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Recent Studies of Size Effect in Concrete Structures 

Abstract 

Z. P. BaZant, M. T. Kazemi, R. Gettu 
Northwestern University, Evanston, IL USA 

Recent advances in the size effect law for the failure stress of 
concrete specimens or structures and its application for the determination 
of fracture energy are reviewed and some extensions of the previous 
formulations are presented. One extension consists of a modified form of 
the size effect law which involves only true material parameters, 
particularly the fracture energy and the effective length of the fracture 
process zone. These parameters are both uniquely defined on the basis of 
the extrapolation of specimen size to infinity. This extension makes it 
possible to define the brittleness number of a structure in terms of an 
equivalent shape-independent structure size and the limiting length of the 
fracture process zone. The calculation of the brittleness number requires 
the value of the nondimensional energy release rate for the equivalent crack 
in an elastic structure, whose value and derivative take into account the 
shape of the structure. Another extension is the determination of R-curve 
from the size effect, and its use to calculate structural response. 

Introduction 

The importance of toughening mechanisms which consist of shielding 
of the crack tip by a nonlinear zone of distributed microcracking is now 
generally realized. These mechanisms considerably enhance the fracture 
toughness of brittle heterogeneous materials such as concrete, rock and 
certain ceramics. The fracture energy or fracture toughness of such 
materials does not represent the sole material characteristic of fracture 
response. The size of the nonlinear fracture process zone is another 
important characteristic. The size of this zone is essentially, although 
not exclusively, a property of the material, since it is determined by the 
size of the inhomogeneities in the microstructure. If the size of the zone 
is negligible compared to dimensions of the structure, the response is close 
to linear elastic fracture mechanics. If the size of the zone encompasses 
most of the specimen or structure volume, the failure is determined by 
strength or yield criteria. If the size of the zone is intermediate, the 
response is transitional between the strength criterion and the linear 
elastic fracture mechanics. It is this transitional behavior which is of 
interest for most concrete structures. 

The purpose of the present conference lecture is to briefly review 
recent advances in the fracture mechanics size effect, with regard to both 
determination of material fracture parameters and determination of failure 
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loads of structures. The problem is of particular interest to nuclear 
concrete structures, for two reasons: (1) the structures are much larger 
than the specimens and reduced scale models for which the material behavior 
has been experimentally calculated, and (2) the brittleness of many types of 
failure of concrete reactor vessels and containments cannot be avoided -
e. g. the cryptodome failure, seismic shear fracture of a shell wall, 
punching shear failure. 

The scope of this paper permits only summarLzLng the results. For 
detailed derivations and experimental verifications for concrete as well as 
rock, see recent reports by Bazant and Kazemi (1988), and Bazant, Gettu and 
Kazemi (1989). 

Size Effect Law 

The size effect is described in terms of the nominal stress at 
failure: 

p 

aN c -.!! for 2D similarity (1) n bd 

p 

aN c -.!! for 3D similarity (2) n d 2 

in which Pu is the maximum load, b specimen or structure thickness, d 

chosen characteristic dimension of the specimen or structure, and cn = a 

coefficient introduced for convenience. As shown by Bazant (1984), the 
nominal stress approximately follows the size effect law 

(3) 

in which B and dO are empirical coefficients and fu represents material 

strength. See Fig. 1, where da = aggregate size, f~ = fu and AO = dO/da. 

For d » dO' Eq. 3 gives the size effect of linear elastic fracture 

mechanics, for d « dO' Eq. 3 gives no size effect, which is characteristic 

of the failures governed by strength or yield criteria, and for the 
intermediate range of d, Eq. 3 describes a transitional behavior 
corresponding to nonlinear fracture mechanics. Eq. 3 is applicable only for 
the size range of approximately 1:20. For a broader size range, further 
terms of an asymptotic series expansion need to be included in Eq. 3 
(Bazant, 1985 and 1987). 

Eq. 3 has the advantage that it can be transformed to a linear 

d Y (fu/aN) 2 
, B = C- 1/2 , d d regression plot Y = A X + C, in which X = , = an 0 

= CIA. 

For the size effect law in Eq. 3, there exists a wide range of 
justifications: 

1. Some simple energy release solutions. 

2. Dimensional analysis and similitude arguments. 
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3. Experimental results on fracture specimens as well as brittle 
failures of various concrete structures (e.g. Fig. 1). 

4. Finite element results obtained by either blunt fracture models 
(crack band model, Hillerborg's fictitious crack model) or 
nonlocal damage models. 

5. Random particle simulations of concrete (interface element 
model) . 

6. Micromechanics analysis showing that a nonlocal damage model is 
a proper homogenization of a quasiperiodic crack array. 

The experimental justification obtained of Eq. 3 at Northwestern 
University included: 

1) Mode I fracture specimens: a) three-point bend specimens, b) 
edge-notched tension specimens, c) eccentric compression specimens, and d) 
compact tension specimens. 

2) Mode II specimens (approximately Mode II), with alternating 
loads at four points on a beam. 

3) Mode III specimens: cylinders with a circumferential notch 
subjected to torsion. 

The materials for which the size effect has been experimentally 
verified at Northwestern University included: 1) concrete, 2) mortar, 3) 
rocks of various types, 4) certain ceramics (SiC, Si0 2 ), and 5) aluminum 

alloy. 

The size effect has further been experimentally verified at 
Northwestern University under a wide range of conditions, including: 

1. Various temperatures, ranging from room temperature to 200°C. 

2. Wet specimens and dried specimens. 

3. Specimens subjected to various rates of loading, with times to 

peak load ranging as 1:10 5 (ongoing work of R. Gettu at 
Northwestern University). 

4. Monotonic as well as cyclic loads (work in progress by K. M. Xu 
at Northwestern University). 

Coefficients B and dO in Eq. 3 are not material parameters and 

depend on the specimen shape. Bazant and Kazemi (1988), however, have shown 
that Eq. 3 can be reformulated in a manner which involves only true material 
parameters, G

f 
(fracture energy), c f (effective length of fracture process 

zone), and E (Young's modulus of elasticity). Such a modified version of 
the size effect law can be written as: 

(~)1/2 c f + D 
(4) 

in which called the shape-independent nominal strength, is defined as: 
TN' 
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P 

TN Jg' (0:
0

) -.lJ for 2D similarity (5) bd 

p 

TN Jg' (0:
0

) -.lJ for 3D similarity (6) 
d

2 

and D represents the shape-independent characteristic dimension of the 
structure, defined as: 

D (7) 

a 
Here 0:

0 
= ~ (the initial relative crack length), a

O 
= notch or initial 

crack length, and g(o:) is the nondimensional energy release rate for crack 
length a = o:d calculated according to linear elastic fracture mechanics, the 

actual energy release rate being G(o:) = P 2 g(o:)/Ebd 2 (for 2D specimens). 
u 

g' (0:
0

) = dg(o:)/do: is evaluated at 0: = 0: O. It can be shown that within a 

size range of up to about 1:20, in which the approximate size effect law 

(Eq.3) is applicable, the values of g(o:O) and g'(o:O) sufficiently take into 

account the shape of the structure. 

R- Curve for Size Effect 

Based on the size effect law (Bazant and Kazemi, 1988), one can show 
that the R-curve, which represents the dependence of the energy release rate 
required for crack growth on the crack extension c from the notch, can be 
described by the formula: 

R(c) = G Uf!.L ~ 
f g' (0:0 ) c

f 
where 0: is given by: 

LL9:l 
g' (0:) 

- 0: 

(8) 

(9) 

Solving for the load P vs. load-point displacement from Eq. 8, one obtains 
the maximum load and the corresponding value of c at maximum load. The 
larger the structure, the larger is c, and for infinite size c ... c f" To 

calculate the post-peak load-deflection diagram, the value of R must be 
frozen as constant, equal to the values of R(c) (Eq. 8) for the peak load. 

Since function g(o:) depends on geometry, the R-curves obtained from 
Eq. 8 for specimens of various geometries are different. In fact, they are 
rather different. Fig. 2 shows an example of load-deflection curve 
calculated by equivalent linear analysis from the R-curve. This curve 
agrees closely with the recent, yet unpublished measurements of Bazant, 
Gettu and Kazemi (1989). This procedure was also used to predict the data 
of earlier work by Labuz, Shah and Dowding (1987) where non-symmetric crack 
propagation was observed. 
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Measurement of Fracture Energy 

According to various existing methods of measurement (Knott, 1973), 
the fracture energy value has been found to be highly variable. However, a 
unique definition, which is independent of the specimen size as well as 
shape, can be based on the size effect law. The fracture energy can be 
uniquely defined as the value of the energy required for crack growth (per 
unit fracture area) in an infinitely large specimen (Bazant and Pfeiffer, 
1987); Fig. 3. According to this definition, the fracture energy is found 
to be given by the formula: 

f2 ____ u __ 

c 2 A E 
n 

(10) 

It has been shown that the fracture energy values obtained on the basis of 
this formula from various types of fracture specimens give relatively 
constant results. 

Applications to Structures 

Eq. 3 has also been shown to be applicable to brittle failures of 
concrete structures. The reason is that concrete structures are not allowed 
by the codes to be designed so that they fail at the first crack initiation. 
Rather, the design must be such that a large cracking zone develops before 
the ultimate load is reached. This cracking zone serves as a notch, causing 
the structure, during failure, to behave essentially as a fracture specimen 
with a notch, the failure being significantly influenced by the rate of 
energy release and stress distributions due to further extensions of the 
cracking zone. 

The applicability of the size effect law has been experimentally 
verified at Northwestern University for the following types of failures: 

1. Diagonal shear failure of beams with longitudinal reinforcement: 
a) nonprestressed beams without and with stirrups, and b) 
prestressed beams. 

2. Punching shear failure of slabs. 

3. Torsional failure of concrete beams of rectangular cross 
section, without or with longitudinal reinforcement. 

4. Pullout failure of reinforcing bars embedded in concrete. 

5. Ring and beam failure of unreinforced concrete pipes. 

6. Compression splitting failure, i.e., the Brazilian test (here 
the size effect law is found to apply only up to a certain size, 
beyond which the size effect disappears, apparently due to 
transition to some type of frictional mechanism or strength­
controlled failure). 

It may be pointed out that size effects can also be mathematically 
explained by a probabilistic mode of Weibull-type, which has been very 
popular in the literature. However, it seems that this explanation is 
correct only for the failure of uniformly stressed tensile specimens without 
notches and is not applicable to the typical failures of concrete structures 

89 



listed above. The existing statistical theories generally neglect the major 
stress redistributions which take place after the onset of the first 
cracking and before attainment of the maximum load, and thus ignore the 
energy release aspects on the macroscale. Statistics can, of course, be 
included in the fracture analysis. However, if the Weibull parameters are 
calibrated from the test results for uniformly stressed tensile specimens 
and the same material parameter values are used for the zone in which the 
fracture front at failure can possibly be located in the concrete structure 
(e.g., in the diagonal shear failure of beam), then the statistical part of 
the size effect is found to be generally negligible (Bazant, 1987). 

Brittleness Number 

As proposed by Bazant (1987), see also Bazant and Pfeiffer (1987), 
the nature of the specimen or structure response at failure can be 
characterized by the brittleness number, ~, as already introduced in Eq. 3. 
Depending on the value of the brittleness number, three different regimes 
may be distinguished: 

1. For ~ < 0.1, the fracture is governed by strength or yield 
criteria, and fracture mechanics need not be used. 

2. For 0.1 S ~ s 10, the failure is governed by nonlinear fracture 
mechanics, and the finite size of the fracture process zone must be taken 
into account. 

3. For ~ ~ 10, the failure is governed by linear elastic fracture 
mechanics, and nonlinear analysis is not necessary. 

It has been shown that the foregoing definition of the brittleness 
number is independent of the specimen or structure shape. On the other 
hand, some other competing definitions of the brittleness number due to 
Hillerborg (1985) and Carpinteri (1982) are not independent of the specimen 
shape, and do not make it possible to compare, in terms of brittleness, 
specimens or structures of different shapes. For the definition of ~ 
according to Eq. 3, such comparison is made possible. 

In the original definition of the brittleness number ~ according to 
Eq. 3, dO is not a true material parameter. However, Bazant and Kazemi 

(1988) came up with a modified expression for ~ which is based on the size 
effect law according to Eq. 4. In this definition, the brittleness number 
of a specimen or structure may be calculated as: 

(11) 

This definition is easy for practical applications whenever the energy 
release rate at failure can be calculated. This can, of course, be done for 
fracture specimens. For brittle failures of concrete structures it is 
necessary to know the approximate shape and length of the cracking zone at 
failure ( e.g., at failure of a beam in diagonal shear) and to approximate 
it by a perfect crack, for which the function g(a) can then be obtained. 
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