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ABSTRACT: The present paper formulates the statistics of the residual strength of a quasibrittle struc-
ture after it has been subjected to a period of sustained loading. Here, quasibrittle structures (of positive
geometry) are modeled by a finite (rather than infinite) chain of the weakest-link model. A strength degra-
dation equation is derived based on the static crack propagation law which shows that the rate of strength

 degradation is not constant but continuously increasing. The cdf of residual strength of one RVE, rep-
resenting one link in the chain, is shown to be closely approximated by a graft of Weibull and Gaussian
(normal) distributions. In the left tail, the cdf is a three-parameter Weibull distribution consisting of the
(n + 1)th power of the residual strength, where n is the exponent of the crack propagation law and the
threshold is a function of the applied load and the load duration. The finiteness of the threshold, which is
typically small, is a new feature of quasibrittle residual strength statistics, contrasting with the previously
established absence of a threshold for strength and lifetime. Its cause is that there is a non-zero probabil-
ity that some specimens fail during the static preloading, and thus are excluded from the statistics of the
overload. The predictions of the theory are validated by available test data on glass-epoxy composites and
on borosilicate glasses. The size effect on the cdf of residual strength is also determined. The size effect on
the mean residual strength is found to be as strong as the size effect on the mean initial strength,

1 INTRODUCTION ' many small, activation energy-controlled, random
breaks of atomic bonds in the nanostructure
In most engineering applications spich as bridges, ~ (BaZant & Pang, 2006, 2007; Le et al., 2011). It
dams, ships, aircraft and microelectronic compo-  was shown that a quasibrittle structure (of posi-
nents, it is essential for the design to ensure a very  tive geometry) must be modeled by a finite (rather
low failure probability such as 10 throughout than infinite) weakest-link model, and that the
the lifetime (Nkb, 1978; BaZant & Pang, 2006).  cdf of structural strength as well as lifetime varies
Therefore, the cumulative probability distribution  from nearly Gaussian to Weibullian as a function
function (cdf) of the structure must be known up  of structure size and shape. Excellent agreement
to the very remote tail region. It must be estab-  with experimentally obtained distributions was
lished theoretically since such small probabilities ~ demonstrated.
are beyond direct experimental verification. This In this paper, the theory is extended to the prob-
18 especially true for quasibrittle materials, which  abilistic distributions of residual strength after a
fepresent heterogeneous materials character-  period of sustained load. Knowing the statistics of
ized by brittle constituents and inhomogeneities  residual strength is important for meaningful esti-
that are not negligible compared to structural mates of safety factors by taking into account the
dimensions; e.g. concrete, fiber composites, strength degradation of the structure depending on
tough ceramics, rocks, and many more (BaZant &  the load history and duration. It is also important
Planas, 1998). to obtain better estimates of the remaining service
The type of cdf of strength for perfectly ductile  life of structures, for which maintenance design is
Structures must be Gaussian (based on the cen-  a primary concern, as it is for modern large aircraft
tral limit theorem), whereas for perfectly brittle  made of load bearing quasibrittle composites.
structures, it must be Weibullian (based the weak-
&st link model with an infinite number of chain
links). For quasibrittle structures, which behave =2 THEORETICAL FORMULATION
as ductile when small and brittle when large, the
type of cdf of strength and of static lifetime, was  The nano-mechanical derivation of the cdf of
mathematically derived from atomistic scale argu- RVE strength as well as lifetime under static
Ments based on nano-scale cracks propagating by  and cyclic loads is based on the fact that failure
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probability can be exactly predicted only on the
atomic scale because the bond breakage process is
quasi-stationary, which means that the probability
must be exactly equal to the frequency (Kramer’s
rule). To derive the statistics of residual strength
of an RVE, it is first noted that the crack growth
rate on the atomic scale must follow a power law of
applied stress with the exponent of 2. Equating the
time rates of energy dissipations on the RVE and
on the atomic level explains provides derivation
of Evans’ law for subcritical macrocrack growth
and explains why it has a much higher exponent,
typically about 10 for concrete and 30 for tough
ceramics (Evans,1972; Thouless et al, 1983;
Evans & Fu, 1984). Using Evans’ law to integrate
the failure probability contributions over time
yielded a simple relatiqn between the strength and
static lifetime statistics (Le et al., 2011)—assuming
the mechanisms of crack growth in a strength test
and in a static lifetime test are the same. The argu-
ment is extended here to the statistics of residual
strength.

2.1 Relation between structural strength
and static residual strength

Evans’s law for subcritical crack growth under sus-
tained load reads:

4= de /KT ’ 6))

where a is the crack length, @ =daldt (1 = time),
A = material constant, Q, = activation energy,
k = Boltzmann constant and T = absolute tem-
perature. The stress intensity factor is denoted
as K, where the subscript 1 indicates the
RVE level. So, we have K, =a'\/l;kl(a/) where
o=F/ 13 = nominal stress, /, = RVE size, a=a,/
I, = relative crack length and %, = dimensionless
stress intensity factor. Accordingly, the above
equation becomes:

a=Ae Q¥ grjnl2gn (o) )

Consider now the different load histories illus-
trated in Figure 1. The load history O-A cor-
responds to the strength test, O-B-C to a static
lifetime test and O-B-D-E to a residual strength
test. Integration over load history O-B-D-E
provides:
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Figure 1. Schematic of various load histories,

By a similar integration of load histories
and O-B-C and appropriate substitution, on
a very simple relation between Oy, A, and (o8

1
Tr =[ oyt — A +1) (rig - ) Jr 1

This is the equation for the degradation o
residual strength as a function of two indepen
(deterministic) variables, applied load and tim
sustained load application. This eqpation also re
resents a link between the short-time strength ¢
the residual strength.

2.2 Analysis of residual strength
degradation for one RVE

We now proceed to analyze the effect of the exp
nent of the crack propagation law (Eq. 1) on
residual strength degradation. Figure 2 s
the degradation in strength of one RVE t
static load for various values of » for applied
0, = 0.50y. The time of load application, norm:
ized with respect to the lifetime, is shown o
horizontal axis. oy is assumed to be unity an
loading rate is taken as 0.5 MPa/second. It is
that the rate of strength degradation is negligib
initially but progressively increases and the mo
rapid degradation is seen in the end. This eff
seen to be more pronounced for higher values
Based on this observation, the degradation curv
could be roughly divided in two regions, on
relatively slow degradation and one of rapid de
radation—the distinction being more pronounc
for higher values of n. This study reveals the
fulness of Eq. 4 since for given load param
and crack growth exponent, one may deter
the portion of lifetime for which the strength

radation is negligible. '
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Figure 2. Predicted degradation curves for various

~ values of static crack growth exponent » using Eq. (4).

2.3 Formulation of siatistics of residual

strength for one RVE

- The analysis of interatomic bond breaks and mul-

tiscale transitions to the RVE has shown that the
strength of one RVE must have a Gaussian dis-

~ tribution transitioning to a power law in the tail

PR =1-exp| (o3 + o) 57"

of probability within the range of 10~ to 10~ (Le
et al., 2011), Starting from the cdf of strength, it
is now possible to determine the cdf of residual
strength for one RVE by means of Eq. (4). This
yields (Salviato et al., in press):

©)

for 6, < 0y < Oy, and:

if

B,=P +
bR e 270

"
J(a;;R+l+aA)n+l e_(o_,_ﬂG)z /202 do—’ (6)
Oy

Rgr

for 0y 2 0y, > 0,

Note that in Egs (5,6) 0, = of(n+1)(rig - 0y),
O gr = (O'N";,l, = 0 )V(n+])  while for the parameters
sg=5¢*, m=ml(n+1); P, represents the prob-
ability of failure of one RVE under an overload,
and P, ;(o,) represents the probability of failure of
one RVE before the overload is applied. Note that
only the part of the cdf where the residual strength
is defined, i.e. where Oy 2 0, is considered.

Unlike the strength distribution, the residual
strength cdf of one RVE does not have a pure
Weibull tail. It is noteworthy that Eq. (5) describes
a three parameter Weibull distribution in the vari-

able o', which has a finite threshold. Although

@t was proved that there can be no finite threshold
In the distribution of strength (Le et al., 2011), the
same does not hold true for the residual strength.
The existence of a threshold value, o, in the cdf
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stems from the fact that some specimens could fail
already during the period of sustained preload,
which excludes them from the statistics of the over-
load. These are the specimens for which A < 7, or
Oy < G,

2.4 Formulation of residual strength
cdf for structures of any size

Once the cdf of residual strength related to one
RVE is found, the cdf of failure of a structure of
any size and geometry can be determined by means
of the weakest link theory. The general applicabil-
ity of this theory for brittle, ductile or quasi-brittle
structures is guaranteed by the definition of RVE
itself and the fact that failure is considered to occur
at macro-crack initiation. One RVE is defined as
the smallest part of the structure whose failure
causes the failure of the entire structure, Thus, the
RVE statistically represents a link (the failing RVE
is the weakest link) and the structure can be statis-
tically treated as a chain.

Similar to the definition of nominal strength,
we define the nominal applied stress, ¢, = c,P/bD
or ¢, P/D* for two- or three-dimensional scaling,
where P =applied load. Then, by applying the joint
probability theorem to the survival probabilities,
the residual strength distribution of the structure
crn be expressed as:

HZI{I— Pr [(Jos(x,-»,tR,a'R]}

where s(x) dimensionless stress field x is the posi-
tion vector and N is the number of RVEs. Simi-
lar to the chain model for the cdf of structural
strength, the residual strength of the i-th RVE is
here assumed to be governed by the maximum
average principal stress oys(x,) within the RVE,
which is valid provided that the other principal
stresses are fully statistically correlated.

P‘/,R =1~ 0

3 RESULTS AND DISCUSSION
3.1 Optimum fits of strength and residual
strength histograms of borosilicate glass

In this section, we determine the parameters of
the distribution by fitting strength histograms and
then we use them to predict the cdf of residual
strength of borosilicate glasses. The predictions
are compared to experiments by Sglavo & Renzi
(1999). Figures 3a to d show the experimentally
observed strength and residual strength histograms
plotted in the Weibull scale. All the data consid-
ered were determined by conducting, in deionized
water, four-point bend tests of borosilicate glass
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Figure 3. Predictions of residual strength histograms
for borosilicate glass Hold times: (a) 1 hour (b) 1 day
(c) 10 days and (d) 20 days. Data from Sglavo & Renzi,
(1999).

rods with a nominal diameter of 3 mm and length
of 100 mm. The loading rate was set to about 60
Mpa/s and different sustained load durations were
used. Since glass is a brittle material and its RVE
size is very small compared to the tested specimen
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size, the distribution of strength is virtually y
tinguishable from the Weibull distribution, a
be seen in Figures 3a to d. By optimum fittj
the strength and residual strength, a Weibul]
ulus m of about 6 and a value of n of about 3¢
been estimated. The fit predicted by the statj
formulation, shown by the solid line curves, is
to be in good agreement with the experim
results. Except for the one hour case, all the off
plots show the deviation of the residual strep
distribution from the strength distribution to 1
the probability value P ,(a,).

It should be emphasized that, despite the s
and a low number of data, all the residual stre
distributions are predicted using the same s
parameters. |

3.2 Optimum fit of strength histograms and
prediction of lifetime and mean residual
strength for unidirectional glasslepoxy
composites

The methodology of the previous section is n
pursued for the strength and residual streng
data on unidirectional glass-epoxy composi
reported by Hahn & Kim, (1975). Each spe
men analyzed consisted of 8 unidirectional pli
71 specimens were tested to obtain the strengtha
lifetime distributions. A constant sustained lo;
0, = 7158 MPa was applied for all the lifetime tes
Figure 4a shows the fit of strength histograms by
means of the grafted Gaugss-Weibull distribution
the Weibull scale. r ;
This fit shows a kink in the curve corresponding
to the transition from Weibull to Gaussian dis
bution. A value of m equal to 56 and a value of
n equal to 27 are estimated by least-square op
mum fitting. Now that the required parameters
the distribution have been identified, the theo
applied to predict the mean residual strength a
compare it to the experimental data. The compa
son is made only for the mean since the number
available data is not sufficient to study the ent
cdf. The resulting cdf of residual strength is th
used to compute the mean values. The results
shown in Figure 4b for the different initial ov
loads and durations considered. Note that the pre-
dictions agree with the experiments, the difference
being always less than 7%. The agreement provi
another support for the present theory.

3.3 Size effect on mean residual strength

A more severe check on the theory would be to tes!
the size effect on the mean lifetime and residual
strength. However, no such test data seem to
available in the literature. It is nevertheless interests
ing to predict the size effect on the mean resid
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strength integrating Eq. (7). Figure 5 shows the
calculated size effect on the mean residual strength
of 99.6% ALO,. The set of parameters of the dis-
tribution is determined from the strength and life-
time histograms reported in (Fett & Munz, 1991).
An applied load o, = 0.785y—being , the mean
strength- is considered. Different times of load
application are used, as reported in the figure,
depending on the mean strength, i.e., g = POy
Note that, for a given ¢,, the mean residual strength
shows a similar trend as the strength for the large
size limit. In fact, the means tend to a straight line
With the same slope as the mean strength.

It is impossible to obtain closed-form analytical
Apressions for the mean residual strength. How-
over, sufficiently accurate analytical formulas can

be derived by asymptotic matching. The size effect

o residual strength can reasonably be approxi-
nated by the equation:

: 7im /7
[ﬁ(ﬁa) } ®
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Figure 5. Calculated size effect curves on the mean

strength residual strength at different hold times for
99.6% ALO,.

where m is the Weibull modulus of the cdf of
strength and M,, M, and 5 can be derived by
matching three asymptotic conditions:

1) [&R]D-—)I 2
2)[dag/d ]D_%, and

3) [ERDl/m]D_)

As can be noted from Figure 5, the approxima-
tion given by Eq. (8) is rather good for all the dif-
ferent times of load application. In deriving the
foregoing result, the two ratios, i.e., the applied
load to strength and the hold time to lifetime, were
kept constant across the sizes. It is trivial to note
however that if the absolute value of the applied
load or the hold time, or both, are kept constant,
the size effect will of course be much stronger.
However, in this case, the mean residual strength
does not resemble the strength curve and it cannot
be described by Eq. (8).

4 CONCLUSIONS

A theory for predicting the probabilistic distribu-
tions of residual strength after a period of static
load has been developed and validated against test
data. An important practical merit of the present
theory compared with predecessors (BaZant & Pang,
2006, 2007; Le et al., 2011) is that it provides a way
to determine the strength, residual strength and life-
time distributions without any histogram testing.

The rate of degradation of strength under a
constant static load is not constant. Initially it is
very slow and in the end very rapid. This effect is
more pronounced for higher static crack growth
exponents.

The cdf of residual strength of quasibrittle
materials may closely be approximated by a graft



of Gaussian and Weibull distributions. In the left
tail, the distribution is a three parameter Weibull
distribution in the variable o*!. Unlike the cdf’s
of strength and lifetime, the cdf of residual strength
has a finite threshold, albeit often very small.

The finiteness of the threshold is explained by
the fact some specimens may fail during the sus-
tained static preload and are thus excluded from
the statistics of overload.

An expression for the size effect on the residual
strength is derived using asymptotic matching. It is
shown that the size effect on the residual strength is
as strong as the size effect on strength.

Good agreement with the existing test data on
glass-epoxy composites and on borosilicate and
soda-lime silicate glasses is demonstrated.
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