FRACTURE AND SIZE EFFECT in Concrete and Other Quasibrittle Materials

Zdeněk P. Bažant

Walter P. Murphy Professor of Civil Engineering and Materials Science Northwestern University Evanston, Illinois

Jaime Planas

Professor of Materials Science E.T.S. Ingenieros de Caminos, Canales y Puertos Universidad Politécnica de Madrid Madrid, Spain

CRC Press Boca Raton Boston London New York Washington, D.C.

1998

Copy reduced in size

Contents

Preface v					
Vector and Tensor Notation vii					
1	Why	Fract	ure Mechanics?	1	
	1.1	Histori	cal Perspective	ī	
		1.1.1	Classical Linear Theory	1	
		1.1.2	Classical Nonlinear Theories	3	
		1.1.3	Continuum-Based Theories	4	
		1.1.4	Trends in Fracture of Quasibrittle Materials	5	
	1.2	Reason	ns for Fracture Mechanics Approach	5	
		1.2.1	Energy Required for Crack Formation	5	
		1.2.2	Objectivity of Analysis	5	
		1.2.3	Lack of Yield Plateau	7	
		1.2.4	Energy Absorption Capability and Ductility	7	
		1.2.5	Size Effect	7	
	1.3	Source	s of Size Effect on Structural Strength	9	
	1.4		fication of Fracture Mechanics Size Effect	11	
		1.4.1	Nominal Stress and Nominal Strength	11	
		1.4.2	Size Effect Equations	13	
		1.4.3	Simple Explanation of Fracture Mechanics Size Effect	13	
	1.5	Experin	mental Evidence for Size Effect	16	
		1.5.1	Structures with Notches or Cracks	18	
		1.5.2	Structures Without Notches or Cracks	19	
2	Esse		fLEFM	23	
	2.1	Energy	Release Rate and Fracture Energy	23	
		2.1.1	The General Energy Balance	24	
		2.1.2	Elastic Potentials and Energy Release Rate	25	
		2.1.3	The Linear Elastic Case and the Compliance Variation	28	
		2.1.4	Graphical Representation of Fracture Processes	30	
		2.1.5	Rice's J-Integral	31	
		2.1.6	Fracture Criterion and Fracture Energy	34	
	2.2	LEFM	and Stress Intensity Factor	37	
		2.2.1	The Center Cracked Infinite Panel and the Near-Tip Fields	37	
		2.2.2	The General Near-Tip Fields and Stress Intensity Factors	39	
		2.2.3	Relationship Between K_I and \mathcal{G}	40	
		2.2.4	Local Fracture Criterion for Mode I: K _{1c} .	41	
	2.3	Size Ef	fect in Plasticity and in LEFM	42	
		2.3.1		43	
		2.3.2	General Forms of the Expressions for K_I and \mathcal{G}	44	
		2.3.3	Size Effect in LEFM	45	
		2.3.4	Structures Failing at Very Small Cracks Whose Size is a Material Property	46	

xiv			ca	CONTENTS		
3	Det	ermina	tion of LEFM Parameters		49	
	3.1	Setting	g up Solutions from Closed-Form Expressions		. 49	
		3.1.1	Closed-Form Solutions from Handbooks		49	
		3.1.2	Superposition Methods		51	
	3.2	Appro	ximate Energy-Based Methods		55	
		3.2.1	Examples Approximately Solvable by Bending Theory		55	
		3.2.2	Approximation by Stress Relief Zone		56	
		3.2.3	Herrmann's Approximate Method to Obtain \mathcal{G} by Beam Theory		58	
		3.2.4	Subsurface Cracking in Compression by Buckling		59	
	3.3	Numer	rical and Experimental Procedures to Obtain K_I and \mathcal{G}		60	
		3.3.1	Numerical Procedures	· · · ·	60	
		3.3.2	Experimental Procedures		63	
	3.4	Experi	mental determination of K_{Ic} and G_f		64	
	3.5	Calcul	ation of Displacements from K _I -Expressions		67	
	•	3.5.1	Calculation of the Displacement			
		3.5.2	Compliances, Energy Release Rate, and Stress Intensity Factor for a System			
			Loads		68	
		3.5.3	Calculation of the Crack Mouth Opening Displacement			
		3.5.4	Calculation of the Volume of the Crack		71	
		3.5.5	Calculation of the Crack Opening Profile		72	
		3.5.6	Bueckner's Expression for the Weight Function		73	
4	Adv	anced A	Aspects of LEFM		75	
	4.1	Comple	ex Variable Formulation of Plane Elasticity Problems		75	
		4.1.1	Navier's Equations for the Plane Elastic Problem		75	
		4.1.2	Complex Functions		76	
		4.1.3	Complex Form of Hooke's and Navier's Equations		77	
		4.1.4	Integration of Navier's Equation: Complex Potentials		77	
	4.2		Crack Problems and Westergaard's Stress Function		80	
	4.2	4.2.1	Westergaard Stress Function		80	
		4.2.2	Westergaard's Solution of Center-Cracked Infinite Panel		80	
		4.2.3	Near-Tip Expansion for the Center-Cracked Panel		82	
	4.3		neral Near-Tip Fields		83	
	4.5	4.3.1	In-Plane Near-Tip Asymptotic Series Expansion		83	
		4.3.2	The Stress Intensity Factors		85	
		4.3.3	Closer View of the Near-Tip Asymptotic Expansion for Mode I		86	
		4.3.4	The Antiplane Shear Mode		87	
		4.3.5	Antiplane Near-Tip Asymptotic Series Expansion		88	
		4.3.6	Summary: The General Singular Near-Tip Fields		89	
	4.4		dependent Contour Integrals		89 90	
	4.4	-	Path Independence of the J-Integral		90 90	
			Further Contour Integral Expressions for \mathcal{G} in LEFM		91 02	
			•		92	
			Other Path-Independent Integrals		93	
					94	
	4.5		Mode Fracture Criteria		94 07	
			Maximum Energy Release Rate Criterion		95	
			Maximum Principal Stress Criterion		96	
		Append	ix: Strain Energy Density Criterion		98	

4

CONTENTS

•

5	Equ	ivalent	Elastic Cracks and R-curves 101
	5.1 Variability of Apparent Fracture Toughness for Concrete		ility of Apparent Fracture Toughness for Concrete
	5.2	.2 Types of Fracture Behavior and Nonlinear Zone	
		5.2.1	Brittle, Ductile, and Quasibrittle Behavior
		5.2.2	Irwin's Estimate of the Size of the Inelastic Zone
		5.2.3	Estimate of the Fracture Zone Size for quasibrittle Materials
	5.3	The Ec	puivalent Elastic Crack Concept
		5.3.1	Estimate of the Equivalent LEFM Crack Extension
		5.3.2	Deviation from LEFM
		5.3.3	Intrinsic Size
		5.3.4	How Large the Size Must Be for LEFM to Apply?
	5.4	Fractur	re Toughness Determinations Based on Equivalent Crack Concepts
		5.4.1	Compliance Calibration of Equivalent Crack Length
		5.4.2	Modified Compliance Calibration Method
		5.4.3	Nallathambi-Karihaloo Method
	5.5	Two-Pa	arameter Model of Jenq and Shah
		5.5.1	The Basic Equations of Jeng-Shah Model
		5.5.2	Experimental Determination of Jeng-Shah Parameters
	5.6	R-Curv	ves
		5.6.1	Definition of an R- Δa Curve
		5.6.2	Description of the Fracture Process
		5.6.3	The Peak Load Condition
		5.6.4	Positive and Negative Geometries
		5.6.5	R-Curve Determination from Tests
		5.6.6	<i>R</i> -CTOD Curves
	5.7	Stabilit	ty Analysis in the R -Curve Approach $\ldots \ldots 130$
		5.7.1	Stability under Load-Control Conditions
		5.7.2	Stability under Displacement-Control Conditions
		5.7.3	Stability under Mixed-Control Conditions
6	Dete	rminat	ion of Fracture Properties From Size Effect 135
	6.1	Size Ef	fect in Equivalent Elastic Crack Approximations
		6.1.1	Size Effect in the Large Size Range
		6.1.2	Size Effect in the Jeng-Shah Model
	6.2	Size Ef	fect Law in Relation to Fracture Characteristics
		6.2.1	Defining Objective Fracture Properties
		6.2.2	Determination of Fracture Parameters from Size Effect
		6.2.3	Determination of Fracture Parameters from Size and Shape Effects and Zero
			Brittleness Method
		6.2.4	Intrinsic Representation of the Size Effect Law
	6.3	Size Ef	fect Method: Detailed Experimental Procedures
		6.3.1	Outline of the Method
		6.3.2	Regression Relations
		6.3.3	RILEM Recommendation Using the Size Effect Method: Experimental Procedure 143
		6.3.4	RILEM Recommendation Using the Size Effect Method: Calculation Procedure . 144
		6.3.5	Performance of the Size Effect Method
		6.3.6	Improved Regression Relations
	6.4	Determ	ination of R-Curve from Size Effect
	÷.,	6.4.1	Determination of R-Curve from Size Effect
		6.4.2	Determination of R-Curve from Bažant's Size Effect Law
		6.4.3	Determination of the Structural Response from the R-Curve

xv

CONTENTS

7	Col	hesive (Crack Models	157
	7.1	Basic	Concepts in Cohesive Crack Model	157
		7.1.1	Hillerborg's Approach: The Cohesive Crack as a Constitutive Relation	158
		7.1.2	Other Approaches to Cohesive Cracks	160
		7.1.3	Softening Curve, Fracture Energy, and Other Properties	162
		7.1.4	Extensions of the Cohesive Crack Model	
		7.1.5	Cohesive Cracks with Tip Singularity	165
		7.1.6	Cohesive Cracks with Bulk Energy Dissipation	165
	7.2	Cohes	sive Crack Models Applied to Concrete	
		7.2.1	Softening Curves for Concrete	
		7.2.2	Experimental Aspects	
		7.2.3	Computational Procedures for Cohesive Crack Analysis	172
		7.2.4	Size Effect Predictions	
		7.2.5	Cohesive Crack Models in Relation to Effective Elastic Crack Models	
		7.2.6	Correlation of Cohesive Crack with Bažant's and Jenq and Shah's Models	
	7.3		rimental Determination of Cohesive Crack Properties	
		7.3.1	Determination of the Tensile Strength	
		7.3.2	Determination of the Initial Part of the Softening Curve	
		7.3.3	Determination of Fracture Energy G_F	
		7.3.4	Determination of a Bilinear Softening Curve	188
	7.4	Pseud	o-Boundary-Integral Methods for Mode I Crack Growth	
		7.4.1	The Underlying Problem	
		7.4.2	Petersson's Influence Method	
		7.4.3	Improved Solution Algorithm of Planas and Elices	
		7.4.4	Smeared-Tip Method	
		7.4.5	Scaling of the Influence Matrices	
		7.4.6	Inclusion of Shrinkage or Thermal Stresses	
		7.4.7	Inclusion of a Crack-Tip Singularity	
		7.4.8	Computation of Other Variables	
		7.4.9	Limitations of the Pseudo-Boundary Integral (PBI) Methods	
	7.5		dary-Integral Methods for Mode I Crack Growth	
		7.5.1	A Basic Boundary Integral Formulation	
		7.5.2	Size-Dependence of the Equations	
		7.5.3	The Dugdale and Rectangular Soffening Cases	
		7.5.4	Eigenvalue Analysis of the Size Effect	
		7.5.5	Eigenvalue Analysis of Stability Limit and Ductility of Structure	
		7.5.6	Smeared-Tip Superposition Method	
		7.5.7	Asymptotic Analysis	209
8	C ===	ak Ban	d Models and Smeared Cracking	213
0	8.1		Localization in the Series Coupling Model	
	0.1	8.1.1	Series Coupling of Two Equal Strain Softening Elements: Imperfection Approa	
		8.1.2	Series Coupling of Two Equal Strain Softening Elements: Imperfection Approa	
		0.1.2	proach	
		8.1.3	Mean Stress and Mean Strain	
		8.1.4	Series Coupling of N Equal Strain Softening Elements	
	8.2		zation of Strain in a Softening Bar	
	0.2	8.2.1	Localization and Mesh Objectivity	
		8.2.1	Localization in an Elastic-Softening Bar	
		8.2.2	Summary: Necessity of Localization Limiters	
	8.3		Concepts in Crack Band Models	
	0.5	8.3.1	Elastic-Softening Crack Band Models	
		8.3.2	Band Models with Bulk Dissipation	
		8.3.3	Unloading and Reloading	
		8.3.4	Fracture Energy for Crack Bands With Prepeak Energy Dissipation	
		0.5.4	Tracture Energy for Crack Bands with Trepcak Energy Dissipation	. 444

		8.3.5	Simple Numerical Issues
		8.3.6	Crack Band Width
	8.4		ial Softening Models
		8.4.1	Elastic-Softening Model with Stiffness Degradation
		8.4.2	Elastic-Softening Model with Strength Degradation
		8.4.3	Elastic-Softening Model with Stiffness and Strength Degradation
		8.4.4	A Simple Continuum Damage Model
		8.4.5	Introducing Inelasticity Prior to the Peak
		8.4.6	Crack Closure in Reverse Loading and Compression
	~ ~	8.4.7	Introducing Other Inelastic Effects
	8.5		e Triaxial Strain-Softening Models for Smeared Cracking
		8.5.1	Cracking of Single Fixed Orientation: Basic Concepts
		8.5.2	Secant Approach to Cracking of Fixed Orientation
		8.5.3	Scalar Damage Model for Cracking of Fixed Orientation
		8.5.4	Incremental Approach to Cracking of Fixed Orientation
		8.5.5	Multi-Directional Fixed Cracking
		8.5.6	Rotating Crack Model
		8.5.7	Generalized Constitutive Equations with Softening
		8.5.8	Mazars' Scalar Damage Model
		8.5.9	Rankine Plastic Model with Softening
	8.6	8.5.10	A Simple Model with Stiffness and Strength Degradation
	8.0	8.6.1	Stress-Strain Relations for Elements of Arbitrary Size
		8.6.2	Skew Meshes: Effective Width
		8.6.3	Stress Lock-In
		8.6.4	Use of Elements of Large Size
		8.6.4 8.6.5	Energy Criterion for Crack Bands with Sudden Cracking
	8.7		rison of Crack Band and Cohesive Crack Approaches
	0./	8.7.1	Localized fracture: Moot Point Computationally
		8.7.1 8.7.2	Nonlocalized Fracture: Third Parameter
		8.7.2	Relation to Micromechanics of Fracture
		8.7.4	Fracture of Arbitrary Direction
		0.7.4	
9			Size Effect Analysis 261
	9.1		fect Law Refinements
		9.1.1	The Generalized Energy Balance Equation
		9.1.2	Asymptotic Analysis for Large Sizes
		9.1.3	Matching to the Effective Crack Model
		9.1.4	Asymptotic Formula for Small Sizes and Its Asymptotic Matching with Large Sizes264
		9.1.5	Asymptotic Aspects of Bažant's Extended Size Effect Law
		9.1.6	Universal Size Effect Law for Cracked and Uncracked Structures
		9.1.7 9.1.8	Asymptotic Scaling Law for Many Loads
		9.1.8	Asymptotic Scaling Law for a Crack with Residual Bridging Stress
	9.2		fect in Notched Structures Based on Cohesive Crack Models
	9.2	9.2.1	The General Size Effect Equation
		9.2.1	Asymptotic Analysis for Large Sizes
		9.2.2	Asymptotic Analysis for Small Sizes
		9.2.5	Interpolation Formula
		9.2.4	Application to Notched Beams with Linear Softening
		9.2.5	Application to Notched Beams with Bilinear Softening
	, ·	9.2.0 9.2.7	Experimental Evidence
	9.3		fect on the Modulus of Rupture of Concrete
	7.3	9.3.1	Notation and Definition of the Rupture Modulus
		9.3.1 9.3.2	Modulus of Rupture Predicted by Cohesive Cracks
		7.3.4	intodulus of Rupfule Fredicied by Conesive Clacks

				٠
r	ν	7	x.	,
	۰	•		٠

CON	ΤΕΛ	TS

	9.3.3	Further Analysis of the Influence of the Initial Softening	. 284
	9.3.4	Modulus of Rupture According to Bažant and Li's Model, Bažant's Universal	
		Size Effect Law, and Zero-Brittleness Method	
	9.3.5	Modulus of Rupture Predicted by Jenq-Shah Model	
	9.3.6	Carpinteri's Multifractal Scaling Law	
	9.3.7	Comparison With Experiments and Final Remarks	
9.4		ression Splitting Tests of Tensile Strength	
	9.4.1	Cracking Process in Stable Splitting Tests	
	9.4.2	Modified Bažant's Size Effect Law	
	9.4.3	Size Effect Predicted by Jenq-Shah Model	
	9.4.4	Size Effect Predicted by Cohesive Crack Models	
9.5		ession Failure Due to Propagation of Splitting Crack Band	
	9.5.1	Concepts and Mechanisms of Compression Fracture	
	9.5.2	Energy Analysis of Compression Failure of Column	
	9.5.3	Asymptotic Effect for Large Size	
	9.5.4	Size Effect Law for Axial Compression of Stocky Column	
	9.5.5	Effect of Buckling Due to Slenderness	
	9.5.6	Comparison with Experimental Data	
	9.5.7	The Question of Variation of Microcrack Spacing with Size D	
	9.5.8	Special Case of Compression with Transverse Tension	
	9.5.9	Distinction Between Axial Splitting and Failure Appearing as Shear	
9.6		g of Fracture of Sea Ice	
	9.6.1	Derivation of Size Effect for Thermal Bending Fracture of Ice Plate	
	9.6.2	General Proof of 3/8-Power Scaling Law	. 316
			210
		and Size Effect in Structural Design	319
10.1		d Aspects of Size Effect and Brittleness in Concrete Structures	
		Conditions for Extending Bažant's Size Effect Law to Structures	
		Brittleness Number	
		Brittleness of High Strength Concrete	
		Size Effect Correction to Ultimate Load Formulas in Codes	
		Size Effect Correction to Strength-Based Formulas	
		Effect of Reinforcement	
10.2		al Shear Failure of Beams	
		Introduction	
		Bažant-Kim-Sun Formulas	
		Gustafsson-Hillerborg Analysis	
		LEFM Analyses of Jenq and Shah and of Karihaloo	
		Finite Element Solutions with Nonlocal Microplane Model	
		Influence of Prestressing on Diagonal Shear Strength	
10.3		ing Truss Model for Shear Failure of Beams	
		Basic Hypotheses of Fracturing Truss Model	336
	10.3.2	Analysis Based on Stress Relief Zone and Strain Energy for Longitudinally Re-	
		inforced Concrete Beams Without Stirrups	337
	10.3.3	Analysis Based on Stress Relief Zone and Strain Energy for Longitudinally Re-	
		inforced Concrete Beams With Stirrups	
		Analysis Based on Stress Redistribution and Complementary Energy	
		Size Effect on Nominal Stress at Cracking Load	
		Conclusions	
10.4		reed Beams in Flexure and Minimum Reinforcement	
		Lightly Reinforced Beams: Overview	
		Models Based on LEFM	
		Simplified Cohesive Crack Models	
		Models Based on Cohesive Cracks	
	10.4.5	Formulas for Minimum Reinforcement Based on Fracture Mechanics	363

CONTENTS

	10.5	Other Structures	5
		10.5.1 Torsional Failure of Beams	5
		10.5.2 Punching Shear Failure of Slabs	6
		1053 Anchor Puliout	7
		10.5.4 Bond and Slip of Reinforcing Bars	8
		10.5.5 Beam and Ring Failures of Pipes	1
		10.5.6. Concrete Dams	2
		10.5.7 Footings	5
		10.5.8 Crack Spacing and Width, with Application to Highway Pavements	6
		1059 Keved Joints	7
		10.5.10 Fracture in Joints	7
		10.5.11 Break-Out of Boreholes	9
		10.5.12 Hillerborg's Model for Compressive Failure in Concrete Beams	0
11	Effe	t of Time, Environment, and Fatigue 38.	
	11.1	Phenomenology of Time-Dependent Fracture	4
		11.1.1 Types of Time-Dependent Fracture	4
		11.1.2 Influence of Loading Rate on Peak Load and on Size Effect	5
		11.1.3 Load Relaxation	6
		11.1.4 Creep Fracture Tests	8
		11.1.5 Sudden Change of Loading Rate	8
		11.1.6 Dynamic Fracture	9
	11.2	Activation Energy Theory and Rate Processes	0
		11.2.1 Elementary Rate Constants	1
		11.2.2 Physical Rate Constants	1
		11.2.3 Fracture as a Rate Process	4
		11.2.5 Fracture as a Rule Freedow Fractice Growth Analysis	5
		11.2.5 Load-Controlled Processes for Power-Law Rate Equation	0
		11.2.6 Displacement-Controlled Processes for Power-Law Rate Equation	7
	11.3	Some Applications of the Rate Process Theory to Concrete Fracture	8
		11.3.1 Effect of Temperature on Fracture Energy of Concrete	8
		11.3.2 Effect of Humidity on the Fracture Energy of Concrete	9
		1133 Time-Dependent Generalization of R-Curve Model	1
		11.3.4 Application of the Time-Dependent R -Curve Model to Limestone	3
	11.4	Linear Viscoelastic Fracture Mechanics	4
		11.4.1 Uniaxial Linear Viscoelasticity	4
		11.4.2 Compliance Functions for Concrete	7
		11.4.3 General Linear Viscoelastic Constitutive Equations	8
		11.4.4 The Correspondence Principle (Elastic-Viscoelastic Analogy)	8
		11.4.5 Near-Tip Stress and Displacement Fields for a Crack in a Viscoelastic Structure . 40	9
		11.4.6. Crack Growth Resistance in a Viscoelastic Medium	2
		11.4.7 Steady Growth of a Cohesive Crack with Rectangular Softening in an Infinite	
		Viscoelastic Plate	3
		11.4.8 Analysis of Crack Growth in a Viscoelastic Plate	6
		11 4.9 Crack Growth Analysis at Controlled Displacement	7
	11.5	Rate-Dependent R-Curve Model with Creep	8
		11.5.1 Basic Equations	8
		11.5.2 Approximate Solution for Small Crack Extensions	9
		115.3 Comparison with Tests	9
		1154 Rate-Dependence of Process Zone Length	0
		11.5.5 Sudden Change of Loading Rate and Load Relaxation	0
		11.5.5 Sudden Change of Loading Rate and Load Relaxieon	2
	116	Time Dependent Cohesive Crack and Crack Band Models	2
	11.0	11.6.1 Time-Independent Softening in a Viscoelastic Body	3
		11.6.2 Time-Dependent Softening in an Elastic Body	4
		11.0.2 Time-Dependent outcoming in an Endside Dody 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	

xix

	11.6.3 Time-Dependent Cohesive Crack Model	425
	11.6.4 Analysis of Viscoelastic Structure with Rate-Dependent Cohesive Crack by Finit Elements	e 426
	11.6.5 Analysis of Viscoelastic Structure with Rate-Dependent Cohesive Crack by Compliance Functions	-
		. 428
11.7	Introduction to Fatigue Fracture and Its Size Dependence	429
	11.7.1 Fatigue Crack Growth in Metals	430
	11.7.2 Fatigue Crack Growth in Brittle Materials	431
	11.7.3 Size Effect in Fatigue Crack Growth in Concrete	432
	11.7.4 Fatigue Description by History-Dependent Cohesive Models	434
	tistical Theory of Size Effect and Fracture Process	437
12.1	Review of Classical Weibull Theory	439
	12.1.1 The Weakest-Link Discrete Model	
	12.1.2 The Weakest-Link Model for Continuous Structures under Uniaxial Stress	
	12.1.3 The Weibull Statistical Probability Distribution	
	12.1.4 Structures with Nonhomogeneous Uniaxial Stress	443
	12.1.5 Generalization to Triaxial Stress States	
	12.1.6 Independent Failure Mechanisms: Additivity of the Concentration Function .	446
	12.1.7 Effective Uniaxial Stress	
	12.1.8 Summary: Nonhomogeneous States of Stress	
12.2	Statistical Size Effect due to Random Strength	449
	12.2.1 General Strength Probability Distribution and Equivalent Uniaxial Volume	
	12.2.2 Statistical Size Effect Laws	451
	12.2.3 Divergence of Weibull Failure Probability for Sharply Cracked Bodies	
	12.2.4 The Effect of Surface Flaws	. 454
12.3	Basic Criticisms of Classical Weibull-Type Approach	. 456
	12.3.1 Stress Redistribution	
	12.3.2 Equivalence to Uniaxially Stressed Bar	
	12.3.3 Differences between Two- and Three-Dimensional Geometric Similarities	. 458
	12.3.4 Energy Release Due to Large Stable Crack Growth	. 459
	12.3.5 Spatial Correlation	. 460
	12.3.6 Summary of the Limitations	
12.4	Handling of Stress Singularity in Weibull-Type Approach	. 460
	12.4.1 A Simplified Approach to Crack Tip Statistics	. 461
	12.4.2 Generalization of the Thickness Dependence of the Crack Tip Statistics	. 462
	12.4.3 Asymptotic Size Effect	. 463
	12.4.4 Extending the Range: Bulk Plus Core Statistics	. 463
10.5	12.4.5 More Fundamental Approach Based on Nonlocal Concept	
12.5	Approximate Equations for Statistical Size Effect	. 465
	12.5.1 Bažant-Xi Empirical Interpolation Between Asymptotic Size Effects 12.5.2 Determination of Material Parameters	. 465
	12.5.2 Determination of Material Parameters	. 465
	12.5.3 The Question of Weibull Modulus <i>m</i> for the Fracture-Process Zone 12.5.4 Comparison with Test Results	. 466
	12.5.5 Planas' Empirical Interpolation Between Asymptotic Size Effects	. 466
	12.5.6 Limitations of Generalized Weibull Theory	. 467
17.6	Another View: Crack Growth in an Elastic Random Medium	. 470
12.0	12.6.1 The Strongest Random Barrier Model	. 4/0
	12.6.2 The Statistical R-Curve	. 4/1
	12.6.3 Finite Bodies	
	12.6.4 Fréchet's Failure Probability Distribution	
	12.6.5 Random <i>R</i> -curve	. 4/4
	12.6.6 Limitations of the Random Barrier Model	. 470
127	Fractal Approach to Fracture and Size Effect	. 4/2
12.7	12.7.1 Basic Concepts on Fractals	480
	14.7.1 Dasic Concepts on Hactais	. 400

CONTENTS

12.7.2 Invasive Fractal and Multifractal Size Effect for G_F	48	82
12.7.3 Lacunar Fractal and Multifractal Size Effect for σ_{Nu}		
12.7.4 Fracture Analysis of Fractal Crack Propagation	48	83
12.7.5 Bažant's Analysis of Fractal Crack Initiation		
12.7.6 Is Fractality the Explanation of Size Effect?	48	86
13 Nonlocal Continuum Modeling of Damage Localization	45	89
13.1 Basic Concepts in Nonlocal Approaches		
13.1.1 The Early Approaches	40	âñ
13.1.2 Models with Nonlocal Strain		
13.1.3 Gradient Models		
13.1.4 A Simple Family of Nonlocal Models		
13.1.5 A Second-Order Differential Model		
13.1.6 An Integral-Type Model of the First Kind		
13.1.7 An Integral-Type Model of the Second Kind		
13.1.8 Nonlocal Damage Model		
13.2 Triaxial Nonlocal Models and Applications		
13.2.1 Triaxial Nonlocal Smeared Cracking Models		
13.2.2 Triaxial Nonlocal Models with Yield Limit Degradation		
13.2.3 Nonlocal Microplane Model		
13.2.4 Determination of Characteristic Length	50	ж Ж
13.3 Nonlocal Model Based on Micromechanics of Crack Interactions	50	17
13.3.1 Nonlocality Caused by Interaction of Growing Microcracks	50	γ' 17
13.3.2 Field Equation for Nonlocal Continuum		
13.3.3 Some Alternative Forms and Properties of the Nonlocal Model	51	11
13.3.4 Admissibility of Uniform Inelastic Stress Fields	51	13
13.3.5 Gauss-Seidel Iteration Applied to Nonlocal Averaging		
13.3.6 Statistical Determination of Crack Influence Function		
13.3.7 Crack Influence Function in Two Dimensions		
13.3.8 Crack Influence Function in Three Dimensions		
13.3.9 Cracks Near Boundary		
13.3.10 Long-Range Decay and Integrability		32
13.3.11 General Formulation: Tensorial Crack Influence Function		
13.3.12 Constitutive Relation and Gradient Approximation		
13.3.12 Constitutive Relation and Gradient Approximation		
13.3.14 Summary		
13.3.14 Summary	24	5
14 Material Models for Damage and Failure	52	7
14.1 Microplane Model	52	28
14.1.1 Macro-Micro Relations	52	29
14.1.2 Volumetric-Deviatoric Split of the Microstrain and Microstress Vectors	53	32
14.1.3 Elastic Response		
14.1.4 Nonlinear Microplane Behavior and the Concept of Stress-Strain Boundarie		
14.1.5 Numerical Aspects		
14.1.6 Constitutive Characterization of Material on Microplane Level	53	8
14.1.7 Microplane Model for Finite Strain		
14.1.8 Summary of Main Points	54	12
14.2 Calibration by Test Data, Verification and Properties of Microplane Model	54	13
14.2.1 Procedure for Delocalization of Test Data and Material Identification	54	13
14.2.2 Calibration of Microplane Model and Comparison with Test Data	54	15
14.2.3 Vertex Effects	54	15
14.2.4 Other Aspects	54	17
14.3 Nonlocal Adaptation of Microplane Model or Other Constitutive Models	54	18
14.4 Particle and Lattice Models	55	50
14.4.1 Truss, Frame, and Lattice Models	55	i2

xxi

110	CONTENTS
14.4.2 Directional Bias	554
14.4.3 Examples of Results of Particle and Lattice Models	555
14.4.4 Summary and Limitations	559
14.5 Tangential Stiffness Tensor Via Solution of a Body with Many Growing Cracks	560
References	565
Reference Citation Index	599
Index	607

Preface

Our book is intended to serve as both a textbook for graduate level courses in engineering and a reference volume for engineers and scientists. We assume that the reader has the background of the B.S. level mechanics courses in the departments of civil, mechanical, or aerospace engineering. Aside from synthesizing the main results already available in the literature, our book also contains some new research results not yet published and many original derivations.

The subject of our book is important to structural, geotechnical, mechanical, aerospace, nuclear, and petroleum engineering, as well as materials science and geophysics. In our exposition of this subject, we try to proceed from simple to complex, from special to general. We try to be as concise as possible and use the lowest level of mathematics necessary to treat the subject clearly and accurately. We include the derivations or proofs of all the important results, as well as their physical justifications. We also include a large number of fully worked out examples and an abundance of exercise problems, the harder ones with hints. Our hope is that the reader will gain from the book true understanding rather than mere knowledge of the facts.

A special feature of our book is the theory of scaling of the failure loads of structures, and particularly the size effect on the strength of structures. We present a systematic exposition of this currently hot subject, which has gained prominence in current research. It has been only two decades that the classical model of size effect, based on Weibull-type statistical theory of random material strength, was found to be inadequate in the case of quasibrittle materials. Since then, a large body of results has been accumulated and is scattered throughout many periodicals and proceedings. We attempt to bring it together in a single volume. In treating the size effect, we try to be comprehensive, dealing even with aspects such as statistical and fractal, which are not normally addressed in the books on fracture mechanics.

Another special feature of our book is the emphasis on quasibrittle materials. These include concrete, which is our primary concern, as well as rocks, toughened ceramics, composites of various types, ice, and other materials. Owing to our concern with the size effect and with quasibrittle fracture, much of the treatment of fracture mechanics in our book is different from the classical treatises, which were concerned primarily with metals.

In its scope, our book is considerably larger than the subject matter of a single semester-length course. A graduate level course on fracture of concrete, with proper treatment of the size effect and coverage relevant also to other quasibrittle materials, may have the following contents: Chapter 1, highlights of Chapters 2, 3, and 4, then a thorough presentation of the main parts of Chapters 5, 6, 7, and 8, parts of Chapters 9 and 12, and closing with mere comments on Chapters 10, 11, and 13. A quarter-length course obviously requires a more reduced coverage.

The book can also serve as a text for a basic course on fracture mechanics. In that case, the course consists of a thorough coverage of Section 1.1 and Chapters 2, 3, 4, 5, and 7.

Furthermore, the book can be used as a text for a course on the scaling of fracture (i.e., the size effect), as a follow-up to the aforementioned basic course on fracture mechanics (or to courses on fracture mechanics based on other books). In that case, the coverage of this second course may be as follows: the rest of Chapters 1 and 5, a thorough exposition of Chapter 6, the rest of Chapters 7 and 8, much of Chapter 9, followed by highlights only of Chapter 10, bits of Chapter 11, and a thorough coverage of Chapter 12.

Chapters 13 and 14, the detailed coverage of which is not included in the foregoing course outlines, represent extensions important for computational modeling of fracture and size effect in structures. They alone can represent a short course, or they can be appended to the course on fracture of concrete or the course on scaling of fracture, although at the expense of the depth of coverage of the preceding chapters.

v

We were stimulated to write this book by our teaching of various courses on fracture mechanics, damage, localization, material instabilities, and scaling.¹ Our collaboration on this book began already in 1990, but had to proceed with many interruptions, due to extensive other commitments and duties. Most of the book was written between 1992 and 1995.

vi

Our book draws heavily from research projects at Northwestern University funded by the Office of Naval Research, National Science Foundation, Air Force Office of Scientific Research, Waterways Experimen: Station of the U.S. Army Corps of Engineers, Argonne National Laboratory, Department of Energy, and Sandia National Laboratories, as well as from research projects at the Universidad Politécnica de Madrid, funded by Dirección General de Investigación Científica y Técnica (Spain) and Comisión Interministerial de Ciencia y Tecnología (Spain). We are grateful to these agencies for their support.

The first author wishes to express his thanks to his father, Zdeněk J. Bažant, Professor Emeritus of Foundation Engineering at the Czech Technical University (ČVUT) in Prague, and to his grandfather Zdeněk Bažant, late Professor of Structural Mechanics at CVUT, for having excited his interest in structural mechanics and engineering; to his colleagues and research assistants, for many stimulating discussions; and to Northwestern University, for providing an environment conducive to scholarly inquiry. He also wishes to thank his wife lva for her moral support and understanding. Thanks are further due to Carol Surma, Robin Ford, Valerie Reed and Arlene Jackson, secretaries at Northwestern University, for their expert and devoted secretarial assistance.

The second author wishes to express his thanks to his mother María Rosselló, and to his sisters Joana María and María for their continuous encouragement. He also wishes to thank his wife Diana for her patience and moral support. He further expresses his thanks to Manuel Elices, professor and head of Department of Materials Science, for his continued teaching and support and for allowing the author to devote so much time to his work on this book; to assistant professor Gustavo V. Guinea for his stimulating discussions and friendly support; to Claudio Rocco, visiting scientist on leave from the Universidad de la Plata (Argentina), for providing test results and pictures for the section on minimum reinforcement; and to all the colleagues, research students and personnel in the Department of Material Science, for their help in carrying out other duties which suffered from the author's withdrawal to his writing of the book.

Z.P.B. and J.P. Evanston and Madrid April, 1997

\$

¹In the case of the first author: The course on Fracture of Concrete, introduced at Northwestern University in 1988, and intensive short courses on these subjects taught at Politecnico di Milano (1981, 1993, 1997), Swiss Federal Institute of Technology, Lausanne (1987, 1989, 1994), Ecole Normale Supérieure de Cachan, France (1992), and Lulea University, Sweden (1994). In the case of the second author: The undergraduate courses on Fracture Mechanics and Continuum Mechanics and the doctoral-level courses of Physics of Continuum Media and Advanced Fracture Mechanics at the Universidad Politécnica de Madrid, and intensive short courses on Fracture Mechanics taught at Universidad Politécnica and at Universidad Carlos III in Madrid (1994, 1995), and at Universidad de la Plata, Argentina (1995).