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ABSTRACT: The conference paper reviews recent studies at Northwestern University, in which the 
connectivity in nacreous staggered lamellar systems is, for probabilistic analysis, represented as a fishnet 
pulled diagonally. The probability distnbutions of nacre, including its tail at 10"'6 probability, turns out 
to be analytically tractable. The fishnet distribution is intermediate between those corresponding to the 
weakest link chain (series coupling) and fiber-bundle (parallel coupling). Millions of Monte Carlo simula­
tions are presented to verify the analyticaJ distribution, including its tail. 

I INTRODUCTION 

In spite of their weak brittle constituents, nacre­
like imbricated (staggered) lamellar structures 
can attain very high strength and fracture energy, 
exceeding by one to two orders of magnitude the 
strength or the constituents. The reasons have been 
clarified in a host of studies of the mechanics of 
failure [I, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, e.g.]. 

These studies, however, were mostly determin­
istic and provided only the mean behavior. For 
nacreous structures, no reaJistic probability distri­
bution of the strength with the far left fail seems to 
exist at present, yet this is where the 'devil' resides. 
To capture the tail is the goal of this study (whose 
main ideas were compactly presented in (12) and 
developed in fu]) detail in (13D, 

To design safe structures with nacre-mimetic 
materials typically requires knowing their strength 
distribution up to the tail with failure probability 
of about P

1 
= JO-f (per lifetime), which requires 

determining the extreme value distribution [14, 
15]. This is generally the level of safety required 
for engineering structures such as bridges, aircraft, 
MEMS, etc. It ensures the risks of engineering 
structures to be three orders magnitude lower than 
other risks that people willingly or inevitably tak.e 
(e.g. , car driving), and to be of about the same level 
as the risk of being killed, e.g., by a lightning of 
falling tree. Such low tail probabilities can hardly 
be determined by histogram testing of strength of 
many identical specimens of structures. 

Consequently, one needs a realistic mathe­
matical model for the strength distribution, to be 
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Figure I. a) Nacre inside a nautilus shell; b) Electron 
microscopy image of a fractured surface of nacre (both 
images are from Wikipedia; https://en.wikipedia.org/ 
wild/Nacre). 

verified only indirectly, by predictions depending 
on the tail. Here a diagonally pulled fishnet is pro­
posed as the basis of such a model, providing a suf­
ficiently realistic simplification of the connectivity 
of nacre's microstructure, for which the probability 
distribution is analytically tractable. 



The new idea of this article is to model the tail 
probability of strength of nacre-like structures by 
a square fishnet pulled along one of the diagonals. 
Same as the weakest-link model, the failure prob­
ability of fishnet, P

,. 
is obtained by calculating its 

counterpart-the survival probability, I - P
r 

As 
will be shown, these additional survival probabili­
ties greatly enhance the strength for P

1
< 1�, com­

pared to the the weakest-link model. 
The analytical predictions of failure probabil­

ity are here verified by millions of Monte-Carlo 
simulations. Monte Carlo simulations of nacreous 
structures have previously been conducted with 
the random fuse model (RFM) [I 6, 5), in which the 
brittle bonds in the structure are simplified as a lat­
tice of resisters with random burnout thresholds. 
The RFM simulates the gradual failure of resister 
network under increasing voltage. This is similar to 
the failure process of quasibrittle elastic material 
under controlled uniaxial load . 

To calculate the maximum loads of the system of 
fishnet links, a simple finite element (FE) program 
for a pin-jointed truss is developed (m MatLab). 
For each of many shapes and sizes of the fish­
net, the maximum loads are calculated for about 
l million input samples of randomly generated 
strengths of the links, based on the assumption 
that the link strength follows the grafter Gauss­
Weibull distribution (see [15)). Running each set 
of about 1 million FE solutions takes a few days. 
With such a large number of random samples, 
the resulting strength histograms become visually 
indistinguishable from the theoretical cumulative 
probability density function (cdt) of failure prob­
ability P

,. 
derived in [13). 

For the purpose of statistical analysis, the longi­
tudinal load transmission must be realistically sim­

plified Almost no load gets transmitted between 
the ends of adjacent lamellae in one 'CCNI, and virtu· 
ally all the load gets transmitted by shear resistance 
of ultra-thin biopolymer layers between paral­
lel lamellac. The links of the lamellae in adjacent 

Id 

_____ _. 

Figure 2. a) Microstructurc of nacre; b) Equivalent 
fisbnct structure with similar topology; c) Dcfonnation 
mechanism of t ransversely unconstrained fishnet. 

rows many be imagined as the lines connectin 
lamellae centroids, as marked in Fig. 2a. 

2 LOAD TRANSMISSION 
AND REDISTRIBUTION 

The essence of load transmission may thus , 
characterized by a system of diagonal tensile linl 
(Fig. l b, which looks like a fishnet loaded in th 
diagonal direction and can be simulated by a finit, 
element program for pin-jointed trusses. The trans, 
verse stiffness is found to be statistically unimpor­
tant, and is neglected. Thus the fishnet model is 
initially a mechanism in which an the links immedi­
ately collapse under longitudinal load into a single 
line (Fig. 2c) while retaining, crucially, the imbri­
cated (or staggered) connections. 

3 FAILURE PROBABILITY OF 
FISHNET MODEL 

We consider the case of load control, for which the 
failure load is the maximum load, u_,. We analyze 
rectangular fishnets with k rows and n colwnns, 
containing N = k x n links (Fig. 2c), loaded uni­
formly by uniaxial stress uimposed at the ends of 
rows. Let P J.. d.J be the failure probability of fishnet 
loaded by o; and X{o) the total number of links 
failed at the end of experiment under constant 
load CT. This means that X{ o) is measured when no 
more damages occur. The failed links may be con­
tiguous or scattered discontinuously. The events 
{X(u) = r},r = 1,2,3, ... are mutually exclusive (or 
disjoint). So, to obtain the swvival probability of 
the whole fishnet, the corresponding survival prob­
abilities, Ps, (O'), must be summed; 
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I - P
1(a)= P

So 
(u)+ P� (a)+ ,Ps1 (O')+ ... (1) 

+Ps (a)+ Prob(X(O') �k and structure still safe)�· 
(2) 

where P1
(a)= Prob(u.u s; a); a_, = nominal 

strength of structure; and Ps, (O'} = Prob(X(o')=r), 
r=0,1,2, .... 

4 TWO-TERM FISHNET STATISTICS 

To get a better upper bound, we now include the sec­
ond term in Eq.(I}. i.e., 1- Pt<a) = P

s,, 
(a)+ P

s, 
(d) 

where a= average longitudinal stress in the cross 
section, the same in every section. For the sake of 
simplicity, we further assume that: I) the stress 
redistribution affects only a finite number, v1, of 
links in a finite neighborhood of the first failed 



link in which .il; > 1.1, and 2) factor .il1 is treated as 
constant, ,{ = 17;'> (> I) within this neighborhood, 
taken either as the weighted average of all redistri­
bution factors (to get the best estimate), or as the 
maximum of these factors (to preserve an upper 
bound on P

1
). With this simplification, 

P.s, (O')= NPi(t7)[1- fi(O'W->1-1(!- fi(11,!'>0')]'I (3) 

Here N means that failure can start in any one 
of the N links, which gives N mutually exclusive 
cases. The two bracketed terms mean that the 
failure of one of the N links must occur jointly 
with the survival of: (i) each of the remaining (N
- v1 - 1) links with stress a, and of (ii) each of the
remaining v, links with redistributed stress ,ti.
Analysis shows that the second term of fishnet sta­
tistics P.s, increases the terminal slope of strength
probability distribution in Weibull scale by the
factor of 2. Particularly important are the impli­
cations for structural safety. In Fig. 3b, the hori­
zontal line for P

1
= lo-6marks the maximum failure

probability that is tolerable for engineering design.
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Fi�ure 3. a) Cumulative distribution function (all) of 
failure for a single link with mean J; = 10.016 MPa and 
CoV = 7.8%); b) Comparison of P1 (in Weibull scale) 
between the finite weakest-link model and the fishnet 
model with first 2 terms in the expansion of Eq. I. 
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In this typical case, for constant N, the strength for 
P

1
= 10-6 is seen to increase by I0.5% when passing 

from the weakest-link failures to fishnet failures, 
while, at fixed strength, the P

1 
is seen to decrease 

about 25-times. The P
1 

decrease depends on the 
fishnet configurations and on P 1 • but is generally 
more than IO-times greater. This is an enormous 
safety advantage of the imbricated lamellar micro­
structure, which comes in addition to the advan­
tages previously identified by deterministic studies. 

5 THREE-TERM FISHNET STATISTICS 

Further improvement can be obtained by includ­
ing the third term of the sum in Eq.(I ). This tenn 
may be split into two parts, l's = Ps. + P.s , which 
are mutually exclusive, and �hus additFve. They 
represent the sun�val probabilities when the next 
failed link is, or is not, adjacent to the previously 
failed link. For detailed derivation, see (13]. 

6 MONTE CARL O FAILURE SIMULATIONS 

A rectangular fishnet truss, with k rows and n 
columns of identical links, has been simulated by 
a finite element program (in Matlab). For com­
putational stability, the fishnet is loaded under 
displacement control, by incrementing equal longi­
tudinal displacements u0 at the right boundary. At 
the left boundary, the horizontal displacement is 
zero. The boundary nodes slide freely in the trans­
verse direction. 

According to the arguments in [15, 17, 18, 19], 
based on nano-mechanics and scale transitions, the 
cumulative distribution function (cdf) of strength 
of each link, P

1
(d), is assumed to be a Gaussian (or 

normal) distribution with a Weibull tail of expo­
nent m grafted on the left at failure probability P

6 

(for a -t 0, the cdf oc a"'). The strength of each 
of N = k x n links is generated randomly accord­
ing to P.(<f). The autocorrelation length of the link 
strength field is assumed to be equal to the link size 
and, therefore, is not considered 

To verify the analytical two- or three-term sta­
tistics, respectively, the cases in which more than 
one, or two, links failed prior to the maximum 
load have been deleted from the set of about I mil­
lion simulations of a fishnet having 16 x 32 links, 
CoV = 0.987 of P., and grafting point at P, = 0.09. 
This is equivalent to omitting in Eq.( I) all the terms 
except the first two or three, respectively. 

The remaining histograms ( 17,!!}, and O'!,!�) 
are compared with the analytical cdf in Fig. 4b 
(Fig . 4a shows, for all simulations of a..,,, only 
the histogram). Despite simplifications, such as 
using a uniform redistribution ratio tJ and not 
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Figure 4. (a} Normalized histogram of 10' Monte 
Carlo realizations (u_.) compared with the probability 
density functions of the weakest-link, 2-term fishnet and 
3-term fishnet models; (b) The same data as well as the 
histogram of O'!!!., and tr,.!� convened into cumula­
tive probability distribution and plotted on the Weibull 
paper.!,= 9.87 MPa is the mean strength of one link and 
CoV = 9.87%. 

distinguishing link failures at the boundary from 
those in the interior, the agreement is excellent. 
This validates the analytical solution. 

Fig. 4 shows, for comparison, also the histo· 
grams of all the Monte Carlo simulations, which 
correspond to the complete sum in Eq.(I). Note 
that, in this case, the three-term model, and even 
the two-term model, give a satisfactory estimate of 
fishnet cdf. 

Shape Effect: Consider now the effect of the 
fishnet shape, or aspect ratio kin. Fig. 5 shows 
the histograms obtained by random simulations 
(again about a million each) for fishnets with 
N = 256 links when their dimensions k x n are var­
ied from 128 x 2, which represents the weakest-link 
chain (or series coupling), to 2 x 128, which repre­
sents the fiber bundle (or parallel coupling, with 
mechanics-based load sharing, i.e., equal exten­
sions of all fibers). Obviously, the shape effect is 
very strong. However, fishnets with k » n and 
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Figure 5. a} Change of failure probability of a fishnet 
pulled horizontally caused by varying the aspect ratio kin

gradually from l:N to N:l at constant number of links 
(Weibull scale); b} Monte Carlo simulations showing the 
transition of P1_as the aspect ratio of fishnet is changed
from 1 x N to N x I (N = 256}; c) The same data re-plot­
ted on Weibull paper./,= 9.87 MPa is the mean strength 
of one link and O:,V = 9.87%. 

rigid-body boundary displacements are not rel· 
evant to practical situations. 

Fig. 4 shows the transition of P
1 

as the aspect 
ratio of fishnet is changed from I x N to N x I 
(N : 256). As expected, P

1 
gradually transforms 

from a Weibull distribution to Gaussian distribu­
tion ·as the shape of a fishnet changes from a chain 
to a bundle. Further note that this transfonnation 
from a chain to a bundle makes the fishnet stronger. 
Evidently, the weakest-link model and fiber bundle 
model give the upper and lower bound of P

1 
of all

fishnets respectively. 
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Figure 6. Statistical si2e effect on the median strength 
of quasi-brittle fishnet. 

7 SIZE EFFECT 

For simplicity, the effect of fishnet size D (chosen 
either ask or n) at constant shape kin is here stud­
ied only for the median strength, 0'0.5, rather than 
the mean strength, a. Both analytical considera­
tions and computer simulations show that the size 
effect curve in the plot of log <10_5 vs. log D is not a 
straight line, as in Weibull theory. Rather, the size 
effect curve descends at decreasing slope. Also, the 
C.oV of O'o.5 decreases with size D; see Fig. 6. This 
is all similar, but not identical, to the Type I size 
effect in fracture of concrete, rock, tough ceramics, 
fiber composites and other quasibrittle materials 
(20, 15). 

i 8 CONCLUSIONS 

I. The failure statistics of nacre-like material
with imbricated (or staggered) lamellar micro­
structure under longitudinal tension can be
approximately modelled by square fishnets
pulled diagonally.

2. The probability distribution of fishnet
strength, including the far-out left tail, can be
calculated as a series of failure probabilities for
maximum load occurring after the failure of
one, two, three, etc., links. The series converges
rapidly-the faster the greater the coefficient
of variation (CoV) of scatter of each link.

3. The terms of this series represent various
combinations of joint probabilities of survival
and additive probabilities of failure for dis­
joint events. Near the zone of failed links, the
link survival probabilities must be modified
according to the mechanical stress redistribu­
tion due to previously failed links.

4. Compared to probability distribution for
the finite weakest-link model developed for
particulate materials and fiber composites,
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the strength at the failure probability level 
P

1
= I� is about one to two orders of magni­

tudes higher, in terms of the ratio of strength 
to the mean strength. This ratio increases with 
increasing CoV of strength scatter of each 
link, but at the same time the mean strength 
decreases. Thus the combined effect at the 
level of P

1 
= l � can be strength decrease or 

increase. 
5. There is no fixed-size representative volume

element of material (RVE), in contrast to the
weakest-link model for Type I quasibrittle fail­
ures of particulate materials. The size of the
zone of failed links at maximum load grows
with the CoV of link strength.

6. The size effect law is similar, though not the
same, as in quasibrittle Type I finite weakest­
link model. The nominal strength of fishnet at
the same width-to-length ratio decreases sig­
nificantly with the fishnet size.

7. The fishnet shape, i.e., the width-to-length
aspect ratio, has a major effect on the proba­
bility distribution of strength, which contrasts
with to finite weakest-link model for Type I.
The greater this ratio, the higher is the safety
margin, i.e., the greater is the strength at the
failure probability level P

1
= I�. As the aspect

ratio is increased from Oto 00, the fishnet grad­
ually transits for the weakest-link chain to the 
fiber bundle as the limit cases.

8. The fishnet model exhibits a strong size effect,
similar to, though different from, the finite
weakest-link model for Type I quasi brittle size
effect characterizing particulate or granular
materials and fiber composites. The evolu­
tion of cdf curves shows that, with increasing
structure size, the cdf curves in Weibull scale
get progressively steeper and cross each other.
This is a qualitative difference from quasibrit­
tle particulate materials or composites.

9. The fishnet model is verified by about a mil­
lion Monte Carlo simulations of failure. The
simulations were run for each of many differ­
ent aspect ratios, link strength C.oVs and fish­
net sizes.

10. There now exist three basic, analytically tracta­
ble, statistical models for the strength of mate·
rials and structures:

• the fiber bundle model (parallel coupling),
• the weakest-link chain model (series cou­

pling), and,
• the fishnet model (mixed, or imbricated

coupling).

The third case includes the first two as the limit 
cases. 

11. A similar steepening of the distribution slope
at the lower end of Weibull scale plot can also



be achieved by the chain-of-bundles model, but 
only if a convenient intuitive non-mechanical 
load-sharing rule is empirically postulated for 
each bundle, and if the specimen length is sub­
divided by chosen cross sections into statisti­
cally independent segments of suitable length, 
corresponding to each bundle. However, the 
imbricated (staggered) lamellar connectivity 
cannot be captured. 
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