1970d, 1972b). 
For a simplified proof, see Bazant (1982b). 

It has been numerically demonstrated that, if there is no ageing, the values of EN 
for concrete are nearly the same as the values of effective modulus Eeff • If there is 
ageing, the EN values given by Eq. (2.28) can be considerably larger than the 
effective modulus. Therefore, as compared to the effective modulus, Eq. (2.40) 
introduces principally an adjustment for ageing, and therefore, EN in Eq. (2.40) is 
called the age-adjusted effective modulus (Bazant, 1972b). 

Modulus E" may be regarded as the effective modulus for a modified creep 
coefficient ¢, i.e., 

EN = E(to)/[1 + X(t, to)¢(t, to)] 

where X(t, to) is a positive coefficient normally les than l.0. This type of correction 
to the effective modulus has been introduced by many authors on an empirical 

2 - better 

1-poor 

to 

Figure 2.12 Stress history simplifications implied in mean modulus (line I, X = 0.5), classical 
effective modulus (curve 2, X = 1), and age-adjusted effective modulus (curve 3) (left), and stress 

histories for which the age-adjusted effective modulus gives exact results (right) 
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basis. An approximate estimate of coefficient X has been obtained for relaxation­
type stress histories by Trost (t 967). Trost's estimate of X is quite close to the exact 
value given by Eq. (2.40) provided that the age-dependence of the elastic modulus 
is neglected. Because X ~ 1 in the absence of ageing. coefficient X introduces 
principally a correction for ageing and was therefore named by Bazant (972b) the 
ageing coejficient. (Note, however, that X would not be close to 1 if the exponent 
n in the power law, Eq. (2.78), were not much less than 1.) 

The relaxation function needed in Eq. (2.40) may be calculated with high 
accuracy using a step-by-step solution. For practical purposes, though, the 
approximation in Eq. (2.8) may normally be used in Eq. (2.40). Alternatively, a 
table or graph of the ageing coefficient X may be set up for any given compliance 
function. But a table or graph becomes impractical if the dependence of J(t, t') on 
many parameters is taken into account, as in the BP model. 

If the load involves several sudden load changes, then the age-adjusted effective 
modulus method must be applied separately for each load increment and the 
results then superimposed. 

The effective modulus gives exact results only if the stress is constant in time 
(curve 2 in Fig. 2.12). For all other stress histories sketched in Fig. 2.12 there is an 
error. By contrast, the age-adjusted effective modulus gives exact results for all 
the increasing and decreasing histories sketched in Fig. 2.12, provided they are 
expressible as linear functions of the relaxation function. The stress histories in 
structures under constant load are normally quite close to such a time variation. 
This explains why the age-adjusted effective modulus method gives far better 
results than the effective modulus method. 

fhe quasi-elastic (algebraic) stress-strain relation based on the age-adjusted 
effective modulus is the simplest possible approach to linear creep analysis of 
ageing structures. The method has been endorsed in the latest recommendations 
of ACI (1982) as well as in CEB-FIP Manual (Chiorino et al .. 1984). Excellent 
results have been obtained in various practical applications (BaZant and Najjar, 
1973; Bazant et al., 1975; Brueger, 1974; Bazant and Panula 1980). 

2.3 TEMPERATURE AND HUMIDITY EFFECTS 

2.3.1 Diffusion theory, residual stresses and cracking 

The specific moisture content, W, and its rate of change not only produce 
shrinkage or swelling but also exert profound influence on creep. The precise law 
governing this influence, however, is difficult to determine from measurements 
because test specimens are typically in a non-uniform moisture state, and 
consequently have non-uniform stress distributions with self-equilibrated re­
sidual stresses, and usually undergo tensile cracking or strain-softening as a 
consequence of these residual stresses. It is because of these complicating aspects 
that the effect of humidity on creep has been the most argued about property of 
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concrete, and it is only now, after some 50 years of research, that a clearer picture 
is emerging. 

Measurements on specimens exposed to drying or wetting cannot be interpre­
ted, and the behaviour of structures exposed to the environment cannot be 
predicted, unless the distributions of water content and pore humidity through­
out the specimen are calculated. The movement of moisture through concrete 
is governed by the diffusion theory. In the early investigations (Carlson, 1937; 
Pickett, 1946; L'Hermite, 1952) the linear diffusion theory was used, but serious 
discrepancies have been found in confrontation with measurements. It is now well 
documented that the diffusion equation that governs moisture diffusion in 
concrete is highly non-linear, due principally to a strong dependence of 
permeability). (as well as diffusivity C) on pore relative humidity. The governing 
differential equations may be written as (Bazant and Thonguthai, 1978, 1979; 
BaZant et al., 1981) 

in which 

cw 
-= -divJ, ct 

a 
J = --gradp 

g 

Ow cw cp cwaT. . CW cte 
Tt = cp ct + aT Tt - Wh , H"h = - ate aT 

(2.41 ) 

(2.42) 

Here W = specified water content (kg/m 3
), including water that is chemically 

bound, W = w(p, T, te); Wh = rate of free water loss from the pores due to hydration 
(if ~i'h < 0, Wh represents the rate of free pore water gain due to dehydration, whi~h 
occurs at temperatures> tOW C, J = flux of water through concrete (kg/s'm-), 
a = permeability, g = gravity acceleration, te = equivalent age = J PhfJrdt (where 
Ph' Pr are functions of p and T, see Eq. 2.49), T = temperature, and p = pore 
water pressure, representing the vapour pressure if the pores are unsaturated, 
and liquid water pressure if the pores are saturated. . . . 

Substitution of Eq. (2.42) into (2.41) and elimination of J YIelds a differentIal 
equation for p, coupled with the variation of temperature and of ~he degree of 
hydration. Alternatively, the diffusion problem can be formulated III ~erms.of w 
instead of p. This is, however, inconvenient when the temperature IS vanable 
because the water flux at non-uniform temperature is still governed by grad p as 
the single driving force (Bazant and Thonguthai, 1978). When w is used as the 
basic variable, it means that J depends on both grad wand grad T, and not just on 
grad w; this is a mathematical complication: (The flux caused by grad w is called 
the Fick flux, and the flux caused by grad p the Soret flux or the thermal moisture 
flux.) 

At constant temperature below 100°C, it is convenient to reformulate 
Eqs (2.41) and (2.42) in terms of pore (relative) humidity h = P!Psat(T), where 
Psat(T) = saturation vapour pressure at temperature T (Bazant and Najjar, 1971, 
1972). 

ah . chs 
-= -kdlvJ +-~-, 
ct ct 

J = -.l.gradh (2.43) 
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where k = (oh/owh.te = inverse slope of the desorption or sorption isotherm of 
concrete at constant T and te , A = permeability-type coefficient depending on T 
and te, and hs = hs(te) = self-desiccation humidity, representing the variation of h 
with the age in a sealed specimen. For normal concretes, hs decreases gradually 
from 1.0 to between 0.96 and 0.98. This variation is quite small and may be 
neglected as an approximation, which represents an advantage of the formulation 
in terms of h. 

It is also possible to formulate the diffusion problem at constant T in terms of 
the free (evaporable) water content W, but then the source term in the diffusion 
equation, representing the loss offree water consumed by the hydration reaction, 
is large and must be included. This is an inconvenience in such an approach. 

The basic assumption underlying Eq. (2.41) is that local thermodynamic 
equilibrium always exists in each pore of concrete. This implies that w, p, and T 
are not related by a differential equation but simply by a function, represent­
ing the set of empirical desorption or sorption isotherms. 

The material properties are characterized by empirical coefficients A., Ph, PT and 
isotherms w = w(p, T, te ), or coefficients k, a, and function h.(t.). Their direct 
measurement is not an easy task. Generally it is physically simpler, albeit 
mathematically more complicated, to deduce these material characteristics by 
fitting tran.sient data on h or p from drying or wetting tests with a finite element 
program (e.g. Bazant and Wu, 1974b). 

For desorption at room temperature, slope k may often be considered as 
approximately constant, in which case Eq. (2.43) becomes 

oh d' (C d h) ohs(t.) at= lV gra +~ (2.44) 

where C = kc = diffusivity of concrete. The assumption of constant slope k, 
however, is not very accurate for many concretes, and it is then preferable to use 
separate k and c (Eq. 2.41) instead of their product, C (Eq. 2.44). Especially at 
h -+ 1, the slope k may vary between the mean slope of isotherm and an almost 
infinite value. 

An important fact about moisture transport in concrete is that it is essentially 
uncoupled from the stress-deformation problem. This is confirmed by the fact 
that loading has no appreciable effect on the water loss due to drying, as observed 
by Maney (1941), Hansen (1960b) and others. However, an exception is the 
formation of large cracks due to stress, which were experimentally observed to 
increase permeability diffusivity significantly (Bazant, Sener and Kim, 1987). In 
that case, there is a two-way coupling with the stress-deformation problem. 

The diffusion equation of moisture transfer (Eqs 2.41, 2.43 or 2.44) is strongly 
non-linear because of the dependence of A. (or C) on p (or h). It has been found 
(Bazant and Najjar, 1971, 1972) that 2 (or C) decreases to about 1/20 as h drops 
from 0.95 to 0.50 (Fig. 2.13). This is probably due to the fact that at a high degree 
of saturation the moisture transfer occurs mainly in the capillary phase of water, 
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Figure 2.13 Theoretical dependences of diffusivity on pore humidity, permeability on 
temperature, and specific water content on pore relative vapour pressure, verified by 

comparisons with test results 
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Figure 2.14 Example of measurements (by Monfore) of pore humidity distributions in a drying 
cylinder which lead to the dependence of difTusivity on the humidity shown in Fig. 2.13, for which the 
calculation yields the solid curves. The dashed curves represent the best fits possible with a constant 
difTusivity (top-evolution of humidity in the centre of cylinder; after Bazant and Naiiar, 1971) 

while at a low degree of saturation the moisture transfer probably involves 
surface diffusion along adsorption layers of water on the pore walls, as well as 
vapour movements (see Chapter 1). A suitable empirical expression, which was 
determined from drying data (Fig. 2.14) under the assumption of a constant value 
of k and was used by many authors in finite element analysis, is as follows (Bazant 



126 Mathematical Modeling of Creep and Shrinkage 

and Najjar, 1972) (Fig. 2.13): 

C = k).:::= C 1 (T,t e ){0.05 + 0.95[1 + 3(1- h)4rl] (2.45) 

in which C 1 is the diffusivity value at h = 1; C depends strongly on temperature 
and the degree of hydration, which may be described by the semi-empirical 
formula (Bazant, 1975): 

[ (13) 1'2J T (Q Q ) C (T t ) = C 03+ - -exp ---~-
1 'e. O· to To RTo RT 

(2.46) 

in which Q = activation energy of diffusion, R = gas constant, T = absolute 
temperature; Q/R:::= 4700 K. 

Below 1000 C, drying of concrete is a very slow process, orders of magnitude 
slower than heating or cooling. A standard 6 in diameter cylinder of normal 
concrete requires over ten years to almost equilibrate pore humidity with a 
constant environment. 

Equations (2.41}-(2.44) apply, of course, for both drying and wetting. Note, 
however, that diffusivity C greatly increases as concrete becomes oversaturated, 
i.e. h > lor P > Psat(T). This is because the inverse slope of the isotherm, cp/cw or 

. 8h18w, greatly decreases. As the boundary conditions, for a sealed surface the 
normal water flux I n cannot be O. For an exposed surface we may usually assume 
perfect moisture transfer, in which case we have at the surface P = Pen' where Pen is 
the environmental vapour pressure (this is apparently true even if the environ­
mental and surfa'Ce temperatures differ). In reality, the vapour pressure in the 
environment and in the pores at concrete surfaces differ. This is important only 
for very thin specimens, and one must then formulate the boundary condition 
with the help of the surface transmissivity coefficient for moisture. 

The initial condition consists of a prescribed spatial distribution of h. The initial 
condition for concrete as cast is that h:::= 1 everywhere. 

Due to non-linearity of the diffusion equation, solutions must be obtained 
numerically. This can be easily accomplished using a finite element formulation 
in space and step-by-step integration in time. For the latter, the Crank-Nicolson 
algorithm appears to be most efficient (BaZant and Thonguthai, 1978, 1979; 
Bazant et ai., 1981). The finite element formulation may be developed using the 
Galerkin-type variational procedure (Bazant and Thonguthai. 1978, 1979). 

Consider now the basic physical consequences for shrinkage and creep. One 
simple consequence ofthe diffusion theory is that geometrically similar specimens 
or structures of different sizes have similar distributions and time histories of pore 
humidity h. Using linear as well as non-linear diffusion equations, it may be 
shown (e.g. Bazant, 1982b) that, at the same relative location in geometrically 
similar bodies of different sizes, the pore humidity is a function of the non­
dimensional time: 

(2.4 7) 
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in which to = age at the start of drying, D = characteristic dimension of the body 
(e.g. thickness), and 1:5 = a coefficient which may be called the drying half-time. 
The time required for drying to reach the same pore humidity at the same relative 
location is proportional to "s' which in turn is proportional to the square of the 
dimension (thickness) of the concrete specimen or structure. Generally, the drying 
(or wetting) times of geometrically similar bodies are proportional to their size 
(dimension, thickness) squared. 

The size-square dependence (Eq. 2.47) is useful for the modeling of shrinkage 
and has been introduced in a recent shrinkage prediction model (BaZant and 
Panula. 1978). However, this property is exactly true only if self-desiccation and 
the age dependence of permeability (Eq. 2.45) are neglected, and if the temperature 
is either constant or varies in a self-similar way for specimens of different sizes. On 
the other hand, non-linearity of the diffusion equation does not spoil the size­
square dependence. Experimental data agree with this property quite closely. 

Another simple basic property which follows from the diffusion theory 
characterizes the rate of penetration of the drying front into concrete from the 
surface. It can be shown (BaZant, Wittmal)n, Kim, Alou, 1987) that the 
penetration depth 0p of the drying front is initially (for short t - to) given by 

0p=[12Cl(t~tO)Jl!2 (2.48) 

So, the penetration depth c5p is proportional to the square root of the drying time, 
t ~ to. This property is again exactly true only if the self-desiccation and the age 
dependencies of permeability and of the slope of the sorption diagram are 
neglected. However, the non-linearity due to the dependence of diffusivity or 
permeability (Bazant and Najjar, 1971, 1972) on h does not invalidate Eq. (2.48). 
F or a typical diffusivity value C 1 = 0.1 em 2/day, the drying front penetrates the 
depth of 1 mm in 12 min, 1 cm in 20 hours, 10 cm in 83 days, and 1 m in 23 years. 
The drying times needed to reach a nearly uniform humidity distribution up to 
this depth are about a hundred times longer, 

An important consequence of Eq. (2.48) for the penetration depth is that the 
shrinkage curves (for constant surface humidity) must be initially (i.e. asymptoti­
cally for short times) proportional to (t - to) (t - to = drying time) (see Eq. 2.84). 
This property, which is true not merely for the linear diffusion theory but also for 
the non-linear one (Bazant, Wittmann, Kim, Alou, 1987), closely agrees with 
carefully controlled experiments. 

As a consequence of non-uniform humidity distributions, the shrinkage strains, 
as well as the creep strains at drying, are non-uniformly distributed throughout 
the specimen. Consequently, additional elastic and creep deformations are 
always produced such that the total strains become compatible. For the drying of 
a wall, the pore humidity distributions at various times, the associated free 
shrinkage strains, and the stress distributions produced are illustrated in 
Fig. 2.15. The strains produced by non-uniform drying normally greatly exceed 
the strain value for the tensile strength limit of concrete (i.e., f;/ E). Therefore, they 
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cause tensile strain softening and cracking. This means that the deformations 
measured in the standard tests of shrinkage and creep at drying or wetting merely 
represent the apparent shrinkage and creep of the specimen but not the true 
shrinkage and creep. They must be analysed and fitted with the help of a finite 
element program (Bazant and Wu. 1974a) in order to infer indirectly the true 
material properties. 

2.3.2 Temperat~re and humidity dependence of creep viscosities and aging 

Pore relative humidity h and temperature T affect creep and shrinkage in two 
ways: (1) directly, by altering the viscosity coefficient "", and (2) indirectly. 
through the effect on the rate of ageing (hydration). Consider the latter effect first. 

The rate of hydration strongly decreases as h decreases; at h = 0.3 the hydration 
rate is almost zero, and then there is no ageing. This may be conveniently 
described by means of a change of the time-scale. considering that the age­
dependent material parameters, i.e. E" and "". rather than being functions ofthe 
actual age of concrete t, are functions of a certain equivalent hydration period t.; 
thus we may write 

'I,. = '1,,(t.' (2.49) 

in which Ph is an empirical function of h. which may be approximately considered 
as Ph = [I + (a - ah)~r 1 (Bazant and Najjar. 1972). Calibration by test data 
yields a::: 5. For It = I, we have p" = I and c. = r. 

Similarly, an increase of temperature accelerates hydration. provided the 
temperature is below tOO" C. Since the rate of chemical reactions generally 
follows the activation energy concept (rate-process theory) (Glasstone et ~/., 
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1941}, .it is logical t~ .use this concept for the rate of hydration or ageing; 
accordmgly, the definitIOn of the equivalent hydration period (or maturity) may 
be extended as 

(2.S0) 
in which 

(2.S1) 

':fere T !s the absolute temperature (in kelvins), To is the reference temperature 
(In kelvinS. normally 296 K) (for T = To. #1" = I), R is a gas constant. and 
U h = activationenergyofhydmtion; Bazant and Wu( 1974a)found U h/ R ~ 2700 K 
(Fig. 2.16). Strictly speaking, Eq. (2.51) ignores the fact that hydration consists of 
several simultaneous chemical reactions, each governed by a different activation 
energy. So deviations from Eq. (2.S1) may be expected. and Jonasson (1984) finds 
that the empirical relation UhlR = 4600[30,'(1" - 263)]°·3'1 agrees with the test 
data better. 

According to studies of non-linear cre'ep (Bazant ec al.. 1983). it seems that the 
rate of hydration (or ageing) might also depend on stress. as if compression 
promoted the rate offormation of new bonds. I n particular, Eq. (2.S0) would thus 
be generalized as 

(2.S2) 

in which PI1 is a function of the hydrostatic pressure component in concrete, such 
that PI1 increases with the magnitude of pressure. This effect might be even more 
complex in that each principal stress could affect the rate of hydration separately 
for each direction. 

Now consider the direct effect of temperature and pore humidity on the rate of 
creep. This effect may be described as (Bazant ec al .• 1981; Bazant and Chern, 
1985a) 

--= 
'1,,(t~) !I'E,,(t.) 

(I-l= 1,2, ...• N) (2.53) 

4>T and 4>h are functions of T and h. which increase when T or II increase. The effect 
of temperature may again be based on the fundamental concept of activation 
energy, which implies that 

4>T = exp [U 0 (.!... - ~)J (2.54) 
. R To T 

in which Uo is the activation energy of creep; VoiR::: SOOOK. The activation 
energy of creep could have different values for different t" (i.e. for components of 
different relaxation or retardation times); however. the existing data do not 
indicate any need for such a refinement. 
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Figure 2.16 Compliance measurements for various temperatures, and fits (solid lines) by ageing 
Maxwell chain model with viscosities and reduced time which depend on temperature according to 

activation energies (BaZant and Wu, 1974b) 

The effect of pore humidity on the creep rate may be described by the empirical 
equation (Bazant and Chern, 1985a) cf>h = rl.h + (l - fJ.h)h 2

, which indicates that 
the creep rate decreases if pore humidity decreases. According to some data for 
cement paste specimens predried in an oven and then rewetted (Wittmann, 1968), 
fJ.h =" 0.1. However, the preheating might have made this effect too severe. Tests 
with drying at constant temperature (Bazant et aI., 1976) indicate a larger value, 
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:Xh =" 0.5 (Bazant et al., 1976) which seems to work well for concrete (Bazant and 
Chern, 1985a). 

The aforementioned humidity dependence of the creep rate may seem to go 
against the established notion that the creep at simultaneous drying is higher 
than the creep of sealed specimens. For this reason, it first appeared surprising 
when, during the 1960s, it was experimentally discovered that creep is lower at 
lower humidity (Wittmann, Ruetz, Cilosani, Ishai, etc.). However, when normal 
size specimens are drying while loaded. this effect is normally overridden by 
transient effects of stress-induced shrinkage and of cracking or strain-softening 
due to shrinkage stresses. These additional effects will be discussed later in this 
chapter. 

2.3.3 Shrinkage, thermal expansion, and their stress dependence 

Shrinkage as a material property, called true shrinkage, is the shrinkage of a 
material element at zero stress and variable humidity. Unfortunately, the true 
shrinkage of concrete cannot bl? measured directly because it is impossible to 
obtain a specimen with no residual stresses. This is because of the extremely slow 
process of drying of concrete at normal temperatures (extremely low diffusivity). 
To measure true shrinkage, it is necessary to use thin-walled specimens and vary 
the environmental humidity sufficiently slowly so that the pore humidity distribu­
tion throughout the wall of the specimen remains nearly uniform at all times. The 
wall thickness must be roughly 1 mm to permit changing the environmental humid­
ity from 100 per cent to 50 per cent within about one day (Bazant and Raftshol, 
1982). Specimens of this thickness can be prepared from cement paste (Bazant 
et al., 1976), but not from concrete. For the thinnest possible wall of concrete, 
roughly 1 in., the aforementioned humidity change would have to be carried out 
gradually over a period of about 2 years, and for a 6 in. thickness, over a period of 
about 100 years. Therefore, the true shrinkage must be inferred indirectly from 
observations of specimens in which there are significant residual stresses. These 
stresses normally produce cracking, although the cracks are often invisible 
because they are too fine. 

The total shrinkage (or swelling) of concrete may be expressed as Gs + G:h + G~h' 
where G=h is the autogeneous shrinkage caused by volume changes due to 
chemical reactions during hydration, f,~h is the carbonation shrinkage due to the 
reaction of calcium hydroxide from the cement paste with atmospheric carbon 
dioxide, and Gs is the drying shrinkage (or swelling). The autogeneous shrinkage is 
normally quite small, about 5 per cent of the maximum drying shrinkage, and can 
be neglected. So can the carbonation shrinkage, since carbon dioxide penetrates 
only a very thin surface layer (perhaps 1 mm) in a good-quality concrete. From 
now on, we consider only the drying shrinkage (or swelling). 

As shown by Carlson (1937), Pickett (1946) and others, drying shrinkage is 
approximately proportional to the loss of water from concrete, i.e. to w (the 
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specific water content of concrete). However, although this dependence is very 
simple, it seems usually more convenient to consider es as a function of pore 
humidity h because the changes of h produced by hydration are very small (only a 
few per cent) while the changes of the evaporable water content are large. 
Shrinkage as a material property may be best described incrementally, 

dBs = "dh (2.55) 

in which" is the shrinkage coefficient (incremental). Its values depend on h, T, and 
te, and are different for drying (dh < 0) and wetting (dh > 0). Because h is a 
function of the specific water content w, Eq. (2.55) is equivalent to des = kl dw 
where kl is a constant. 

The shrinkage coefficient (at zero stress) depends on pore humidity and the age 
of concrete (degree of hydration). This may be approximately described as 

" =e,l/;, 
,I, = ( )~.fs(h) 
'I' 9, te dh (2.56) 

J:Iere one ;nay perhaps. approximately i~troduce gs(te) = ~(to)IE(te) and 
Js(h) = 1 - h (for h ~ 0.99, smce for h = 1 swellIng results). Accordmg to Jonasson, 
1 - h3 is good only for h;:::: 004, and for h < 004 shrinkage is much. larger. 
Bazant suggests h ~ 1 - h3 + cb(l - h)5, Cb ~ 1, for 0 < h ~ 0.99. 

In structures, shrinkage always occurs simultaneously with elastic deform­
ations and creep. The previously given constitutive equation for linear ageing 
creep at various humidities and temperatures may then be generalized as 

1 1 .. 
-E ( )BcJl'+-(-)Bal'=t-KIz-aT 

I' t e f/ I' to 
(2.57) 

in which K and a are the column matrices of the shrinkage coefficients and 
thermal expansion coefficients, defined as K=("ll' "22' "33' "12' "23' K 31 )T, 

a = (a 11, .• y. If the shrinkage and thermal expansion coefficients were independ­
ent of stress, they would be expressed as Kij = e~ I/; b ij' etij = et° bij. However, these 
coefficients are not independent of stress, as has been recently established. 

In the presence of stress, the shrinkage and thermal expansion coefficients may 
be approximately considered as linear functions of the stress tensor defined 
as follows (Bazant and Chern, 1985a) 

Kij = e~ I/; (b ij + Taij sign H), etij = C(°(b ij + paij sign H) (2.58) 

in which rand p are material constants and H = h + cT where c is a positive 
constant. A general li?ear dependence would also include terms aobij (where 
ao = au /3 = volumetrIC stress); however, these terms appear to be negligible. 
Coefficient r is normally between 0.11 f; and 0.6[;, and coefficient p is about, 
2.51 f; (Bazant and Chern, 1985a). Equation (2.58) means that at constant T 
the .drying shrinkage is increased by compression stress and decreased by 
tensIle stress, while the opposite is true of swelling (Bazant and Chern, 1986). 
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What is the physical mechanism that causes the stress dependence of K and et'? A 
definite answer does not yet exist; nevertheless, the following explanation seems 
logical. In hardened cement paste there exist two classes of pores: the macropores 
or capillary pores, and the micropores or gel pores. Their sizes differ by several 
orders of magnitude. The passages of the macroscopic water transport through 
concrete (drying or wetting process) pass mostly through the macropores and 
traverse probably only very little of the micropore space, although they must 
traverse at least some of it because capillaries in good-quality concretes are 
known to be discontinuous (Copeland et al., 1960). The macro-diffusion process 
gov~~ns. the pore relative humidities, h. When h (or T) changes, thermodynamic 
eqUilIbrIum of water between a macropore and adjacent micropores is disturbed, 
a~d micro-~iffusion of water, i.e. the exchange of water with the adjacent 
mlcropores, IS produced. This micro-diffusion process passes through molecule­
size pores across which large stresses (resisting the applied load) are no doubt 
transmitted, due to the surface roughness and probable presence of some solid 
parti.cle bridging the micropores. (The word 'micropore' is used here in the loose, 
relattve sense of mechnics rather than in the sense of cement physics, in which it 
has a more precise meaning-pores ~ 25 A in width; see Chapter 1.) 

Now, although consensus on the details of the creep mechanism does not exist 
at present, it is agreed by most that creep must consist of some· sort of debonding 
and rebonding of solid particles in the cement gel. It is reasonable to assume that 
this process of bond ruptures and refonnations i~ promoted by the movement of 
water through the micropores. Thus, it seems physically justified to make the 
hypothesis that the creep rate, or the creep viscosity f/, is a function of the flux or' 
micro-diffusion of water, j; i.e. '1 = '1(j). Moreover, since the direction of flux j 
should not matter, '1 ought to depend only on UI. 

The macro-diffusion cannot be supposed to affect the creep rate since it 
bypasses most of the micro pores which are significantly stressed by the applied 
load. Indeed, tests showed that a steady-state permeation of water through a wall 
does not appreciably affect creep. 

The micro-diffusion transports water over extremely small distances, perhaps 
of the order of 10- 5 or 1O- 6 m. From this, it may be estimated that the micro­
diffusion process approaches equilibrium within a time with the order of 
magnitUde of lOsec. Thus, the micro-diffusion process may be considered to be 
i~finitely fast. From this conclusion, and from the fact that diffusion is driven by a 
dIfference in the specific Gibbs free energy of water (chemical potentia!), it can be 
shown tha~ the ~epe~dence of '1 on j is equivalent to a dependence of '1 on the 
quantity IHI = liz + cTI· The dependence of 1/'7 on IHI is no doubt smooth and 
may be expanded in the Taylor series. If the series is truncated after the linear 
terms, i:e. (llf/) = (1/'10) + K 1 IHI, then, if we consider a single Maxwell unit, we 
may WrIte 

0- (l . ) .. E + '10 + KIIHI a = e - Koh - eto T (2.59) 
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"l' Ko, .'10' an? (Xo are positive coefficients independent of hand T. Noting that 
IHI = H sign T, this equation may be rearranged as 

t1 (J • • • • 

- + - = e - ("0 + II: I (J sign H) h - «(;(0 + ex 1 (J sign H) T 
E '10 

(2.60) 

where (Xo = CK1 . Thus, we see that viscosity dependence on hand T is equivalent 
to stress-induced shrinkage and stress-induced thermal expansion, defined by the 
stress-dependent parts of the shrinkage coefficient and the thermal expansion 
coefficient. Equation (2.60) is then generalized by referring its left-hand side to a 
single Maxwell unit as in Eq. (2.23). 

It may be noted that the formulation in Eq. (2.57) with stress-induced shrinkage 
and stress-induced thermal dilatation is a special, greatly simplified case of 
Barnnt's original thermodynamic theory (Baiant, 1969, 1970a, 1972a; Barnnt 
and Wu, 1974c), which was shown capable of describing the bulk of test data on 
creep at variable humidity. In that theory. several unnecessary hypotheses 
about the cement paste micro-structure and the mechanism of creep and 
shrinkage were introduced. The special case just described does not depend on 
these hypotheses, and it yields similar agreement with test data. 

The stress dependence of the shrinkage coefficient and the tnermal expansion 
coefficient was introduced by Bazant and Chern (1985a). Modeling creep of 
concrete at temperatures over HXr C, Thelandersson (1983) independently 
deduced the stress dependence of the thermal expansion coeffi~ient on the basis of 
the test data of Schneider et al., BaZant and Chern fitted with their theory the test 
data of L'Hermite et ai., (1965), L'Hermite and Mamillan (1968a, b), Troxell 
etal., (1958), Hansen and Mattock (1966), McDonald (1972), Mamillan (1969), 
Brooks and Neville (1977), Ward and Cook (1969), Pickett (1946), Domone 
(1974), Bazant et al. (1976), and others. Some of the fits of these data are exhibited 
in Fig. 2.17. 

The stress-dependence of shrinkage and thermal expansion coefficients means 
that these deformations are not simply additive to creep. Rather, one affects the 
other, contrary to what the current practical formulations for design imply. From 
the thermodynamic viewpoint this constitutes a cross effect, whose presence is 
normally to be expected whenever a phenomenon involves more than one 
irreversible thermodynamic process. 

2.3.4 Effect of strain-softening (cracking) 

The residual stresses produced by shrinkage (as well as non-uniform creep) are 
large enough to produce tensile cracking. These cracks may be either continuous 
and visible, or discontinuous and so fine and densely spaced that they are better 
described in a smeared, continuous manner as strain-softening. The latter case 
appears to be typical of concrete, with the exception of very thick unreinforced 
walls. This agrees with visual observations as well as theoretical calculations 
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of crack width and spacing which were based on stability analysis of a parallel 
crack system (Bazant and Roftshol. 1982). 

The constitutive relation for creep with tensile strain-softening must satisfy 
three req uirements: 
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1. In the absence of strain-softening (cracking), it must reduce to linear 
viscoelasticity with ageing, augmented by shrinkage and thermal expansion 
terms. 

2. In the absence of creep (as approximately true for very fast deformations), the 
constitutive relation must reduce to a strain-softening law, which is best 
described by an algebraic relation. 

3. Irrespective of creep, ageing, shrinkage, and the loading path and history, the 
maximum principal tensile stress must reduce at very large tensile strain 
exactly to zero. 

The third requirement is essential. It makes it difficult to use various 
incremental laws, such as those patterned after the theory of plasticity with 
loading surfaces. The reason is that such laws are path-dependent, whereas the 
final value of stress must be exactly zero regardless of the path. The uniqueness 
and path-independence of the zero final stress value can be easily achieved if the 
stress-strain relation for the part of strain, ~, which is due to strain softening is 
algebraic, i.e. 

er = C(~)~ , (2.61) 

in which C(~) is the variable secant modulus for strain-softening (Fig. 2.18). In 
particular, the simple expression C = Bs~q-l exp( - C~S) is found to give a 
reasonably shaped curve (Bs' q, s, c = constants, s;:::: 1, 0 < q < 1). 

A special case of strain-softening is an abrupt stress drop, which has been 
extensively used in finite element simulation of cracking. Gradual strain­
softening, however, describes the real behaviour of concrete much better than an 
abrupt stress drop. 

How should the strain-softening relation be coupled with the stress-strain 
relation for creep? The aforementioned requirements (1) and (2) can be satis­
fied if these stress-strain relations correspond to a series coupling in the 
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rheologic model (Fig. 2.9(c». Thus, the strains (and strain rates) are assumed 
to be additive, i.e. 

(2.62) 

in which e, &0, ~ = column matrices of strains due to creep with elastic 
deformation, shrinkage and thermal expansion, and strain-softening due to 
cracking. 

A difficult aspect is the modeling of progressive cracking under general stress 
histories. A simple approach, which gives reasonable results if the principal stress 
directions do not significantly rotate during cracking, is to permit only certain 
fixed orthogonal crack directions which are fixed for each numerical integration 
point of each finite element when its maximum principal tensile stress first 
exceeds the tensile strength. A more realistic, but more complicated approach is 
the micro plane model, an analogue of the slip theory of plasticity, in which 
cracking is modelled separately for all spatial directions and interaction of 
various directions is handled by kinematically constraining the strain for each 
crack direction to the same macroscopic strain (Bazant and Chern, 1985a). 

When strain-softening occurs, particular attention must be paid to numerical 
approximation. Incremental quasi-elastic stress-strain relations may be based on 
central difference time-step formulas. However, such formulas require very small 
time steps, especially during strain-softening. 

A much more efficient procedure is possible using the same idea as in the 
exponential algorithm for rate-type creep based on Maxwell or Kelvin chain, and 
applying that idea separately to the cracking strain ~. A separate quasi-elastic 
stress-strain relation for the strain-softening part of deformation may be 
obtained if the equation er = C~ is differentiated, i.e. iT = C ~ + C ~ = C ~ + Cer/C, 
which may be rewritten as iT + per = C~ in which p = - CIC. Now, this 
differential equation looks the same as that for the Maxwell unit, and for ~ = 0 its 
solution describes stress relaxation. Stress relaxation always eventually leads to a 
reduction of stress exactly to zero, which conveniently satisfies the aforement­
ioned requirement (3) no matter how long the time step is. An exact solution of 
this differential equation may be exploited to obtain incremental quasi-elastic 
stress-strain relations which permit very long time steps. To this end, the 
differential equation for iT is integrated exactly under the assumption that p and 
Ce are constant during the time step although they may change discontinuously 
between the time steps. This leads to the incremental stress-strain relation 
(Bazant and Chern, 1985a) 

(2.63) 
in which 

dC 
dz = --=-

C 
(2.64) 

Here, C is the mean value of C(~) for the time step. Equation (2.63) is then 
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combined in the manner of series coupling with a similar quasi-elastic stress­
strain relation based on the Maxwell chain mentioned above (Eqs 2.31, 2.36). The 
resulting formulas are numerically quite accurate and stable even for very long 
time steps (Bazant and Chern, 1985a). 

Whenever strain-softening (or an abrupt stress drop) is considered, questions 
arise with regard to localization of deformation, stability, sensitivity to the mesh 
size, and convergence as the mesh is refined. These questions border on fracture 
mechanics and are beyond the scope of this chapter. 

2.3.5 Pickett effect (drying creep) 

Having expounded the mathematical models for moisture diffusion, viscoelastic­
ity with ageing, stress-induced shrinkage and thermal dilatation, and tensile 
cracking or strain-softening, we are now in a position to discuss the Pickett 
effect -probably the most intriguing phenomenon exhibited by concrete, named 
after the man who was first to clearly document this effect and analyse it (Pickett, 
1942). The Pickett effect consists. of the fact that, at simultaneous drying, the 
deformation of a concrete specimen under sustained load exceeds, usually by a 
large amount, the sum of the drying shrinkage deformation of a load-free 
specimen and of the deformation of a specimen that does not dry, i.e. is. sealed 
(Fig. 2.19). The excess deformation may be regarded either as drying-induced 
creep (in short, drying creep) or as stress-induced shrinkage:The Pickett effect is 
also called the drying creep, or the stress-induced shrinkage, or the mechanosorp­
tive effect (the last term prevails in the literature on wood). 

Pickett (1942), in his original explanation, assumed that shrinkage stresses put 
creep into the non-linear range, 'in which the creep per unit stress is larger, thus 
producing excess deformation. This explanation is still in principle correct; 
however, it is far from complete. After extensive analyses of numerous test data 
pertaining to this phenomenon (Bazant and Chern, 1985a), it now appears that 
there are essentially four mechanisms causing the Pickett effect. They are, in the 
order of decreasing significance, as follows: 

1. Stress-induced shrinkage (representing a thermodynamic cross effect). 
2. Tensile strain softening due to cracking. 
3. Irreversibility of unloading (i.e. resistance to contraction) after tensile 

cracking. 
4. Increase of material stiffness with age. 

Mechanism (2) is an extension of Pickett's hypothesis from non-linear 
hardening behaviour to non-linear softening behaviour. Tensile cracking of 
concrete specimens exposed to drying during creep was analysed by finite 
elements by Bazant and Wu (1974a) who noticed a significant influence of 
cracking on the response. Similar analysis was made by Jonasson (1978), and a 
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similar conclusion about the importance of cracking was reached by Becker and 
Bresler (1977) and Iding and Bresler (1982). 

A more penetrating examination of this effect was made by Wittmann and 
Roelfstra (1980) who suggested that tensile cracking might perhaps explain all of 
the excess deformation at drying. They emphasized that the observed overall 
shrinkage of load-free drying specimens is much less than the true material 
shrinkage, due to the effect of cracking. The consequence is that the deformation 
difference between the loaded and load-free specimens is magnified, and thus may 
falsely appear as creep according to the traditional definition of creep. However, 
when long-time compression creep, or creep in tension or bending, are 
considered, it appears that the phenomenon of cracking alone is insufficient to 
obtain agreement with experimental data. Compared to the assumption of a 
sudden crack drop, a significantly improved agreement with long-term measure­
ments can be obtained when strain-softening is considered, as was done by 
Bazant and Chern (1985a). Yet an additional effect such as the stress-induced 
shrinkage appears inevitable for modeling the observed behaviour in its entirety. 
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The various infl uences on creep during drying rna y be ill ustrated in Figs 2.20 and 
2.21. As shown in Fig. 2.20, the observed specimen shrinkage is considerably less 
than the true material shrinkage between the cracks. Because the creep with elastic 
deformation is determined by subtracting the deformation of a companion 
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load-free specimen from the deformation of the loaded specimen, the observed 
(apparent) creep is considerably larger than that which would be obtained by 
subtracting the true (but unknown) material shrinkage. If the stress-induced 
shrinkage is included in the calculation (curve 4 in Fig. 2.21(a»), the true creep 
becomes even smaller. 

Ifmechanisms (1), (3), and (4) are ignored, along with the coefficient cth (giving a 
viscosity decrease as the water content decreases, and if the strain-softening is 
modelled as a sudden drop of stress to zero, then typically the curve shown in 
Fig. 2.21(b) is obtained (when plotted in the actual time-scale). Thus it might seem 
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that a sudden stress drop due to cracking might alone suffice to explain the 
Pickett effect. Not so, however. When the same curve is plotted in the logarithm 
of load duration, the excess deformation (curve 2 in Fig. 2.21(c» is seen to 
disappear after about one decade in the log-time scale. The calculated excess 
deformation can be made to last considerably longer if the tensile strain softening 
is considered as gradual (curve 3, Fig. 2.21(c». Eventually, though, the excess 
deformation still vanishes. But if one further includes irreversible unloading that 
does not return to the origin (Fig. 2.20, lines 4 and 7), the calculated excess 
deformation never vanishes (curve 4 in Fig. 2.21(c». If the stiffening of unloading 
due to ageing is included as well, the calculated excess deformation becomes still 
more significant at long times (curve 5, Fig. 2.21(c». This is because in the later 
stage of drying, when the core of the specimen shrinks, the outer layer, previously 
cracked in tension, is forced to contract, which it resists (column c, curves 3-4, 
Fig. 2.20). 

These explanations become insufficient, however, if ¢h' i.e. the reduction of 
creep viscosities due to reduced water content, and the dependence of creep on 
stress are includedJFig. 2.21(d), (f). Then the curves 2-5 in Fig. 2.21(d) which are 
in excess of curve 1 for the steady-state creep of a specimen in thermodynamic 
equilibrium at a certain reduced humidity, cannot be made to exceed the basic 
creep curve O. This is one strong argument in support. of the stress-induced 
shrinkage. Only then one can obtain curve 6 (Fig. 2.21(c» passing significantly 
above the basic creep curve O. An important aspect is that, since the stress­
induced shrinkage is defined incrementally and is irreversible, the calculated 
excess deformation remains large for infinitely long times, while the contribution 
from tensile cracking or strain-softening tends to die out (Fig. 2.21(c». 

A second argument for the stress-induced shrinkage arises from the stress 
dependence of creep (Fig. 2.21(f». Without the stress-induced shrinkage, the 
isochrone for the total deformation at drying (curve 2 in Fig. 2.21(f) rises with a 
gradually increasing slope, approaching the basic creep curve 1 at higher 
compressive stresses. By contrast, existing tests (Mamillan and Lelan, 1970) yield 
the isochrone 3 in Fig. 2.21(f), which has a smaller slope than isochrone 1 for the 
basic creep, and which is diverging from the basic creep isochrone as the 
compressive stress magnitude increases. The reason that curve 2 (Fig. 2.21(f» 
does not diverge from the isochrone 1 for basic creep is that the contribution to 
the excess deformation which is due to tensile cracking arises totally in the load­
free companion shrinkage specimen, because the compression-loaded specimen 
does not crack (curve 5 in Fig. 2.20). So this contribution is essentially constant, 
independent of stress, and a stress-dependent contribution, as provided by the 
stress-induced shrinkage, must be superimposed. 

A third argument for the stress-induced shrinkage comes from tensile creep. 
For tension, the compliance is generally observed to be at least as large as for 
uniaxial compression, but usually larger (Brooks and Neville, 1977; Davis et al., 
1937; Illston, 1965). This is also true for drying. Thus, the Pickett effect is at least 
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as intense in tension as in compression, and usually it is more intense. The part of 
creep increase per unit stress due to cracking is larger for tension than for 
compression, according to the present theory, while the part due to the stress 
dependence of shrinkage coefficient is about the same; see curve 6 in Fig. 2.20. 
Thus, the isochrone of total deformation (curve 6 in Fig. 2.21(f», has a smaller 
slope than the basic creep isochrone in tension (curve 4). Without the stress­
induced shrinkage, however, the total deformation isochrone at drying, obtained 
from computer simulations, has about the same slope as the basic creep isochrone 
(cu~ve 5). This is because the cracking caused by tensile loading in addition 
to the cracking caused by shrinkage is not large enough, and also because the 
additional cracking produced by tensile load does not increase much with 
time. 

In this context it should be observed that for concrete specimens in water, 
which swell, the self-equilibrated stresses are opposite to those in line 3 of 
Fig. 2.20. Yet, an increased creep is again observed during swelling (Domone, 
1974; Gamble and Parrott, 1978), which was initially considered paradoxical. The 
explanation is that since tensile stress (J reduces the value of the shrinkage 
(swelling) coefficient K, the swelling in a tensile.,j>aded specimen is less than the 
swelling at no stress, thus making the deformation difference between the loaded 
and load-free specimens larger. . 

A fourth argument for the stress-induced shrinkage is furnished by bending 
creep tests, through which the drying creep effect was in fact first unambiguously 
demonstrated by Pickett (1942). The bending creep test has the advantage that 
shrinkage in a load-free specimen produces no bending, so that no companion 
deformation needs to be subtracted. This eliminates the uncertainties due to 
inevitable random differences between two specimens, as well as the difficulty due 
to different cracking patterns and different residual stress distributions in the 
loaded and load-free specimens. Pickett (1942) explained the excess creep 
deflections by non-linearity of the tensile stress-strain diagram, with irreversible 
elastic unloading. Drying produces microcracked layers near the surface 
(Fig. 2.20(f). As the bending moment M is applied, the lower micro cracked layer 
is further extended while the upper microcracked layer is forced to contract back. 
The incremental stiffness for further extension is much less than that for reverse 
contraction. This is true even in Pickett's sense, i.e. without the strain-softening. 
However, if strain-softening is taken into account, the differences in incremental 
stiffness between the top and bottom microcracked layers become much more 
pronounced, which is needed to fit the data on bending creep during drying 
while at the same time the analytical model can represent compression and 
tension creeps during drying (for which sufficient data were unavailable to 
Pickett. 

As for the effect of the stress-induced shrinkage, the compressed side of the 
beam shrinks more and the tension side shrinks less than the true material 
shrinkage at no stress. Evidently, this causes additional curvature in the sense of 
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the applied bending moment. In computer simulations (BaZant and Chern. 
1985a), this in fact appears to be the most important contribution of drying to the 
excess deflections. 

Fits of numerous test data pertaining to these effects are given by Bazant and 
Chern (1985a) along with plots of residual stress distributions in test specimens at 
various times. 

The use of an extensive data set is important for being able to reach the 
foregoing conclusions. History teaches us that limited test data can be fitted in 
more than one way, sometimes using radically different theories. Determination 
of a constitutive equation from test data becomes unambiguous only when the 
complete set of information on the material is considered. 

2.3.6 Behaviour at high temperatures 

Due to applications of concrete in nuclear power plants and concern about their 
safety in regard to various hypothetical nuclear accidents, behaviour of concrete 
at temperatures over 100° C has recently been in the forefront of interest. 
Predictions of response require a realistic constitutive relation for high­
temperature creep, shrinkage and swelling, as well as a realistic model for the 
coupled heat and water transport through concrete. A reasonable mathematical 
model is now emerging. 

It appears that the formulations' for normal temperatures can mostly be 
extended to high temperatures, with some significant differences. F<?r moisture 
transfer, the most significant difference is that the permeability as well as 
diffusivity of concrete for water increases about two hundred times as the 
temperature exceeds 100'0 C. Another important aspect, not quite well under­
stood at present, is the interchange of water between the capillary, adsorbed, and 
chemically bound (hydrated) states, along with the description of dehydration 
and the consequent release of free water into the pores of concrete. 

A curious aspect is that high pore pressures (in excess of 10 atm) have never 
been measured in experiments, although calculations of pressures from the 
thermodynamic properties of water yield much larger pressures, under the 
assumption that the pore space is constant and completely filled. The only 
explanation is that significant increases in pore space available to free water result 
from heating. The determination of pore pressure is very important for predicting 
explosive spalling of concrete. All the existing experiments have been limited to 
concrete at constant or decreasing water content. It could be that the increase of 
the water content (oversaturation) which must arise when water is pushed into 
the heated concrete layer ahead of the drying front, may result in much larger 
pressures than those measured so far. 

The aforementioned properties have been incorporated in the sorption-­
desorption isotherms at high temperature, along with the thermodynamic 
p.roperties of water based on the well-known equation of state. The analytical 
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results for pore pressures and water loss can then be brought in agreement with 
measured data (Bazant and Thonguthai, 1978, 1979). 

As for the stress-strain relation, the chief question remains with regard to the 
effect of drying. All tests carried out so far pertain to specimens which were losing 
moisture when heated over 100" C, except for some limited tests on small cement 
paste specimens. From these tests it appears that the relation of creep at constant 
water content and creep at drying is reversed compared to the situation at room 
temperature. This may be due to the sharp increase in permeability, causing water 
diffusion phenomena to be short-lived, with a very short half-time. Thus, the 
transient aspect such as the stress-induced shrinkage, which is explained by the 
effect of the microdiffusion flux on the creep viscosities, is important only at the 
beginning of creep. while afterwards the reduction of creep viscosities due to the 
decrease of water content prevails. This may explain why the existing tests 
(Man::chal. 1970a, b, 1972a) indicate for dried concrete at high temperatures a 
much lower creep than that at constant water content (Baiant et al., 1982). 

Furthermore, significant difference is found at high temperatures between the 
creep at constant water content and the creep in water immersion (Bazant et aI., 
1976; Bazant and Prasannan, 1986). Apparently, the latter condition causes a sort 
of microstructure conversion similar to autoclaving which is known to reduce 
creep. 

As for the triaxial properties, it is of interest to note that the creep Poisson ratio 
at high temperatures has been observed at Northwestern University (Bazant 
et al., 1976) to be much higher than for room temperature (0.46 compared to 0.18). 
But this observation is limited to cement paste. The difference is much smaller for 
concrete for which the Poisson ratio value is dominated by the aggregate skeleton. 

The phenomenon of stress-induced thermal expansion, mentioned above, has 
been detected for temperatures above 1000 C and mathematically formulated by 
Thelandersson (1983), based on the test data of Schneider and Kordina (1975), 
Schneider (1982) and others (Bazant et al., 1982). A logical conclusion from this 
result is that stress-induced shrinkage must also exist at high temperatures above 
10(Y C, and the stress-induced thermal expansion at temperatures below lOO°C. 

Mathematical models for concrete creep at high temperature and the 
associated coupled heat and mass transport have been developed and implemen­
ted in computer programs at Northwestern University (BaZant and Chern, 
1985a; Bazant et al., 1981), Argonne National Laboratory (Lau, Acker et al., 
1986; Lazie, 1985), Technical University of Lund (Thelandersson, 1983), and 
Gesamthochschule Kassel (Schneider, 1982, 1986). 

2.4 NON-LINEAR EFFECTS AND THERMODYNAMIC ASPECTS 

2.4.1 Deviations from linearity (principle of superposition) 

The linearity of creep, synonymous to the principle of superposition, is applicable 
for stresses within the service stress range, i.e. up to about one-half orthe strength 
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limit. Even within this range, however, there are deviations. The deviations may 
be described as the phenomenon of adaptation (not to be confused with the 
phenomenon of adaptation in cyclic plasticity). Concrete subjected to a sustained 
compressive stress appears to adapt to the stress, getting stronger, as indicated by 
increases of strength and stiffness observed at subsequent load changes, both 
short-time and long-time. Thus, it appears that after a long period of compression 
creep, the recovery is significantly less than that predicted by the principle of 
superposition, and the additional creep due to a later compressive stress 
increment is also significantly less (Fig. 2.22). 

It seems that the phenomenon of adaptation may be adequately described by 
generalizing the equivalent hydration period te so as to represent an acceleration 
of ageing due to compressive stress, and by introducing a stiffness adjustment 
coefficient a(t) for which a separate evolution equation (a first-order differential 
equation) is written (Bazant and Kim, 1979b). A model of this type permits the 
representation of the test data of Komendant et al. (1976), Freudenthal and Roll 
(1958), Roll (1964), Brettle (1958), Meyers and Slate (1979), Aleksandrovskii and 
Popkova (1970), Aleksandrovskii and Kolensnikov (1971) and others. 

The existing data on the deviations from linearity in the service stress range 
may be also described in a different manner, admitting that the law governing 
creep is inherently non-linear although at low stress it exhibits a proportionality 
property for creep under various constant stress values. This formulation 
(Bahnt et al., 1983) has a form of a simple non-linear differential equation for 
the case of constant stress, which may be explained in terms of the rate-process 
theory (activation energy concept). For variable stress, this equation is gen-
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Figure 2.22 Typical observed deviations from superposition 
principle in service stress range 
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eralized by a history integral which is singular in terms of the creep strain. This 
formulation also gives good agreement with the existing test data. 

The most important deviations from linearity (principle of superposition) 
within the service stress range are caused by humidity changes simultaneous with 
creep. The non-linearity is due to tensile cracking or strain-softening. The stress­
induced shrinkage is linear in stress, to the first order of approximation 
considered here. 

Creep in the high-stress range at constant stress may be described quite well by 
the simple differential equation ec = aa'(t - tf)" e~ in which a, r, u, and s are 
material constants and ec is the creep strain. However, the proper generalization 
of this equation to arbitrary stress histories is complicated and leads to a singular 
history integral for creep strain (Tsubaki et ai., 1982). A non-linear constitutive 
law for concrete of a different type, which involves multiple history integrals, was 
developed by Huet, Gaucher et al. 

Remark 

After completion of the committee's work, Bazant and Prasannan (1987) 
discovered a new model which describes both the high-stress non-linearity 
(increased creep) and the reduced recovery (Fig. 2.22) in a manner that is close to 
test data, simpler and physically better justified. See the Addendum to this 
chapter. 

2.4.2 Viscoplasticit~ and cyclic creep 

Another important non-linear phenomenon arises for cyclic or pulsating loads 
with many repetitions. According to the principle of superposition, the creep due 
to cyclic stress should be approximately the same as the creep due to a constant 
stress equal to the average of the cyclic stress. In reality, a higher creep is 
observed. The larger the amplitude of the cyclic stress component, the larger the 
excess creep. 

The time-average compliance function for cyclic creep at constant stress with 
amplitude.1 and a constant mean stress a may be reasonably well described by an 
extension of the double power law (see Section 2.5.3) in which (t - tf)" is replaced 
by the expression [(t - t')" + 2.2<p".1 2 N"], where N is the number of uniaxial 
stress cycles of amplitude .1 and <p" is a function of mean stress a (Bazant and 
Panula, 1978, 12). For stresses beyond the service stress range, both the short­
time and the long-time responses of concrete become strongly non-linear. 

The short-time response may, within certain limitations, be described by three­
dimensional constitutive relations of plasticity. Accordingly, the non-linear long­
time response needs to be described by viscoplastic constitutive relations. 

At present, the question of short-time three-dimensional non-linear constitu­
tive models still remains unsettled, and so it is difficult to consider the three­
dimensional long-time non-linear behaviour. Except for some attempts to 
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generalize certain existing non-linear multiaxial constitutive models for the 
influence of strain rate, no models are available for non-linear triaxial long-time 
creep. Some models have been formulated, however, for uniaxial loading. From 
these it transpires that the hereditary aspect (history dependence) of creep 
becomes weaker at high stresses, and the creep may be largely described as flow, 
understood as the time-dependent deformation described by the MaxwelI model 
with a non-linear dashpot (Bazant and Kim, I 979b). 

2.4.3 Cracking and strain-softening 

While the non-linear creep properties under compressive stresses may be 
described as viscoplasticity (flow), the non-linear creep under tensile stress states 
requires a different description. For such loading, there is significant additional 
deformation caused by cracking (frequently so finely distributed that it is 
invisible) and strain-softening in tension. This aspect has already been discussed 
in Section 2.3.4 in relation to drying. Nevertheless. the discussion pertains also to 
cracking in the absence of drying, caused solely be applied loads. 

2.4.4 Thermodynamics of constitutive relations 

The constitutive equation for creep and shrinkage must satisfy certain thermody­
namic restrictions. For non-ageing materials. these restrictions are well under­
stood (Biot, 1955; Rice. 1971). but for ageing materials there has been much 
misunderstanding. 

Not every function of two variables is acceptable as the compliance function 
J(t, t'). Certain thermodynamic restrictions, such as oJU. n/ct ~ 0, 
02 J{t. t')/ot2 ~ 0, and [oJ(t. t')/Ot'],_" ~ 0 are intuitively obvious. Some further 
restrictions, however. are necessary to express certain aspects of the physical 
mechanism of ageing. 

At present we know how to guarantee fulfilment of such thermodynamic 
restrictions only if we first convert the constitutive relation to a differential-type 
form and then make the hypothesis that these restrictions should be applied to 
internal variables such as the partial strains or partial stresses in the same way as 
they would be applied to the strains and stresses. If we did not accept this 
hypothesis, we could say nothing about thermodynamic restrictions. It might be 
possible that no thermodynamic restrictions are violated by the stresses and 
strains even though they may be violated by the partial stresses or partial strains. 
But we cannot guarantee it. It is certainly a matter of concern if violations occur. 
It has been found (BaZant, 1979) that such violations do in fact happen for 
certain existing creep laws. On the other hand, if the thermodynamic restrictions 
are satisfied by the partial stresses or partial strains, it is guaranteed that they are 
also satisfied by the total stresses and strains. This is one basic advantage of the 
thermodynamic method (Section 2.4.4). 
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If we reduce the compliance function to a rate-type form corresponding to a 
spring-dashpot model, fulfilment of the second law of thermodynamics can be 
guaranteed by certain conditions on spring moduli EI' and viscosities '11" (The 
second law might of course be satisfied by the compliance function even when 
some of these conditions are violated, but again the point is that we cannot be 
certain of it.) Two obvious conditions are EI' ~ 0 and '11' ~ O. However, the second 
law leads to a further condition when the spring moduli are age-dependent 
(Bazant. 1974). 

d'1' = £I'(t)e" for E" ~ 0 

(1'" = E,,(t)[;1' for EI' ~ 0 

(2.65) 

(2.66) 

where (1'" and ell are the stress and the strain in the Jlth spring. The first relation 
pertains to a solidifying material, such as an ageing concrete. while the second 
relation pertains to a disintegrating (or melting) material, such as concrete at high 
temperatures (over 150~ C) which cause dehydration. 

If Eq. (2.66) is used, it can be shown that the expression Deh = - (1'; EI'/2E; 
represents the rate of dissipation of strain energy due to the chemical process 
(particularly due to disappearance of bonds) which proceeds while the material is 
in a strained state (i.e. a state in which the energy of chemical bonds differs from its 
initial value at zero macroscopic strain). Thus, to ensure that Deh ~ 0 we must 
have E,. ~ O. So the dissipation inequality is violated if Eq. (2.66) is used (or if its 
use is implied) for an ageing (solidifying, hardening) material. 

Equations (2.65) and (2.66) can be also derived from the fact that the new bonds 
formed in a solidification process must be in a stress-free state when they form 
(e.g. due to hydration). By contrast. for dehydration the bonds are in a stressed 
state when they are lost (e.g. due to dehydration). (Section 2.4.4). 

Various differential-type forms of the creep law are possible. One form can be 
obtained by expanding the memory function L(t, t') into the Dirichlet series: 

L(t, t') = f _(I ') exp[ - (t - t')/r,.] 
1'=1 '1" t 

Substitution into Eq. (2.5) yields: 

N f' (1'(t') s = L e" + [;0, [;,,(t) = -( ') exp[ - (t - t'l/r,,]dt' 
1'=1 o'1"t 

(2.68) 

By differentiating [;,.(t) and denoting £,.(t) = '1"(t)/r,,, one can readily verify that 
S,.(l) satisfies the differential equation 

(2.69) 

From this, the non-viscous part of stress (1' is (1'1' = E,.(t)[;1" Now we notice that this 
represents an elastic relation that is admissible only for a disintegrating (melting, 
dehydrating) material (Eq. 2.66). Thus, Eq. (2.67), which has been used as the 



152 Mathematical Modeling of Creep and Shrinkage 

basis of one large finite element program for creep of reactor vessels, implies 
violation ,of the dissipation inequality by the internal variables. This puts the 
practical applicability in question. 

We may note that Eq. (2.69) along with e = LA, corresponds to a Kelvin (or 
Kelvin-Voigt) chain model (Bazant, 1979), the springs of which are, however, 
governed by an incorrect equation (Eq. 2.66). If the correct equations for the 
springs are used (0-1' = EI'81')' then the Kelvin chain is characterized by second­
order rather than first-order differential equations (Eq. 2.26). The reason for 
violation of the dissipation inequality by Eqs (2.67) or (2.68) can be traced to the 
fact that the equation for partial strains (Eq. 2.69) is of the first order. One can 
show (Bazant, 1979) that even if a non-linear rate-type creep law is considered 
such that e = Ll'el' and el' = fl'(rr, ell)' Eq. (2.66), which violates the dissipation 
inequality, is still implied as long as these equations are of the first order. This is 
one inherent difficulty of using Kelvin chain-type models (i.e. decomposing e into 
partial strains ell) for ageing (hardening) materials. By contrast, the differential 
equations for the ageing Maxwell chain are of the first order, which is an 
advantageous property. (Remark: The model in the Addendum, discovered after 
the completion of the committee's work, however, shows that a non-ageing 
Kelvin chain can be used for ageing creep if ageing is modelled by a separate 
transformation of variables.) . 

From the physical viewpoint, ageing is not admissible as the property of a 
substance in a thermodynamic system. Rather, ageing must be treated as an 
increase of the ratio of mass ofthe solidified component (hydrated cement) to the 
mass of the unsolidified components (water and unhydrous cement grains), each 
of which undergoes no ageing (see Section 2.4.4 and the Addendum). 

Ageing Kelvin chain models have another interesting property. Consider the 
degenerate creep compliance in Eq. (2.14). We calculate 02 Jlot at' and substitute 

CI'(t') = [(C(t') - EI'(t')li'I'(t') and CIl(t') = 111'(t')Y,At') 

according to Eq. (2.27) for the Kelvin chain. This yields 

02 J(t, t') N yll(t) E,,(t') , 
otot' = J;:ly,,(t')[11,,(t')]2 eXp [y,,(t)-YIl(t)] (2.70) 

Here we must always have Y" > 0 and E" ~ O. Consequently, thermodynamically 
admissible Kelvin chain models always yield a compliance function such th, . 

02J(t t') 
-:c--:-'- ~ 0 

at at' 
(2.71) 

Now, what is the meaning of this inequality? Geometrically, it means that the 
slope of a unit creep curve would become greater as t' increases, which means that 
two creep curves for different t', plotted versus time t (not t - t') would never 
diverge as t increases. Is this property borne out by experiment? Due to the large 
scatter of creep data we cannot answer this question with complete certainty. A 
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few test data exhibit slight divergence of adjacent creep curves beginning with a 
certain creep duration t - t' (Bazant and Kim, 1978; Bazant, 1979), but most data 
do not. As for the creep formulas, the double power law, Eq. (2.72), as well as the 
ACI formulation, always exhibit divergence after a certain value of t - t', whereas 
the improved Dischinger model (CEB-FIP 1978 formulation) does not. (Neither 
does the new model in the Addendum.) 

So the ageing Kelvin chain models cannot closely approximate a compliance 
function with divergence without violating the thermodynamic restrictions 
E" ~ 0, 111l ~ 0, EI' ~ O. Indeed, the previous!y described algorithms for determin­
ing EIl(t) yield negative Ell for some J1 and some (albeit short) time intervals 
whenever J(t, t') with divergent creep curves is fitted. 

For ageing Maxwell chain models, by contrast, it has been demonstrated 
(Bazant, 1979) that it is possible to violate inequality (2.71) without violating any 
of the thermodynamic restrictions. Therefore, the ageing Maxwell chain models 
are more general in the range of ageing creep forms that they can describe. The 
equivalence of Maxwell and Kelvin chains to each other as well as to any other 
rheologic model (Roscoe, 1950) does not quite apply in the case of ageing. 

The ageing Maxwell chain model, however, is not entirely trouble-free either. 
As numerical experience with the fitting of long-time creep data indicates, the 
condition E" ~ 0 c~n be easily satisfied but it has not been possible to identify 
the condition that Ell ~ 0 for all J1 and all t. The violations, though, were found to 
occur only for short time periods and for those Maxwell units which are inactive 
at the time, i.e. have not started relaxing as yet or have already fully relaxed. 

Note. that we merely evade the question if we restrict ourselves to an integral­
type creep law, for without its conversion to a differential-type form we cannot 
know whether our formulation of ageing is thermodynamically admissible. We 
also evade the answer by introducing a differential-type model without recourse 
to a rheologic spring-dash pot model. (Every differential-type model can be 
associated with some such rheologic model.) 

It should be noted that the rheologic model corresponding to a given 
compliance function is not unique (Roscoe, Meixner). If we find that a certain 
creep function J(t, t') leads to one unsatifactory differential-type model, we are 
not sure whether the same creep function might also be represented by some 
other differential-type model that is satisfactory. 

To summarize, we have two kinds of differential-type formulations based on 
ageing rheologic models: (a) those whose form is fundamentally questionable (e.g. 
Eq. 2.66) because it always violates the dissipation inequality for the internal 
variables; and (b) those which are of correct form (e.g. Eq. 2.65) and can represent 
the ageing creep curves for various t' over a limited time range but cannot do so 
for a broad time range without numerically violating some thermodynamic 
restrictions (Ell ~ 0 or Ell ~ 0) for some period of time. Although for the second 
kind of models the problems are less severe, no rheologic model with age­
dependent EIl(t) and '1 1l(t) is entirely satisfactory. (Remark: Recognition of this fact 
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has led to a new model described in the Addendum, which describes ageing creep 
on the basis of a non-ageing rheologic model.) 

2.4.5 Thermodynamics of creep mechanism 

Valuable information on the form of the constitutive equation for creep and 
shrinkage can be obtained from mathematical modeling of the processes in the 
microstructure, This approach, however, is hampered by the fact that knowledge 
of the microstructural processes is still quite limited at present. 

To illuminate the nature of the ageing effect in creep, an attempt was made to 
deduce the constitutive equation from an idealized micromechanics model of the 
solidification process in a porous material, describing the increase in stiffness due 
to the volume growth of the solidified component (Bazant, 1977). This approach 
led to a certain form of the compliance function, of which the triple-power 1<1\". 

(Bazant, 1977; Bazant and Chern, 1985d) is one possible special case. (For a 
successful application of this approach, see the Addendum to this chapter.) 

Thermodynamics has also helped understanding of the equilibrium of various 
phases of water in concrete and their possible role in creep. This aspect was 
discussed in Section 2.3.3 in relation to the humidity-rate dependence of creep 
viscosities and the stress-induced shrinkage. 

2.5 'FORMULATION OF COMPLIANCE FUNCTION AND 
SHRINKAGE 

2.5.1 Separation of instantaneous deformation and creep 

Separation of the stress-produced strain (mechanical strain) into the instanta­
neous or elastic strain CE and the creep strain F.c is, unfortunately, ambiguous 
because significant creep exists even for extremely short load durations; see the 
typical curves at constant stress plotted in Fig. 2.1 in the log-time scale, in which 
the left-hand-side horizontal asymptote represents the true instantaneous 
deformation (since log 0 = - CG). This asymptotic value is difficult to determine 
experimentally, and it corresponds to load durations that are too short for 
practical use. Therefore, the deformation which corresponds to some load 
duration between 1 min and 1 day (Fig. 2.23) is usually considered as the 
instantaneous or elastic strain. 

Regretfully, there is no general agreement as to the definition of the 
conventional elastic strain. The conventional elastic modulus obtained from the 
formulas of ACI or CEB-FIP recommendations (e.g. E = 57 OOO,iI~) represents 
approximately one-half of the true instantaneous modulus and corresponds to a 
load duration of approximately two hours. (The reason for this choice seems to be 
that it gives good deflection predictions for the load test of a bridge or other 
structure, which usually takes about two hours.) On the other hand. some 
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Figure 2.23 Ambiguity in the definition of elastic deformation 1 E or l' Eo (left and right), and fits of 
creep data by power curves corresponding to various values adopted for initial elastic deformation 

experimentalists use or tacitly imply the instantaneous deformation to be that for 
1-10 min duration (the typical duration of a static strength test in the laboratory), 
while others use 0.001 sec (rapid loading achieved, e.g., by gas released from an 
accumulator tank by a valve). 

Practically, there would be no problem if one would always base the analysis on 
the experimentally determined (or predicted) values of the total deformation, i.e. 
the compliance function J(t, t'), because the subdivision of J(t, t') into the elastic 
and creep parts is artificial and only the total J (t, t')-values matter for structural 
analysis. Much confusion and error, however, has been caused by carelessly 

. combining incompatible values of the elastic modulus E(t') and the creep 
coefficient 1>(t, t') (e.g. combining a with b' or b with a' in Fig. 2.23). Such practice 
ought to be avoided, if not outlawed. 

There is, of course, no objection to characterizing creep by the creep coefficient 
1>(t, t'); however, the creep coefficient and the elastic modulus must both be 
determined from the same compliance function J(t, t'), using the same load 
duration ~ for the initial 'elastic' deformation. This is done by using the relations 

E(n = I;J(!, +~, t') and (p(t, t') = [J(t. t'),J(t' +~, n] - 1 

Of course, ~ cannot be chosen longer than the shortest creep duration of interest 
(usually one day) or longer than about 0.3 of the smallest concrete age considered, 
but otherwise its choice is arbitrary. 

2.5.2 Influencing factors 

A number of factors influence creep and shrinkage. They may be divided into 
intrinsic factors and extrinsic factors. The intrinsic ones are those which are fixed 
once for all when the concrete is cast. They include the design strength, the elastic 
modulus of aggregate, the volume fraction of aggregate in the concrete mix, the 
maximum aggregate size, the water-cement ratio, the grading and mineralogical 
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properties of aggregate, the type of cement, etc. The extrinsic factors are those 
which can be changed after casting; they include temperature, specific pore water 
content, age at loading, etc. 

Among the extrinsic factors, one must distinguish those which represent state 
variables and those which do not. The former ones are those which can be treated 
as a point property of a continuum, and they are the only ones which can 
legitimately appear in a constitutive equation. The temperature, age, degree of 
hydration, pore humidity (or pore-water content), and stress represent state 
variables. On the other hand, the size and shape of cross-section and the 
environmental humidity are not admissible as state variables in a constitutive 
equation, even though they have a great effect on creep of a concrete specimen. 
Properly, the latter variables must be expressed through the boundary conditions 
for the partial differential equation governing pore humidity. Creep depends 
directly on the pore humidity, not on the environmental one. These two values 
are normalIy quite different because moisture diffusion in concrete is a very 
slow process. 

The effects of state variables, documented by many experimental studies 
(Nevilie 1973, 1981; L'Hermite etal. 1965; 1968a, b, Wagner, 1958; Lambotte 
et al., 1976; Hanson, 1953; Hanson and Harboe, 1958; TroxelI et al., 1958; Neville 
et at., 1983; Nevill~ and Dilger, 1970) are as follows. Creep decreases as the age of 
concrete at the instant of loading increases, which is actually the effect of an 
increased degree of hydration, and increases as the temperature increases, 
although this effect is to some extent offset by the acceleration of hydration 
caused by heating, which tends to' reduce creep. The lower the pore-water 
content, the smaller is creep (see the tests of Ruetz, 1968; Wittmann, 1974; Bazant 
et al., 1976; Cilosani, 1964 (above 100 C, Bazant and Prasannan, 1987). In most 
practical situations, however, this local effect is overwhelmed by the effect of the 
changes in environmental humidity (an extrinsic factor) upon the overall creep of 
the specimen or structural member. This effect is usually opposite-the creep of a 
specimen is usually increased, not decreased, by a decrease of environmental 
humidity (Troxell et al., 1958; L'Hermite, 1965; L'Hermite and Mamilian, 
1968a, b). Another extrinsic factor which is not a state variable is the specimen 
size. The larger the size, the slower the drying process, and the smaller the creep 
increase due to simultaneous drying (Hansen and Mattock, 1966). 

2.5.3 Constitutive properties 

The compliance function may be defined by a table of values directly based on 
experimental data. An interpolation subroutine may then be used to yield any 
desired value of the compliance function in a computer program. It is, however, 
more convenient to define the compliance function by a formula. This has the 
beneficial effect of smoothing rough and randomly scattered test data. 

Among simple formulas, the creep of concrete at constant moisture and 
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thermal state (also called the basic creep) may be well described by power curves 
ofload durations t - t', and by inverse power curves of age t' at loading. This leads 
to the double power law (Bazant, 1975; Bazant and Osman, 1976; Bazant and 
Panula, 1978) 

J (t, i') = ~ + 4> 1 (t' - m + C()( t - t')" 
Eo Eo 

(2.72) 

Approximately, /l ~ l, m ~ 1,:t. ~ 0.05, 4> 1 ~ 3 to 6 (if t' and t are in days), and Eo = 
asymptotic modulus (for log(t - t') --+ - cc). Eo ~ 1.5 times the conventional 
elastic modulus for concrete 28 days old. These coefficients can be relatively 
simply determined from test data. For example, by using the foregoing estimates 
for Eo,m, and:t., and plottingy = log [(Eol - l)/(t'-'" + :t.)] versus log(t - t'), one 
gets a straight-line plot whose slope is nand y-intercept is 4>1' Comparisons with 
test data are exemplified in Bazant and Panula (1978, 1980). 

Since (t - t')" = enx where x = In (I - t'), the power curves of(t - t') appear on a 
log-time scale as curves of ever-increasing slope and with no bounded final value 
(Fig. 2.1). The question whether there exists a bounded final value of creep (at 
t -+ CX) has been debated for a long time and no consensus has yet been reached. It 
is nevertheless clear that if a final value exists it would be reached at times far 
beyond those of lifetimes of structures. All measurements of creep of sealed or 
immersed specimens indicate, except for what appears to be statistical scatter, a 
non-decreasing slope on a log-time scale for the entire test duration. There is no 
evidence of a final value. 

For design purposes, however, the question of existence of a bounded final 
value is not too important because the creep increase from 50 to 100 years is, 
according to extrapolations of test data (or Eq.2.72), relatively insignificant 
(since at very long times the creep curve is approximately a straight line in 
log(t - t'». Most structures are being designed for 40- or 50-year service lives. 

The power law of load duration, first proposed by Straub (1930) and Shank 
(1935), follows theoretically from certain reasonable hypotheses about the micro­
structural creep mechanism, e.g. the rate process theory (Wittmann, 1971b, 
1974) as well as a statistical model of creep mechanism (<;inlar et al., 1977) 
or some micromechanics models (Bazant, 1979). Until recently the power 
law had been used in conjunction with the conventional elastic modulus for the 
elastic term (I/E instead of I/Eo in Eq.2.72; see Section 2.5.1). However, this 
definition of the elastic term greatly restricts the range of applicability. Namely, 
by choosing the left-hand-side horizontal asymptote to be too high (Fig. 2.23), a 
higher curvature of the power curve, i.e. a higher exponent (about /l ~1), is 
required in order to fit the creep data for durations from 3 to 100 days. Then the 
excessively large curvature due to too high an exponent (1 instead of i) causes the 
curve to pass well above the creep data for longer creep durations (over 100 days); 
see Fig. 2.23. It was for this reason that in the older works the power law was 
deemed to be applicable only for relatively short times. (For extremely long times, 
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though, a logarithmic law is no doubt more realistic than a power law; see 

Eq.2.75.) 
To be able to fit the creep test data with a power law up to many years of 

duration, the elastic term (I/Eo in Eq. 2.72) must be taken as the true 
instantaneous value, i.e. as the left-hand-side horizontal asymptote on the log­
scale, and the exponent then turns out to be around k. The double power law thus 
acquires a rather broad range of applicability. It agrees reasonably well with the 
known data for creep up to 30 years of duration, and at the same time it describes 
quite well the test data for load durations under 1 day and as short as 1 sec. It 
even gives approximately correct values for the dynamic modulus Edyn when 
one substitutes as the load duration the typical duration of acoustic period, 

t - t' ~ 10- 7 day. 
The conventional elastic modulus, along with its age dependence, may be 

considered as the value of I/J(t, t') for t - t' = 0.001 day, for which Eq. (2.72) 

yields: 

E(t') _ Eo 
- 1 + c/>'1 (t' m + oc)' 

(2.73) 

However, the value obtained by substituting t - t' = 0.1 day agrees better with 
the ACI formula (E = 57000 J f~). Note that since four parameters (Eo,m, OC, c/>'d 
are needed to describe the age dependence of the elastic modulus, there is only one 
additional parameter, namely the exponent n, which suffices to describe creep. 

Many other expressions for the compliance function have been proposed 
(Wittmann, 1971b; Bazant et aI., 1976). Ross (1937) and Lorman (1940) proposed 

a hyperbolic expression 

C(t, t') = f/(a + bT), T = t - t' 

which is convenient for fitting of test data but unfortunately does not apply to 
long creep durations (Bazant and Chern, 1982). Neither does Dischinger's (1937) 
formula, 1 - exp[ - a(t - t')]. Hanson (1953) proposed a logarithmic law, 
C(t, t') = c/>(t')log(1 + D, which does not approach any final value and gives 
good predictions for rather long creep durations, (see Eq. 2.75) but for short 
durations is not as good as the double power law. Morsch (1947) proposed the 

expression 

C(t, t') = c/>{l- exp[ _(bt)I/2]}1/2 

and Branson et al. (1970a, b, 1971) proposed the expression Cu [1 + 10/ 
(t - t')0.6] - \ these exhibits a final value. The expressions of Ross and Morsch work 
somewhat better for creep at drying (see Section 2.5.4). McHenry (1943), Maslov 
(1941), Arutyunian (1952), Bresler and Selna (1964), Selna (1967, 1969), and 
Mukaddam and Bresler (1972, 1974), used a sum of exponentials of t - t' with 
coefficients depending on t'. Such a sum can be closely adapted to any test data (as 
discussed in Section 2.2.3) if there are at least four exponential terms in the sum. 
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Various expressions have been introduced with the particular purpose of 
enabling a certain simplified method of creep structural analysis. These include 
the expressions of Whitney (1932), Glanville (1930), Dischinger (1937, 1939), 
England and Illston (1965), and Nielsen (1970, 1977), which all lead to the 
rate-of-creep (Dischinger's) and rate-of-flow methods for structural analysis 
and will be mentioned later, and other expressions (Chiorino and Levi, 1967; 
Aru tyunian, 1952; Levi and Pizzeti, 1951). 

The double power law exhibits a certain questionable property which was 
recently discussed in the literature (Bazant and Kim, 1978; Bazant, 1979). It is 
the property that the creep curves for different ages t' at loading diverge after a 
certain creep duration, i.e. there exists a time t - t' = to (function of t') after which 
the difference between these curves increases while up to this time it decreases (of 
Section 2.4.1). This property, which is shared with the ACI recommendation 
(1971, 1982) but not with the CEB-FIP Model Code (1978), is equivalent to the 
condition that 22 J(t, t')/2t ot' changes its sign from positive to negative (it is non­
negative if there is no divergence). One objection was that the creep recovery 
curves obtained by the principle of superposition do not have a decreasing slope 
at all times if the creep curves exhibit the divergence property. This argument, 
however, is not quite realistic because the principle of superposition does not 
apply to creep recovery anyway. Further it was thought that the divergence 
property might violate the second law of thermodynamics but it was proven that 
this is not so (Bazant and Kim, 1978, 1979b) (see Section 2.4.4). So, whether the 
divergence property is real depends strictly on experimental observations. The 
evidence from test data is not without ambiguity; some data do exhibit the 
divergence, but most do not. It could be that the observed instances of divergence 
property are due to random scatter or to some non-linear effect. If so, divergence 
would not belong to function J (t, n. (See also Eq. 2.108.) 

Careful examination shows that the double power law exhibits certain 
deviations from experimental data which seem to be systematic rather than 
random. In particular, for a short age at loading and a very long load duration, 
the final slope of the creep curve obtained from the power law is too high. The 
measured creep curves appear to approach in the log(t - t') scale a constant slope 
for very long t - t'. An improvement can be obtained by the recently proposed 
triple power law (Bazant and Chern, 1985d), which specifies the unit creep rate, 
i.e. the time derivative of the compliance function, as follows: 

DJ(t,t') . , 1/11 (-m+ oc ---.-:---.:.. = J (t t ) = (2 74) at 'Eo (t - t')1-n{t/tT . 

This formula contains one more constant, 1/11' than the double power law. Some 
optimum fits oftest data from the literature obtained with the triple power law in 
Bazant and Chern (l985d) are exhibited in Fig. 2.24. 

For short load durations, t - t' «t', we may substitute tit' = 1, upon which 
Eq. (2.74) becomes identical to the derivative ?f the double power law. For load 
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durations that are long compared to the age at loading, t - t' » t', we may 
approximately replace t - t' in Eq. (2.74) with t, and upon integration Eq. (2.74) 
then yields 

J(t, t') = Eo 1 [1 + t/J 1 (t' -m + (X)t'" In t + fo(t')] (2.75) 

This equation represents the logarithmic law, initially proposed by Hanson 
(1953); it is represented by an inclined straight line in the logt scale. The 
compliance function corresponding to the triple power law is obtained by 
integrating Eq. (2.74): 

J(t,n=E
1 + :1(t'-m+(X)[(t-t'Y-B(t,t';n)] (2.76) 

° ° in which 

B(t, t'; n) = n ft-t' [1 -(~)nJ~n-1 d~, 
~=o t +" 

~ = t - t' (2.77) 

Function B(t, t'; n), representing the deviation from the double power law, is a 
binomial integral, which cannot be expressed in a closed form for realistic values 
of exponent n. Nevertheless, this integral may be easily evaluated in terms of a 
convergent power series, or by step-by-step integration in log t scale. A table of 
values of this integral as well as a graph have -also been presented (Bazant and 
Chern, 1985d). 

The triple power law represents a smooth transition from the double power 
law, applicable for short load durations, to the logarithmic law, applicable for 
long load durations. The higher the age at loading, the longer is the load duration 
at which the transition is centred. 

Although numerical evaluation of the binomial integral is easy, its use may be 
avoided by another formula which also represents a smooth transition from the 
double power law to the logarithmic law and is called the log-double power law 
(Bazant and Chern, 1985b): 

J(t,t')=~ +t/JEoln[l+t/Jl(t'-m+CX)(t-t,)n] (2.78) 

° ° 
in which t/Jo = ¢1/t/J l' Compared to the triple power law, however, Eq. (2.78) has 
the disadvantage that it is not applicable for very short loading times (below 
about 0.1 day). Especially, it is not applicable for the dynamic range, because the 
plot in the log-time scale has initially much too high a curvature, thus yielding too 
high compliance values. 

This last drawback may be avoided, still without the use of binomial integral, 
by a two-part formula with discontinuous curvature (but continuous slope). 
This formula uses the double power law for t - t' ~ eL where (Bahnt and 
Chern, 1984b) 

(2.79) 
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and after this transition time it uses the logarithmic law given by the expression 

J(t,t,)=IJ¢Llnt-t' +1+¢L 
Eo ()L Eo 

(2.80) 

This expression yields the same compliance value and slope at transition time 
t - t' = ()L as does the double power law (Eq. 2.72) (BaZant and Chern, 1984b). 

Compared to the double power law, the triple power law, as well as Eqs (2.78)­
(2.80), offers only a relatively modest improvement, as measured by the reduction 
of the coefficient of variation of the deviations from the bulk of experimental data 
in the literature. However, this is partly due to the fact that very long loading 
periods are scant among the existing data. Statistics of the final slope oflong-time 
creep curves compared to the existing observations indicate a significant 
improvement. Thus, the use of the triple power law is recommended particularly 
when short-time data are to be extrapolated to long times. (Remark: The creep law 
in the Addendum, however, found after the completion of the committee's work, 
is superior to triple-power and log-double power laws.) 

For extrapolating short-time creep data to long durations, Ross's hyperbola 
C(t, t') = t(a + bt) (Ross, 1937) has been popular since it makes it possible to 
obtain the 'final' creep value by linear regression in the plot of tiC versus t. It has 
been shown, however, that such extrapolation greatly underestimates the long­
time value (Bazant and Chern, 1982). Worse yet, due to transformation of 
variables, the type of regression plot used here obscures the errors and deceives 
the analyst. by an illusion of a good fit. 

Consider now the temperature effect. Although it is best introduced only after 
the compliance function is converted into a differential-type form (Section 2.3.2), 
the effect of various values of a constant temperature may be also represented in 
the double power law or the triple power law. The double power law is 
generalized as 

J(t, n = L + ~: (t~-m + et)(t - t')nT (2.81 ) 

in which t~ = J f1T(t')dt' represents the age corrected for the effect of temperature 
on the rate of hydration and is called the reduced age or the equivalent hydration 
period (or maturity). Coefficients ¢T, nT' and f1T are empirical functions of 
temperature (Bazant et al., 1976; Gamble and Parrott, 1978) introduced such 
that, at reference (room) temperature To, ¢T = ¢l' nT = n, and f1T = 1. For 
temperature history that equals To up to time to and then jumps to another 
constant value T, we have t~ = to + f1T(t - to). 

2.5.4 Mean cross-section behavior at drying 

The best way to represent creep at variable humidity and temperature is to first 
obtain a differential-type creep law from the compliance function at constant 
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humidity and temperature, and then to introduce the effect of variable humidity 
and temperature into the differential-type creep law as well as the boundary 
conditions. Nevertheless, for many practical applications it is desirable, and 
probably sufficient for crude calculations, to use a compliance function I(t, t') 
which describes the mean properties of the cross-section of a structural member 
exposed to drying environment (h < 1). The mean compliance function at drying, 
of course, does not represent a constitutive property of the material; rather, it 
represents a property of the cross-section as a whole. This property is not really 
applicable to cross-sections of different sizes or shapes, or other structures. Of 
course, strictly speaking, different mean compliance functions should be consi­
dered for different loading modes, e.g. axial compression, tension, bending, 
compression combined with bending, torsion, etc. 

Since drying is a process governed by diffusion theory, some fundamental laws 
which result from the diffusion theory must be obeyed by the expressions for 
shrinkage and the mean compliance function. The first such law concerns the size 
effect. The diffusion theory (linear as well as non-linear) indicates that the drying 
times are proportional to the square of the size when geometrically similar 
specimens or bodies are compared (Fig. 2.25). This same type of size dependence 
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Figure 225 Horizontal shift of shrinkage curves due to change of thickness D (top left), vertical 
scaling of shrinkage curves due to change in environmental humidity h, (top right), errors in 
shrinkage prediction when thickness effect is not treated as a horizontal shift in log-time (bottom 

left), and mean compliance with drying creep for various thicknesses D (bottom right) 
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must apply to shrinkage since the free shrinkage strain is a function of the pore­
water content, which in turn is a function of the pore humidity. In practice, the 
size-square dependence is not exact, being spoiled by the effects of continuing 
hydration and microcracking, but it agrees with measurements reasonably well. It 
also satisfies the obvious limiting conditions due to diffusion theory, namely that 
if the size of the cross-section tends to infinity the shrinkage must tend to zero 
(autogenous shrinkage excluded), and so must the additional creep due to the 
lowered environmental humidity. (Carbonation shrinkage is also a diffusion-type 
phenomenon, but in good-quality concrete it affects only a thin surface layer.) 

For shrinkage, in particular, we have 

(2.82) 

where 

{)=~~ 
Tsh ' 

(2.83) 

Here 'sh is the shrinkage square half-time (i.e. the drying time needed for the 
square of shrinkage strain to reach about 1/2 of its final value); esh is a para­
meter characterizing the final shrinkage which depends on the mix ratios and the 
strength (typically 0.0005-0.0013). Parameter kh is a function of environmental 
humidity he; empirically kh = 1 - h; for he < 0.99, while for h = 1.00, kh = - 0.2 
may be used to describe swelling. According to Jonasson, kh should be larger than 
this when he < 0.4, and Bazant suggests for the entire range 0 < he ~ 0.99 the 
expression he = I - h~ + cb(1 - he)5 with Cb :::= 1. Function S gives the evolution of 
shrinkage in non-dimensional time 0; to is the age at the start of drying; C 1 is the 
drying diffusivity of concrete at the start of drying (10 mm 2 /day, as the order of 
magnitude); ks is the shape parameter, which can be calculated from the diffusion 
theory (k, = 1 for slab, 1.15 cylinder, 1.25 square prism, 1.30 sphere, 1.55 cube); D 
is the effective thickness of cross-section (in mm), defined as D = 2v/s, where v is 
the volume and s the surface area exposed to drying (for a slab, D represents the 
actual thickness); and c, is an empirical constant (taken as 0.267 mm 2

). 

The second physical law, which results from the diffusion theory, linear as well 
as non-linear (Bazant, Wittmann, Kim and Alou, 1977), concerns the initial shape 
of the shrinkage curves: 

Lsh ~ D- l J(t - toJ for small t - to (2.84) 

where .~ is the proportionality sign. This law, which is confirmed by careful 
measurements very well (ibid.), restricts the choice of empirical expressions for the 
shrinkage curve. 

The two physical restrictions in Eqs (2.83) and (2.84) are satisfied by the formula 
(Bahnt, 1986; Wittmann, Bazant, Kim and Alou, 1987): 

S(O)=[1 +C~htoYJ-12r (2.85) 
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where r is a constant. The original BP model used r = 1. It seems, however, that 
values of r between 0.75 and 0.95 are slightly better. 

A further consequence of the diffusion theory is that the effects of temperature T 
and of the age at the start of drying on shrinkage may be described by means of 
diffusivity, C l , and have the form C l = Cok~kl' where Co is a constant, kl is an 
empirical function of age to; and k'T is a function of temperature, 
which may be based on the activation energy theory. 

Examples of a comparison between calculated shrinkage curves (for different 
cylinder diameters and different environmental humidities) and test data from the 
literature are given in Fig. 2.17. Figure 2.25 illustrates the effect of a change in 
environmental humidity, he' which causes a vertical scaling of the shrinkage 
ordinates, and the effect of changing the size from Do to D, which does not cause a 
vertical scaling but a horizontal shift of the shrinkage curve in the log-time 
scale; the shift is by the distance 210g(D/Do), because log 0 = log(t - toJ + 
210g D + constant (see Fig. 2.25). 

In some other practical formulae (Branson et al., 1970a, b, Branson, 1971; ACI, 
1971; Ali and Kesler, 1963), the size effect on shrinkage is handled by scaling the 
ordinates. This disagrees, however, with the diffusion theory, is not supported by 
measurements, and leads to under-prediction of long-time shrinkage for thick 
structural members (Fig. 2.25). The size-sq uare dependence of shrinkage times is 
the simplest and the most essential property of shrinkage. 

The mean compliance function J(t, t') of the cross-seotion in the presence of 
drying may be expressed approximately as (Bazant et al., 1976; Bahnt and 
Panula, 1978, 1980, 1982). 

(2.86) 

where J(t, t') is the compliance function for basic creep, i.e. for constant pore 
humidity (e.g. Eqs 2.72 or 2.76), and Cd(t, t') is the mean additional compliance 
due to drying (including the indirect effect of simultaneous shrinkage). 

For a lower humidity, the drying is more severe, and thus the drying creep 
magnitude is larger when the environmental humidity is lower. When the size 
tends to infinite, there is no drying in the limit. So the drying creep term Cd must 
decrease with increasing size and approach zero as the size tends to infinity. Yet, 
some practical models (AC!, 1971, 1982; Branson et al., 1970a; Branson and 
Christianson, 1971) disregard this condition. 

Since drying follows the size-square dependence, the same should be expected 
of the drying creep term. So we may write, in analogy to Eqs (2.82) and (2.83) for 
shrinkage, 

- t - t' 
0=- (2.87) 

'sh 

where rsh is the shrinkage-square half-time (same as in Eq. 2.83), t - t' is the 
duration of load; k~ is an empirical function of environmental humidity 
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(k~:::: 1 -11!·5);s(iT)isanempiricalfunctionof{)similartoS(B);andj~(t')isadecreas­
ing empirical function of age at loading t' (BaZant et al., 1976; Bazant and Panula, 
1978). An important property of Eq. (2.87) is that the drying creep term actually 
represents a shrinkage influence, thus reflecting the fact that shrinkage affects 
creep and is not simply additive to creep, as the experimentalists have always 
been emphasizing. 

An essential feature is that the size-square dependence is again embodied in 
Eq. (2.87). A change in size causes a horizontal shift of the curve for the drying 
creep term in the log-time scale. Thus, superimposing this term on the basic creep, 
l(t, t'), we may imagine the drying term curve to slide on top of the basic creep 
curve as shown in Fig. 2.25. A change of environmental humidity, on the other 
hand, causes a vertical scaling of the ordinates of this term. In this manner, many 
different shapes of the creep curves can be generated. This property is not 
reflected in the older formulae in which both the humidity and size effects are 
handled by a multiplicative factor, i.e. vertical scaling of the creep curve. This then 
leads to underprediction of long-time creep for very thick structural members, 
and overprediction for very thin ones (as in Fig. 2.25). 

The fact that in log-time the slope of the creep curves for a drying environment 
begins to decline after a certain time period (which depends on the size) appears to 
be due to the drying creep term. From this decline, however, we may not infer that 
the creep curves approach a final value since the basic creep term does not 
approach one. 

It must be emphasized that the drying term Cd is strictly a cross-section 
property. No such term is admissible in the constitutive equation or as part of the 
compliance function characterizing the behaviour at a point of the continuum 
that approximates concrete. 

2.5.5 Rate-of-creep method and related formulations 

Until step-by-step computer methods enabled solution of ageing creep problems 
using a general constitutive law given by any compliance function, it had been 
necessary to impose upon the compliance function a form that permits a simple 
analytical solution of typical creep and shrinkage problems. Several such 
formulations were conceived before the computer era. 

One of them uses the compliance function due to Whitney (1930) (Eq. 2.88) for 
which the stress-strain relation can be reduced to a first-order differential 
equation corresponding to a Maxwell solid with age-dependent viscosity and 
elastic modulus. This differential equation, introduced by Glanville (1930) and 
first extensively applied in structural creep analysis by Dischinger (1937, 1939), 
was widely used by German, Central European, and Russian engineers. At the 
same time, US and British engineers favoured the effective modulus method, 
based on the effective modulus Eeff = 1/1 (t, t') proposed by McMillan (1915) and 
Faber (1927-1928). The structural analysis is simpler for the effective modulus 
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method since the stress-strain relation is algebraic (quasi-elastic) and no 
differential equations in time need to be solved, while the rate-of-creep method 
leads to differential equations in time. 

The rate-of-creep method, also called the Dischinger method, gives better 
predictions for loads applied at a young age, and the effective modulus for loads 
applied at old age. Generally the errors of both approaches can be quite large, and 
are overall about equally large for both methods. These errors tend to be on the 
opposite sides of the exact solution of linear ageing viscoelasticity. So a 
practically sensible way is to carry out the structural analysis by both methods 
and then make sure that the design satisfies both of them. 

The compliance function used in the rate-of-creep method, which corresponds 
to an ageing Maxwell solid, has the form 

, 1 ljJ(t) -1jJ(t') 
l(t, t) = E(t') + -E;'-- (2.88) 

in which Ec is a constant, and 1jJ(t) is a function of one variable, chosen such that 
ljJ(t) = 41(t, to), to being the age at first loading. Obviously, the creep curves for 
various ages at loading, as defined by Eq. (2.88), are of the same shape and are 
vertically shifted relative to each other (Fig. 2.1). This property is acceptable for 
small ages at loading but very poor for old ages at loading. 

The advantage of Eq. (2.88) is that when it is substituted into the superposition 
integral (Eq. 2.6), the integral equation reduces to the differential equation 

1 aft) . 
e(t) = E(t) a-(t) + Ec !/I(t) (2.89) 

according to which the creep rate is independent of the past stress history. 
Structural analysis based on this equation is called the rate-of-creep method 
or Dischinger method. Structural analysis problems may then be reduced to 
differential equations which can be solved particularly easily if the elastic 
modulus E(t) is replaced by a constant. It is now known, however, that the error 
due to the rate-of-creep method can be quite large (Bazant and Najjar, 1973) and 
exceed even 50 per cent of the exact results, although in many situations useful 
results can still be obtained. 

Under stress relaxation regimes (declining stress), the solutions based on 
Eq. (2.89) overestimate the stress changes due to creep, and under increasing 
stress regimes (e.g. creep buckling), they underestimate the changes due to creep. 
These errors are opposite to the errors of the effective modulus method. A 
particularly severe limitation is the fact that Eq. (2.88) yields almost no creep 
for loads applied at very high ages. Nevertheless, when the stress change from 
to to t is small, the results of both methods are good. 

To remedy the aforementioned problems, a certain combination of the 
rate-of-creep method and effective modulus method, known as the improved 
Dischinger method, was proposed by Fuglsang Nielsen (1970), Rusch et al. (1973), 
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and others on the basis of England and IlIston's (1965) rate-of-flow method. 
These formulations introduce the compliance function in the form 

t t t/J(t) - t/J(t') 
J (t, t') = ETt;) + E~f + ---E----;- (2.90) 

in which E~f is assumed to represent an additional elastic deformation imagined 
as delayed. Properly, this additional deformation is a function of t - t'. For the 
sake of simplification, however. this dependence is neglected in computations and 
E~f is treated as the effective modulus for the delayed elastic deformation. 

This treatment of the delayed elastic deformation would have a small error if its 
final value were independent of the age at loading, t'. and if the delayed elastic 
deformation reached its final value in a relatively short time (about 100 days was 
assumed). Subsequent comparisons with extensive test data, however, indicated 
that these assumptions are not very close to reality. According to many data 
(Jessop, 1969, 1971; England and IIlston, 1965; Roll, 1964; Jordan and Illston, 
1971; Hanson, 1953; Ross, 1958a; Glucklich, 1959; Ishai, 1964; Kimishima and 
Kitahara, 1964), the strains identified as delayed elastic deformations are in fact 
strongly dependent on the age at loading, representing from 15 to 90 per cent of 
the initial clastic strain after a period of a few months (Bazant and Osman, 
1975). Moreover, the recovery curves tend to be essentially straight lines in 
the logarithmic time-scale for a long period of time (Bazant and Osman, 1975), 
indicating that the final value of the delayed elastic strain is not reached very 
soon. 

From the thermodynamic viewpoint, the separation of the total creep strain 
into a reversible component (delayed elasticity) and an irreversible component 
(flow, corresponding to the dash pot of the Maxwell model) is not justified if the 
material undergoes ageing. In the presence of ageing, separation of irreversible 
and reversible strains is in a strict sense possible only for the strain increments, 
but not for the total strains (see Addendum to this chapter). 

Nevertheless, the rate-of-flow method or improved Dischinger method 
(Eq. 2.90) represented in the 1960s a great improvement compared to the 
previously used rate-of-creep method (Dischinger method) or the effe~tive 
modulus method. It significantly reduced the error of creep calculatIOns 
compared to these two previous methods. However. the age-adjusted effective 
modulus method, which was in approximate terms proposed by Trost (1967) and 
was rigorously formulated by Bazant (1970d, 1972b) based on his proof of a 
mathematical theorem (see Chapter 3), has an even smaller error compared to the 
exact solutions according to the principle of superposition if an arbitrary form of 
J(t, t') is used (this principle is assumed or implied in all the existing practical 
simplified methods of creep analysis). When J(t, t') is given in the special form of 
Eq. (2.90), then of course the error of neither method is large. The age-adjusted 
effective modulus is applicable to any experimentally determined form of the 
compliance function, and does not force the analyst to describe his creep data by 
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any particular formula, such as Eq. (2.90). Thus, although the rate-of-flow 
method or improved Dischinger method was a historically important develop­
ment, the subsequently developed age-adjusted effective modulus method can 
now give overall better results compared to the exact solutions of linear ageing 
viscoelasticity (Bazant and Najjar, 1973). 

Various expressions for the compliance function, including Eq. (2.90), have 
been thoroughly evaluated in comparison to the numerous creep data existing in 
the literature (Bahnt and Osman, 1975; Bazant and Thonguthai, 1976; 
Bazant and Panula, 1978, 1980; Bazant et ai., 1983). It was found that Eq. (2.90) 
does not permit close approximation of long-time creep curves for the data that 
involve a wide range of the ages at loading, especially not for the basic creep 
(constant humidity and temperature). The main reason is that Eq. (2.90) can be 
fully calibrated according to the creep curve for one small age at loading and one 
creep recovery test, the creep curves for other (higher) ages at loading 
representing superfluous information. It has often been argued that one is 
rewarded with a better description of the creep recovery. This is, however, not 
quite true for l~)fig-time recovery tests and recovery tests after very different 
durations of the previous constant load and at very different ages at loading and 
unloading. Moreover, it is of questionable merit to base the compliance function 
on creep recovery tests, for two reasons: (I) most pract.ical applications do not 
involve sudden unloading; and (2) the principle of superposition is inapplicable to 
unloading anyway; see Addendum. (This 'does not exclude stress relaxation at 
which the strain is constant, although the stress decreases: for stress relaxation the 
principle of superposition applies very weI!.) 

2.5.6 Practical creep prediction models 

Since experimental data on creep and shrinkage for the particular structure to be 
designed are often lacking and are at best only limited, the creep and shrinkage 
characteristics must be predicted from various influencing factors known in 
advance, such as the design strength, water-cement ratio, temperature, etc. Two 
types of prediction must be distinguished. 

1. Prediction of constitutive properties for creep and shrinkage 

This is the type of prediction that needs to be used as the input for finite element 
computer programs. The practical prediction models contained in the re­
commendations of engineering societies (ACt 197 L 1982; CEB-FJP, 1978) do 
not predict constitutive properties but mean cross-section properties when 
environmental humidity or temperature changes are involved, as is usually the 
case. Even for the case of constant humidity and temperature these prediction 
models are inappropriate because they are intended to describe primarily 
concrete structures exposed to moderate climatic conditions and do not work 
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well for basic creep (i.e. creep at constant humidity and temperature, or creep of 
mass concrete). Neither are these models intended for harsh climates (e.g. 
tropical, desert, continental, or arctic); they have been calibrated for moderate 
climates. These models from the current society recommendations, utilizing 
among material parameters the environmental humidity rather than the pore 
humidities inside concrete, are incapable of providing stress and strain distri­
butions throughout the cross-sections of beams and walls. Their purpose is the 
calculation of the distribution of bending moments and deflections in structures. 

A comprehensive creep and shrinkage prediction model which gives cross­
section properties as well as constitutive properties and can be used for finite 
element programs has been developed by Bazant and Panula (1978) (with a later 
extension to high strength concrete, Bazant and Panula, 1984; and to cyclic 
humidity, Bazant and Wang, 1985a). Only that part of the model which gives the 
compliance function for constant humidity and temperature (basic creep) and the 
final shrinkage coefficient with drying diffusivity, may be used for the prediction 
of constitutive properties. The compliance function is then converted by a special 
input subroutine (Bazant, 1982; Bazant et al., 1981; Ha et al .• 1984; Section 2.5.7) 
to a differential-type form. The effect of variable pore humidity and temperature 
is then brought in through the dependence of the viscosities of the rate-type 
model on temperature and humidity and through the stress-induced parts of 
shrinkage and thermal expansion. as described in Sections 2.3.2 and 2.3.3. 

It is impossible to characterize the constitutive properties for variable pore 
humidity and temperature in terms of the compliance function, because the 
differential-type stress-strain relation cannot be explicitly integrated if the pore 
humidity or temperature is arbitrarily variable. The integration is possible only 
for specified temperature and humidity histories,but then a different compliance 
function would be obtained for each different history. Moreover, the compliance 
function would depend on the stress level because the humidity effect is non­
linear due to cracking. 

2. Prediction of mean cross-section properties 

This is the only type of prediction that is addressed by the engineering societies in 
their current design recommendations. This type of prediction is intended main­
ly for the analysis of bending moments and deflections of beam structures for 
which the stress distribu tions within the cross-section are not particularly needed. 
The objective of describing the cross-section creep and shrinkage properties as a 
whole introduces inevitably a large additional error, and also restricts the 
applicability of the prediction model to a narrow range of conditions (e.g. narrow 
range of cross-section sizes, of temperature, of climates, etc.). Furthermore, the 
prediction of cross-section properties in the mean is usually designed to work for 
axial compression (since it is based on test data for compression creep) and does 
not apply very well to bending or combinations of axial force and bending 
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moment because for each different combination a different set of prediction 
formulas would be needed, which is ignored for practical reasons. If a greater 
range of applicability is intended, as in the BP model, a considerably more 
complex set of formulas inevitably results. 

Although a reasonable prediction of creep and shrinkage properties for a 
certain range of typical conditions is intended, the committees of engineering 
societies have required that their prediction models must be relatively easy to 
evaluate from the available empirical data, and that their formulas must be 
simple so as to make the numerical evaluations straightforward. The requirement 
of simplicity should, however, be viewed in proper perspective. Generally, the 
effort spent on determination of the material properties should be commensurate 
to that devoted to the structural analysis itself. Since inaccuracies in material 
characterization usually cause by far the most serious errors in the results of 
structural analysis, it makes no sense if the analyst spends, say, only four hours on 
predicting the compliance function and shrinkage formula. and then spends one 
week to carry out the structural analysis. He should spend equal time on both 
tasks. 111 this perspective, the widespread desire to keep the prediction of material 
properties trivially simple appears to be misguided. No doubt this tendency is due 
mainly to the fact that the task is handled by structural analysts who are well 
trained to carry out structural analysis (and do not mind spending much time for 
this purpose), rather than materials engineers. (Perhaps if this task were handled 
by material scientists, they would wish to spend only one hour on structural 
analysis and would not mind devoting a week to material parameter determin­
ation; simply, the bias due to narrow professional training is part of the problem.) 

The error of the current prediction models by the committees of engineering 
societies is enormous; the 95 per cent confidence limits are around ± 80 per cent! 
(Bazant and Panula, 1978, 1980; Bazant and Zebich. \983). This magnitude of 
error in fact makes computer analysis meaningless. Even a substitution of the 
simple portal frame analysis formulas for a statically indeterminate analysis of a 
frame structure involves much less error than do these current prediction models 
of engineering societies. Without drastic improvement, computer analysis of 
creep and shrinkage hardly makes sense for these prediction models. 

Several practical models for predicting mean cross-section creep and shrinkage 
exist at present. They differ in their degree of accuracy and simplicity, and 
naturally one of these must be traded for the other. These models are: 

1. Model of ACI Committee 209 (1971, 1982), and Branson el al. (1970a, b, 
Branson, 1971). 

2. Model of CEB-FIP Model Code (1978), and Rusch et al. (1973). 
3. BP Model, either its complete version or its simplified version (Bazant and 

Pauula, 1978, 1980), with extensions in Bazant and Panula (1984) and Bazant 
and Wang (\985a). 

The ACI Model is the simplest one, while the BP model is the most 
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comprehensive one, being applicable over the broadest time range (of t, t', and to) 
and covering a number of influencing factors neglected by the other two models. 
It should be remembered that all three models are at least partially empirical, 
albeit to various extents, and are all based on the fitting of data obtained in 
laboratory controlled tests. Attempts at verification by measurements on 
structures in the field have so far been inconclusive, for three reasons: (1) the 
difficulties in sorting out various influencing factors, which are much more 
numerous than in laboratory tests: (2) the large statistical scatter due to outdoor 
environment: and (3) the fact that many important influencing factors were not 
reported or not even determined. 

ACI model. Based on the works of Branson et al. (1970a, b, 1971), the ACI 
Committee 209 (1971, 1982) recommended the expressions: 

J(tt)=-- 1+ C -(ttl S t-to _ I 1 ( (t - no.n ) 
, E(t' ) 1O+(t-t')0.6 U' f.s ' 0 =GuIc+(t-to) (2.91) 

in which t' is the age at loading in days, t is the current age in days, to is the age of 
concrete in days at the completion of curing; Ie is a constant; Cu is the ultimate 
creep coefficient defined as the ratio of the (assumed) creep strain at infinite time 
to the initial strain at loading; and I-;~ is the ultimate shrinkage strain after infinite' 
time. Coefficients Cu and f.~ are defined as functions of six factors: environmental 
humidity, minimum thickness of structural member, slump, cement' content, per 
cent fines, and air content. 

CEB-FIP model (1978). According to the CEB-FIP Model Code (1978, Annexe 
e; see also Rusch et al., 1973, with corrections in CEB, 1981, and Chiorino etal., 
1984, Appendix B): 

J(t, t'l = Fj(t') + cPdP~(t - t'l + cPf[Pf(t) - Pf(t')] 
C2R Ec2P• 

(2.92) 

(2.93) 

in whi~h Ee28 is the elastic modulus of concrete at age 28 days; cPd = 0.4; cPf is a 
coeffiCIent depending on the environmental humidity and the effective thickness 
of member; PI and Ps are functions of the age and the effective thickness; Pd is a 
function of the load duration t - to; F j (t') (representing the sum of instantaneous 
strain and initial creep strain over a period of several days) is a function of the age 
at loading. These functions are defined by graphs consisting of sixteen curves. 
Formulas approximating these graphs were published in Appendix D of 
Chiorino et al. (1984). 

BP model. This model utilizes Eqs (2.72) and (2.82)-(2.87), whose basic forms 
ensue from diffusion theory and activation energy theory, as already explained. 
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The coefficients in these equations are expressed by empirical formulas deter­
mined. from test. re~ults. For the case of drying, these formulas are relatively 
~omphc~ted. ThIS IS, however, at least partly due to consideration of many 
mfluencmg factors and to a broad range of applicability. A program for computer 
evaluation of the BP model and its fitting to given data is available; see the full 
program listing in Bazant (1982) and its improvement with a manual by Ha et al. 
(1984). Extensions of the BP model were later developed for high-strength 
concretes (Bazant and Panula, 1984) and cyclic humidity (Bazant and Wang, 
1985a). The long-time creep predictions of the BP Model may be improved by 
replacing in the basic creep term the double power law with the triple power law 
(Bazant and Chern, 1985d). 

Comparison of existing models 

For basic creep, the BP model and the ACT model have in common the 
product form of the compliance function, in which a function of the age at 
loading multiples a function of the stress duration. In the ACI model, however, 
the multiplicative factor C u introduces not only the effect of age at load­
ing but also the effect of humidity and size. This is very simple but not quite 
realistic. As stressed in Section 2.5.4, the diffusion theory leads to a different 
form of the size effect, which amounts to translation in log-time rather than 
vertical scaling of the ordinates. The same deficiency characterizes the ACI 
shrinkage formula (Eq. 2.91). 

Likewise, the CEB-FIP model (1978) does not follow 'the size effect of the 
diffusion theory. In this model, the basic form of J(t, t') is based on the idea of 
reversibility of deformation. The second term in Eq. (2.92) is considered to 
represent the so-called reversible (or delayed elastic) creep, and the last term the 
so-called irreversible creep. It must be noted, however, that in the case of ageing 
the concept of a reversible creep component lacks theoretical (thermodynamic) 
justification because this component cannot be defined uniquely (only reversible 
creep increments can, Bazant, 1979). 
_ The fact that in the CEB-FIP model the so-called 'reversible' component of 
J(t, t') was calibrated by fitting the creep recovery curves obtained from the 
superposition principle to recovery test data has been questioned (Bazant and 
Osman, 1975; Bazant and Thonguthai, 1976; Bazant and Panula, 1980). The 
reason was that linear superposition does not hold in the case of unloading, as has 
been conclusively demonstrated by tests. The domain of approximate validity of 
the principle of superposition includes only non-decreasing strain histories 
within the service stress range. Thus, only the creep curves for various ages at 
loading and the relaxation curves, which belong to this domain, appear to be 
suitable for calibrating the compliance function. 

The fact that the second term in Eq. (2.92) is assumed to be independent of t 
and the last one independent of t - t' is also questionable in regard to test data 
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(Bazant and Osman, 1975; Bazant, 1979). Another aspect which was criticized 
on the basis of test data is that the humidity and size influences in Eq. (2.92) 
appear only in the irreversible term (BaZant and Panula. 1982), and that the size 
effect in the shrinkage term does not agree with the observations, whereas the 
prediction of a model based on the diffusion theory is in agreement. 

It has often been claimed that for structures exposed to outdoor environment 
the creep prediction formulas need not fit the basic creep data (sealed specimens) 
and need to be calibrated only according to the creep data for standard cylinders 
(15 cm diameter) exposed to about 65 per cent relative humidity. This view, 
however, is unjustified, because structures often involve walls over 30 em thick, 
whose creep is actually closer to the creep of sealed specimens (basic creep) then to 
the creep of drying standard specimens; see the reply to the discussion of Bazant 
and Zebich (1983). 

The BP model is the only one which involves the influence of temperature. It 
describes this influence for shrinkage, basic creep, and drying creep. It also gives 
the effect of the load cycling (pulsation), cyclic variation of environmental 
humidity (Bazant and Wang, 1985a), the effects of the delay of the start of 
loading after the start of drying, the time-lag of loading after heating, the 
decrease of creep after drying, swelling in water, autogenous shrinkage of sealed 
concrete (Honk et al., 1969), etc. The price paid for this broader r;lUge of 
applicability is greater complexity. 

The BP model differs from the ACI and CEB-FIP models also by the absence 
of a final (asymptotic) value of-creep, as it has already been commented upon. 

The BP model was obtained by computer analysis and fitting of 80 different 
data sets on different concretes from different laboratories (over 800 creep and 
shrinkage curves involving about 10000 data points). Based on this quite 
complete, computerized data bank (Bazant and Zebich, 1983), the 95 per cent 
confidence limits (i.e. the relative deviations from the mean that are exceeded with 
a probability of 2.5 per cent on the plus side and 2.5 per cent on the minus side) 
were found for the BP Model to be W95 = ± 37 per cent. For the ACI model, 
comparisons with the same data indicated W95 = ± 77 per cent, and for the CEB­
FIP model W95 = 92 per cent (Bazant and Panula, 1980). The effects which are 
ignored by the ACI and CEB-FIP models, such as temperature effects, could not 
be included in the calculation of these statistics, although the BP model describes 
them qui te well. 

The majority of the existing test data that could be used for these comparisons 
pertained to small-size specimens and to a limited time range, i.e. t - t' ranging 
from one week to one year and t' from one week to six months. The ACI and 
CEB-FIP models describe this limited range better than the data for large 
specimens or long times. For very long creep durations (> 10 years), for very high 
or very small ages at loading (> 10 years, < 10 days), for thick specimens 
(> 30 cm), and for the final slopes of creep curves (which matter for extrapolation), 
the comparison is even more favourable to the BP model. 
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For drying creep alone, however, the confidence limits of the BP model (W 95 = 
± 35 per cent) are only slightly better than those of CEB-FIP model (± 39 per 
cent) and not much better than those of ACT model ( ± 51 per cent). These two 
models are of course intended mainly for not too massive (average size) structures 
in a moderate climate. 

Although the foregoing error statistics are probably the best that can be 
inferred from the presently available test data, it should be recognized that 
corrections to these numbers should be made to eliminate the errors due to the 
conduct of tests, e.g. to unreliable load control, zero drift over long times, gauge 
instability, inadequate environmental control, etc. These measurement errors 
(which are, of course, not 'felt' by structu-res), could possibly be quite large, but it is 
difficult to estimate their magnitudes, especially retroactively, after the tests. So 
these corrections to the error values given above cannot be determined at present. 
On the other hand. noting that the total coefficient of variation w can be 

. I' (> > ) 1·' h [I ( , )2] 1 /2 apprOXImate y wrItten as W:::::: Wii + W;;'-, we ave Wo:::::: (V - w/wm 

(where wand Wm are the coefficients of variation due to the material and to the 
measurement), we can see that even measurement errors as large as Wm = O.25w 
(i.e. about 11 per cent of mean strain when OJ for the ACI model is considered) 
would reduce W only by 3 per cent, i.e. to Wo = 0.97w (for Wm = O.1w, Wo = 
0.995w). Simply, the coefficients of variation of errors are not added linearly; 
only the largest errors matter. Thus, the measurement errors have little effect 
unless their magnitudes were comparable to the magnitude of material scatter, 
which is unlikely. Moreover, the hand-smoothing of raw test data, made before 
the aforementioned statistics were calculated, eliminates a part of the measure­
ment error which is of a randomly fluctuating nature. Hence, the aforementioned 
confidence limits are probably reasonably good estimates. 

The foregoing statistics were determined from laboratory data. For structures 
in outdoor environment, further errors due to the random fluctuations of 
environmental humidity and temperature would have to be added, making the 
uncertainties even larger (cf. Chapter 5, and Bazant and Wang, 1984a). 

In view of the large magnitude of error of the existing models, there is no 
doubt much room for improvement. The greatest part of the error results from 
the effects of composition of concrete. This is documented by the fact that the 
prediction errors can be greatly reduced when the initial elastic deformation or 
one short-time shrinkage value is measured (BaZant and Panula. 1980; Bazant 
et al., 1987), provided that a correct theory is used (e.g. size effect agreeing with the 
diffusion theory). Finite element analysis hardly makes sense ifthe error in J(t, t') 
exceeds 20 per cent, and so availability of some short-time tests is a requirement 
for practical applications. in addition to the use of a physically correct theory. 
Also preferable are such creep and shrinkage prediction formulas which are easily 
amenable to statistical extrapolation from given short-time values by regression 
(Bazant and Panula, 1980; Bazant et al., t 987; Bazant and Zebich, 1983). 

At present no consensus on the proper form of the compliance function J(t,t') 
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or J(t, t') has yet been reached. Much of the disagreement is due to the great 
statistical scatter of the available test data, which obscures the underlying mean 
trend. But it may be also due to the fact that a linear theory is used for a 
phenomenon which is not really linear, i.e. necessitates a non-linear theory. A 
linear theory can be adequate only within a limited range, and specialists still 
disagree as to what is this range, in particular what is the type of tests to be used 
for determining the compliance function for a linear theory. Some include only 
creep or relaxation tests for all ages at loading, which alone define the compliance 
function completely, while others include information from creep recovery tests 
(without analysing them by a non-linear theory) at the cost of sacrificing a good fit 
of the measured creep curves for high ages at loading and long times. Because a 
non-linear theory is not at present considered appropriate for building codes, 
the question is which form of the compliance function can give the best results 
in practical problems over the broadest possible range. 

Since prediction of the long-time creep is of main interest, efforts have been 
made to compare the creep prediction models with the final creep values deduced 
directly from creep qleasurements. Such comparisons, however, suffer by the 
error which inevitably occurs in deducing such final values from the test data. 
This error may be just as large as the error of the creep model that is supposed to 

be checked. 
For example, it has become almost traditional for the experimentalists to use 

the Ross hyperbola (Ross, 1937; Neville, 1973,.1981; Neville and Dilger, 1970, 
Nevile et al., 1983): C = l/(a + bi"), where t = t - t' and C = l(t, t') - 1/E(t'). This 
relation may be written as l/C = a + bi: So, if one plots the measured data as lIe 
versus t and approximates this plot by a straight regression line, the slope of the 
line is b, its intercept"with the vertical axis is a, and the value of inverse slope lib is 
the extrapolated 'final' value of creep t-> 00). Alternatively, one may also write 
11C = b + alt and plot I/C versus lit, in which case the slope ofthe regression line 
is a and its vertical intercept is b. Either ofthese plots looks very satisfactory ifthe 
creep data span over a limited time period such as from t = 1 week to 1 year, and 
consequently one is induced to believe that the 'final' creep value obtained from 
this plot is good. Only such limited data were available in the early investigations 
in the 1930s, and so the use of Ross's hyperbola appeared adequate and became 

standard practice. 
At present, however, long-range creep measurements of basic creep are 

available, and then gross deviations from Ross's hyperbola are found (Bazant 
and Chern, 1982). Worse yet, regression plots of Ross's hyperbola have the 
property of concealing errors. Even when the errors are_blatant in_the plot of 
l(t, t') versus log t, they are barely noticeable in the plot of tiC versus t. In the plot 
of 11C versus lit, the inverse scales of 11C and lit obscur: the errors for ~ong 
times by crowding together the points for large C and large t. The plot of CIt and 
lit is dominated by the deterministic dependence of lit on lit, and is little 
influenced by the scatter of C. Still another element of error and ambiguity was 
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already discussed, namely the value to be used for Em, which must be decided 
before the regression plot can be constructed. To sum up, the use of Ross's 
hyperbola for long-time creep extrapolation ought to be abandoned. 

The extrapolated final values of certain creep tests obtained from creep test 
data on the basis of Ross's hyperbola were recently compared by a CEB 
committee with various models for creep prediction. The committee concluded 
that the agreement was best for the CEB-FIP 1978 Model Code. From the 
preceding analysis (Bazant and Chern, 1982), however, it is clear that such a 
method of comparison of various models is questionable. The final value found 
by extrapolating the test data strongly depends on the choice of the expression for 
the creep curve, in this case the Ross hyperbola, and the error of the long-time 
values of Ross's hyperbola compared to more realistic expressions, such as the 
double power law, is easily 50 per cent. 

2.5.7 Input of material parameters for structural analysis computer programs 

Different characterizations of creep and shrinkage may be appropriate in various 
situations. For the input of material properties, subroutine MA TPAR, used in 
finite element program CREEP 80 (Bazant and Rossow, 1981; Bazant et aI., 
1981) and listed in full. in Bazant (1 982a) is very effective. This subroutine was 
further improved and is available form Ontario Hydro (Ha et al., 1984). The 
subroutine has the following options: 

1. l(t, t') is specified as an array of values; no drying. 
2. J(t, t') and t:,(t, to) are specified as an array. Drying. 
3. l(t, t') is given by the double power law, for which all parameters are given; 

no drying. 
4. Same as (3) but all double power law parameters except Ec,8are generated 

from the given strength and composition parameters. 
5. Same as (4) except that Ee2• is also predicted from the strength and 

composition parameters. 
6. J(t, t') is defined by the double power law plus the drying term Cd(t, t') and 

shrinkage is given by a formula. All parameters are given. 
7. Same as (6) but all parameters except Ee28 and f:sh are predicted from the 

strength and composition. 
8. Same as (6) but all parameters except Ee2• are predicted from the strength and 

composition. 
9. Same as (6) but all parameters are predicted from the strength and 

composition. 
10. The double power law parameters Eo and ¢ 1 are determined by the best fit of 

the given array of values l(t, t') which may be of limited range; rn, n, IX are 
given. No drying. Coefficient of variation for the deviations from given 1 (t, t') 
is computed and printed. 
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11. Same as (to) but m, n, IX are ,predicted from the given strength and 
composition. 

12. Same as (10) but drying is included. 
13. Same as (11) but drying is included. 

The subroutine for evaluating the compliance function has the following 
options (Bazant, 1982a; Ha et al., 1984): 

1. J(t, t') is evaluated by interpolation or extrapolation from a given array of 
values. 

2. J(t, t') is evaluated from a formula without the drying term. 
3. J(t, t') is evaluated from a formula with the drying term. 

Subroutine for Dirichlet series expansion (Baiant, 1982a) 

The coefficients E,,(t') of Dirichlet series expansion of J(t, t') or R(t, t') at various 
discrete times are automatically generated from J(t, t'). Then, as a check, the 
values of J(t, t') are calculated from the Dirichlet series expansion of J(t, t') or 
R(t, t'), and the coefficient of variation of their deviations from the originally 
given J(t, t') is computed and printed. 

In the case that the Dirichlet series expansion of R(t, t') is used, this subroutine 
(Bazant, 1982a) consists of subroutine RELAX which computes the discrete 
values R(t, t') from J(t, t'), subroutine MAXW which computes discrete values· 
of the moduli E,,(t') of the Maxwell chain, and subroutine CRCURV which 
computes for a check the discrete values of the creep curves back from the discrete 
values of E,,(t') and evaluates the coefficient of variation of the deviations. 

The subroutine for the shrinkage function has the following options: 

1. e.(t, to) is evaluated by interpolation or extrapolation from a given array of 
values; 

2. e.(t, to) is evaluated from a formula. 

The subroutine for the Dirichlet series coefficients or Maxwell chain moduli 
E,,(t) calculates their values at any time by interpolation from the values of E 

. I " prevIous y generated for the given discrete times. 
The foregoing program (Bazant, 1982a) can be improved by replacing in it the 

double power law with the triple power law or log-double power law (or even 
better, with the model in the Addendum). 

2.6 CONCLUSION 

A c~mprehensive and de,ailed mathematical model for the constitutive pro­
perties of creep and shrinkage in concrete is now usable with the existing com­
puter programs, and i~neooed to make the results obtained with these programs 
practically useful. Considerable deV'elop~ent has taken place during recent years 
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and a constitutive relation which reasonably agrees with the test data in existence 
has emerged. 

The principal difficulty and challenge for further improvements consists of the 
effect of variable humidity and temperature, as well as the non-linear and triaxial 
aspects and the ageing of concrete. The predictions with the models described in 
this chapter appear to compare well with carefully controlled laboratory data. 
However, good comparisons with structural observations do not exist and are 
probably impossible. One reason is the inevitable large random scatter whose 
statistical properties were not determined, and another reason is that some of the 
essential data on the structure, its concrete and its environmental history went 
usually unreported. 

It is now becoming increasingly clear that the material models described in this 
chapter must be supplemented by a probabilistic and statistical treatment of 
creep and shrinkage, both of the material properties and the structural effects. 
Structures should be designed not for the mean behaviour described by 
deterministic formulations expounded in this chapter, but for extreme behaviour 
characterized by the upper and lower confidence limits of a certain specified 
probability cut-off. These aspects will be treated in Chapter 5. 
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2.7 ADDENDUM-NEW THEORY FOR AGING CREEP BASED 
ON SOLIDIFICATIONt 

After the completion of the RILEM Committee's work on the present state-of­
art-report, an improved basic creep formulation which takes ageing into account 
in a more realistic and more effective manner has been found and will now be 
briefly described. This formulation (whose basic mathematical form was 
proposed by Z. P. Bazant, in a private communication to S. Prasannan in May 
1986) has several important advantages: 

1. It involves a Kelvin chain whose elastic moduli and viscosities are age­
independent, which greatly simplifies numerical analysis. 

2. All the free material parameters can be identified from the given test data by 
linear regression. 

tThis addendum, which closely follows BaZlint and Prasannan (1987), was prepared by Z. P. BRiant 
in collaboration with Santosh Prasannan, graduate Research Assistant at Northwestern University 
(after the committee's work has been completed). Not reviewed by RILEM Committee TC69. 
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3. All the viscoelastic behaviour of concrete, including the ageing, can be closely 
described with only four free material parameters. 

4. The model always satisfies the condition of non-divergence ofthe creep curves 
for different ages at loading. 

5. Thermodynamic restrictions for the elastic moduli and viscosities associated 
with the rate-type form are always satisfied. 

6. The non-linearity of creep consisting in deviations from the principle of 
superposition is capable of describing the phenomenon of adaptation and 
agrees with test data for the service stress range as well as higher stresses. 

2.7.1 Volume fraction growth as a measure of aging 

The new theory rests on the idea that the aging aspect of concrete creep is due to 
growth of the volume fraction v(t) of the load-bearing portion of solidified matter 
(Le. hydrated cement), the properties of which are age-independent. Thermo­
dynamic analysis is generally impossible for systems of substances whose 
properties vary with age. As known from chemical thermodynamics, time 
dependence of any system's properties must be treated as a consequence of a time­
varying composition of the system, which is in our case characterized by v(t). 

In the most simple form, it may be assumed that the volume, v, of hydrated 
cement grows by deposition of layers of solidified matter as shown in 
Fig. 2.26 (4). Let uiv, t) be the stress at time t in the layer which solidified 
when the total volume of the solidified matter was v. Now an essential point is 
that, at the moment it solidifies, the layer (dv) must be stress-free, i.e. ug[v(t), t] = O. 
It follows that the non-ageing viscoelastic stress-strain relation for the layer 
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Figure 2.26~odel for the role of solidification in creep 
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which solidified at time r is (Bazant, 1977) 

eV(t) - eV(r) = r <I>(t - t')ug[v(r), dt'J 
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(2.94) 

in which ug[v(r), dt') = 0 for t' < r; eV = viscoelastic strain due to solidified matter 
(hydrated cement) and <I>(t - t') = microscopic creep compliance function of the 
solidified matter, representing the strain at age t caused by a unit microstress 
applied at age r. 

Since v(t) is the only variable which introduces ageing, a discrepancy might 
seem to exist due to the fact that the change of creep curves with age t' is known to 
be strong up to very high ages exceeding ten years while the volume increase of 
hydrated cement terminates as the age of about one month. However, one must 
realize that further bonds continue to form even in the hydrated cement, as 
evidenced by the phenomenon of polymerization of tricalcium silicate. What 
matters for our purpose is the effective load-bearing volume in which the 
solidified matter has enough bonds to be sufficiently stiff, while the matter in the 
remaining volume, which has few bonds and is soft, must be discounted. The 
salient property is that the new bonds can be assumed to be strees-free at the 
time they form, and so this phenomenon can be included in Eq. (2.94) corres­
ponding to Fig. 2.26 (where v = load-bearing part of volume). 

Now an important point is that the layer dv(t') must be stress-free at the 
moment it solidifies, Le. u.[v(r), r] = O. Using this fact, along with Eq. (2.94) 
and the condition of equilibrium with the macroscopic applied stress u, 
J~ ug[v(r), t]dv(r) = u(t), Bazant (1977) showed that ug can be eliminated from 
these equations, yielding a macroscopic stress-strain relation of the form: 

ev(t) = F[u(t)] y(t), y(t) = It cb(t - t')du(t') (2.95) 
v(t) 0 

in which cb(t - t') = o<l>(t - t')fot. A generalization for non-linear behaviour is 
introduced by inserting function F(u); y(t) can be regarded as the viscoelastic 
microstrain. 

The assumption that the material must solidify in a stress-free state, 
u.[v(r), r] = 0, is applicable only to solidification at a solid-solution interface, 
as shown in Fig. 2.26. Conceivably, the solidification process could also take 
place at a solid-solid interface, in which case we could have a pressure across 
the interface, known as the crystal growth pressure. Consideration of such 
phenomena, however, is not germane to the age-dependence of creep. In any case 
it would require a model that is more complex than the simple parallel coupling 
of elements dv(t') in Fig. 2.26. 

Analysis of test data has indicated that, in addition to eV, concrete creep 
includes another component, t, called flow, which is also affected by ageing but 
is purely viscous (Fig. 2.26) rather than generally viscoelastic. It is described 
by an equation similar to Eq. (2.95) in which <I>(t - t'} is replaced by 
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'I'(t - t') = (t - t')/'1o where '10;= effective viscosity of the hydrated cement; 
therefore J~ ljI(t - t')dO'(t') = O'(t)/'1o and, in analogy to Eq. (2.95), we have 

ef(t) = F~~g)] u(t) (2.96) 

2.7.2 Constitutive relation for creep 

The total strain of concrete may be expressed as 

e=~+eC+eo, eC=ev+l (2.97) 
Eo 

where eC = total creep strain, eO = shrinkage or thermal expansion, and Eo = 
instantaneous elastic modulus. Similarly to the previously justified double 
power law (Bazant, 1975, 1982b; BaZant and Panula, 1978), modulus Eo is 
considered to represent the asymptotic elastic modulus for extremely fast 
(instantaneous) loading. This definition makes it possible to consider Eo to be 
constant The conventional static modulus, which depends on age, is then 
obtained as the inverse of the compliance function value for loading duration 
t - r ~ 0.001 to 0.1 day, which includes the rapid initial creep. One might question 
that Eo is considered to be independent of the age, t'. However, as justified 
previously for the double power law, the effect of age on E(t) seems to be 
adequately included in the rapid initial creep contribution to the conventional 
elastic modulus. 

The empirical functions in Eqs (2.95) and (2.96) are introduced in the form 

cI>(t - t') = Q21n (1 + en), 

'1(t)-l = Q4t-1 

v(t) -1 = (A.o/t)'" + rx 

e = (t - t')/A.o 

O'(t) 1 + Sz 
F[O'(t)] =-1-' s=-

f~ -(.0 

(2.98) 

(2.99) 

(2.100) 

(2.101) 

where Q2' Q4' rx, n, m, ,1.0 = empirical constants, and (.0 = S10 = damage, which is 
negligible for s < 0.7. Note that Eq. (2.99) implies 'I'(t - t') = q4 In (t/t'). 

Expressing the total strain rate for eO = 0 according to Eqs (2.95)-(2.97), and 
integrating, one finds that for a constant stress 0' applied at age t', 

e(t) = J (t, t', 0') = Q 1 + QzF(O')Q(t, t') 
0' 

(2.102) 
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in which q1, ... ,q4 are empirical constants, q1 = l/Eo, q3 = rxq2' and 

, It (,1.0)," n(r - t')"-1 
Q(t, t ) = t' r ,1.0 + (r _ t')" dt (2.103) 

J(t, t', 0') is the secant compliance function at constant stress 0', and the functi~ns 
multiplying qz, q3' and q4 represents the non-dimensionalized forms ofthe agemg 
viscoelastic compliance, the non-ageing viscoelastic compliance, and the viscous 
(flow) compliance respectively. 

Experience with data fitting indicated that three material constants may be 
fixed for all concretes, once for all: 

n=O.l, m=0.5, ,1.0 = 1 day (2.104) 

Thus there remain only four unknown material parameters, q1' Q2' Q3' and Q4' to 
be determined from the test data for a given concrete. 

It is an advantage of the present formulation that the compliance involves all 
the unknown material parameters linearly. This makes it possible to determine all 
the unknown material parameters by linear regression. 

The integral in Eq. (2.103) cannot be expressed in a closed form, b~t it can easily 
be evaluated and tabulated numerically; see Fig. 2.27. An approxImate closed-
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Figure 2.27 Function that characterizes the ageing viscoelastic strain (t = current time, 
t' = age at loading) 
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form expression for n = 0.1, m = 0.), and Ao = 1 day has been found: 

Q(t, t') ~ Q{ 1 + (~ )'] -l/r (2.105) 

with 
Z=t,-mln [1 +(t-t')"J (2.106) 

in which 
log Qf = - [0.1120 + 0.4308 log t' + 0.0019(log t')2J} 

r = 1.7t,O.12 + 8 
(2.107) 

see Fig. 2.27; t and t' must be in days and log = 10glo, In = Ine; Qf repre~ent~ t~e 
final asymptotic values for t = t' --. 00. The error of the formula for Qf IS wlthm 
± 0.09 per cent of Qf and the coefficient of variation of errors is 0.01 per cent: For 
Q(t, t'), the errors are within ± 0:5 per cent, with the coefficient of vanaton 
0.2 per cent. 

It may be checked that for t - t' «t', Eq. (2.102) approaches asymptotically the 
double power law. For t - t'» t', the asymptotic form of Eq. (2.102) is a 
logarithmic law of the form I> = Alln t + A 2 (t'). 

Another important advantageous property is that, according to Eq. (2.102), the 
condition 

iP J(t, t', a) :>; 0 
at at' r 

(2.108) 

is always satisfied. This means that the creep curves for various ages at loading 
never diverge, according to Eq. (2.102). A further implication is that the creep 
-recovery curves obtained by using the principle of superposition decrease always 
monotonically. 

By virtue of introducing the non-linearity in terms of the strain rate, rather than 
the strain, and describing the instantaneous strain as linearly elastic, the 
deviations from the principle of superposition accumulate with the load duration. 
This agrees with test data (Bazant and Kim, 1979; Bazant et al., 1983) and 
makes it possible to capture the phenomenon of adaptation non-linearity in the 
service stress range. Making function F dependent only on the current stress a(t) 
and not on the past stresses a(t') is a considerable simplification. However, the 
resulting non-linearity of strain I> with respect to a does depend on the past stress 
history, not just on the current stress. 

It is interesting to note that the present formulation represents a compromise 
between the double power law and the improved pischinger model used by CEB 
(CEB-FIP, 1978). The double power law, which describes well the short-time 
creep of con<;:rete loaded at a young age and also both the short-time and long­
time creeps of concrete loaded at an old age, is the limit case of the terms with q2 
and q3' The Dischinger model, which describes well the long-time creep of concrete 
loaded at a young age, is characterized by a flow term of the type q,(t) - q,(t'), 
which is here identical to the term with q4 if one sets q,(t) = In t. The term 
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with q3 is similar to the delayed elastic term in the improved Dischinger model, 
due to the fact that it is a non-ageing function of (t - t'); however, unlike delayed 
elasticity, the term with q3 has no final asymptotic value. The term with q2 is 
lacking from the improved Dischinger models, but it is found that this term 
cannot be omitted if the typical test results should be matched closely. 

2.7.3 Rate-type approximation and numerical integration 

The main practical advantage of the present formulation is that it can be reduced 
to a rate-type creep law based on a rheologic model with non-ageing properties. 
To obtain this formulation, the viscoelastic microstrain y(t) (Eq. 2.95) may be 
represented by a Kelvin chain (Fig. 2.27) with age-independent elastic moduli E,.. 
and viscosities till" This'leads to the relations: 

N 

tI,..Y,.. + E,..y,.. = a, y = L y,.. (2.109) 
,..=1 

which represent first-order linear differential equations for strain y,.. of the Jlth 
Kelvin unit. An age-dependent Kelvin chain, by contrast, would lead to second­
order differential equations for y,.. (Bazant, 1975, 1982b). Integration of 
Eq. (2.109) for the case of constant stress a applied at age t' yields: 

N 1 
y(t) = a L -(1 - exp[ - (t - t')/r,..J), 

,..=l E,.. 
(2.110) 

where t,.. are called the retardation times. For constant stress a, the present 
model yields y(t) = a<l>(t - t') = aq21n(1 + ~"). Therefore, the following appro­
ximation is required: 

N 

In(1 + ~") ~ L A,..(1 - exp[ - ~/t,..J) (2.111) 
,..=1 

If A,.. is determined, then E,.. = 1/(q2A,..). It appears that a rather accurate 
approximation of In(1 + ~") within the range t2 ~ ~ ~ 0.1 tN is possible with the 
choice t,.. = 10,..-2t2 for Jl ~ 2 and tl = 1O- St 2. Coefficients A,.. for this appro­
ximation may be obtained by the method of least squares. However, an explicit 
approximate formula has been found: 

(2.112) 

in which m(Jl)=n/(I+cz JlZ), c=0.146n- O
•
1

, b,..=1.1n(1-n3) for Jl= 
2, ... ,N -1, bN = 1.5n1.2S, and b1, z are given in Table 2.1. The error of 
the approximation in Eq. (2.110) for m = 0.5 and n = 0.1 and within the range 
0.25 t 2 ~ ~ ~ 0.25 t N is ~ 1.15 per cent, and the coefficient of variation of the 
errors is 0.46 per cent (within the range t2 ~ ~ ~ 0.1 tN' the maximum error is 
0.7 per cent). 

Owing to the fact that the foregoing method always yields non-negative E,.. and 
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Table 2.1 Coefficients of Dirichlet Series Approximation of In(1 + e)" 

n bl z n bl z n b l z 

0.01 0.674 0 0.19 0.543 1.288 0.37 0.610 2.826 
0.03 0.632 0 0.21 0.610 1.486 0.39 0.594 2.969 
0.05 0.587 0 0.23 0.624 1.677 0.41 0.579 3.102 
0.07 0.538 0 0.25 0.634 1.860 0.43 0.571 3.227 
0.09 0.491 0.039 0.27 0.641 2.037 0.45 0.579 3.345 
0.11 0.507 0.355 0.29 0.643 2.207 0.47 0.617 3.453 
0.13 0.529 0.621 0.31 0.641 2.372 0.49 0.708 3.556 
0.15 0.552 0.860 0.33 0.635 2.531 0.51 0.886 3.644 
0.17 0.574 1.080 0.35 0.624 2.683 0.53 1.202 3.725 

11 , the thermodynamic restrictions are satisfied. In similarly to previous rate­
t;pe models, the effect of temperature on the creep rate can be introduced in 
Eq. (2.110) by replacing 11,.. = E,..1:,.. with E,..1:,..J(T), where J(T) depends on 
temperature according to the activation energy theory. Furthermore, variation of 
temperature requires that vet) be replaced with v(t.) where te is the equivalent 
hydration period (Bazant, 1982b). 

To permit structural creep analysis with increasing time steps Ilt which can 
become much larger than the shortest retardation time, an exponential algorithm 
must be used (Bazant, 1971c). The incremental stress-strain relations are 
obtained by integrating Eq. (2.108) exactly under the assumption that u(t) varies 
linearly from ti to ti + l' This yields: 

0'. 1-A. 
Y =Y e-&Y.+~(1-e-&Y.)+--"'Au (2.113) 
"'i+l"" 'E,.. E,.. 

where Ay,.. = At/1:,.. and A.,.. = (1- e-&Y.)/Ay,.., and subscripts i and i + 1 refer to 
times ti and ti + l' Equation (2.112) leads to the quadratic stress-strain relation 
AI' = (Au/D) + AI''' in which 

1 N 1-A. -- L--'" D- ,.."'1 E,.. , 
(2.114) 

and Ay,.. = 1lt/1:,.., A.,.. = (1- e-&Y.)/Ay,..; subscript i refers to time ti • It may be 
noted that Eqs (2.113) and (2.114) are a special case of the equations of the 
exponential algorithm for an ageing Kelvin chain (Eq. 2.105) and equivalent 
to those presented for a non-ageing Kelvin chain by Taylor et al. (1970), and 
by Zienkiewicz et al. (1968); but an important difference is that here these 
equations apply to the microstrain yet} rather than the total strain e(t}. For e(t), 
one obtains the quasi-elastic stress-strain relation 

/10' =E"(Ae -Ae") (2.115) 
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in which 

(2.116) 

(2.117) 

Subscript i + t refers to time ti+ 1/2 = to + [(ti - to)(ti+ 1 - to)]1/2, where to = 
time of first loading. 

Equation (2.115) reduces the solution of any creep problem to a sequence of 
elastic solutions with initial strains. Due to non-linearity, iterations of each 
time step are needed to achieve good accuracy. 

2.7.4 Verification by test data 

The present formulation has been compared in Bazant (1987) to numerous test 
data from the literature. Some of the typical comparisons are shown in Figs 2.28 
and 2.29. The fit of these data is certainly satisfactory, both for the tests at 
constant stress (Fig. 2.28) and at stepwise stress histories (Fig. 2.28). The dashed 
lines in Fig. 2.28 represent predictions according to the principle of superpo­
sition, which are obviously worse. For further comparisons with test data, see 
Bazant (1987). 
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Figure 2.28 Comparison with laboratory test data for Canyon Ferry Dam Concrete (Hanson, 
1953; Hanson and Harboe, 1958) 
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2.7.5 Appendix-parameter prediction 
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When no test data are available for the given concrete, parameters q1' q2' q3' q4 
may be approximately predicted from the following formulas obtained by 
statistical analysis of numerous test data from the literature: 

q1 = 12.5 (WIC)3.5 

q2 = - 22.8 + 2.51n [(wlc)5(alc)f~1.5] 

q3 = 16000 [(wlc)4(alc)f~o.4rO.8 

q4 = 0.OOO082(wlc)(als)f~ 

(2.118) 

(2.119) 

(2.120) 

(~.l21) 

in which q 1" •. , q4 are in psi -1 f~ = 28-day cylindrical compression strength in 
psi (1 psi = 6895 Pa), wlc = water cement ratio of the mix, ale = aggregate 
cement ratio, sic = sand-cement ratio (all by weight), and sand is defined as the 
aggregate less than 4.7 mm in size (sieve no. 4). 

2.7.6 Conclusion 

In conclusion, the new creep law based on solidification theory simplifies 
computer creep analysis of structures, is easier to identify from test data, better 
agrees with test results, is better justified physically, and eliminates several 
theoretical objections to previous creep models. 
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