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Preface 

Our book is intended to serve as both a textbook for graduate level courses in engineering and a reference 
volume for engineers and scientists. We assume that the reader has the background of the B.S. level 
mechanics courses in the departments of civil, mechanical, or aerospace engineering. Aside from syn
thesizing the main results already available in the literature, our book also contains some new research 
results not yet published and many original derivations. 

The subject of our book is importanJ to structural, geotechnical, mechanical, aerospace, nuclear, and 
petroleum engineering, as well as materials science and geophysics. In our exposition of this subject, we 
try to proceed from simple to complex, from special to general. We try to be as concise as possible and 
use the lowest level of mathematics necessary to treat the subject clearly and accurately. We include the 
derivations or proofs of all the important results, as well as their physical justifications. We also include a 
large number of fully worked out examples and an abundance of exercise problems, the harder ones with 
hints. Our hope is that the reader will gain from the book true understanding rather than mere knowledge 
of the facts. 

A special feature of our book is the theory of scaling of the failure loads of structures, and particularly 
the size effect on the strength of structures. We present a systematic exposition of this currently hot 
subject, which has gained prominence in current research. It has been only two decades that the classical 
model of size effect, based on Weibull-type statistical theory of random material strength, was found to be 
inadequate in the case of quasi brittle materials. Since then, a large body of results has been accumulated 
and is scattered throughout many periodicals and proceedings. We attempt to bring it together in a single 
volume. In treating the size effect, we try to be comprehensive. dealing even with aspects such as statistical 
and fractal, which are not normally addressed in the books on fracture mechanics. 

Another special feature of our book is the emphasis on quasi brittle materials. These include concrete, 
which is our primary concern, as well as rocks, toughened ceramics, composites of various types, ice, 
and other materials. Owing to our concern with the size effect and with quasibrittle fracture, much of the 
treatment of fracture mechanics in our book is different from the classical treatises, which were concerned 
primarily with metals. 

In its scope, our book is considerably larger than the subject matter of a single semester-length course. 
A graduate level course on fracture of concrete, with proper treatment of the size effect and coverage 
relevant also to other quasi brittle materials, may have the following contents: Chapter I, highlights of 
Chapters 2, 3, and 4, then a thorough presentation of the main parts of Chapters 5, 6, 7, and 8, parts of 
Chapters 9 and 12, and closing with mere comments on Chapters 10, II, and 13. A quarter-length course 
obviously requires a more reduced coverage. 

The book can also serve as a text for a basic course on fracture mechanics. In that case, the course 
consists of a thorough coverage of Section 1.1 and Chapters 2, 3,4, 5, and 7. 

Furthermore, the book can be used as a text for a course on the scaling offracture (i.e., the size effect), as 
a follow-up to the aforementioned basic course on fracture mechanics (or to courses on fracture mechanics 
based on other books). In that case, the coverage of this second course may be as follows: the rest of 
Chapters 1 and 5, a thorough exposition of Chapter 6, the rest of Chapters 7 and 8, much of Chapter 9, 
followed by highlights only of Chapter 10, bits of Chapter II, and a thorough coverage of Chapter 12. 

Chapters 13 and 14, the detailed coverage of which is not included in the foregoing course olltiines, 
represent extensions important for computational modeling of fracture and size effect in structures. They 
alone can represent a short course, or they can be appended to the course on fracture of concrete or the 
course on scaling of fracture, although at the expense of the depth of coverage of the preceding chapters. 

vi 

We were stimulated to write this book by our teaching of various courses on fracture mechanics dama 
localization, material instabilities, and ,"caling. JOur coUaboration on this book began alread; in 19~~: 
but had to proceed with many mterruptJOns, due to extensive other commitments and duties. Most of the 
book was written between 1992 and 1995. 

Our book draws heavily from research projects at Northwestern University funded by the Office of Naval 
Research, National Science Foundation, Air Force Office of Scientific Research, Waterways Experimen: 
Station of the U.S. Army Corps of Engmeers, Argonne N~tional Laboratory, Department of Energy, and 
Sandia National Laboratones, as well as from research projects at the Universidad Politecnica de Madrid 
funded by Direcci6n General de Investigaci6n Cientifica y Teenica (Spain) and Comisi6n Interministeriai 
de Ciencia y Tecnologfa (Spain). We are grateful to these agencies for their support. 

The first author wishes to express his th~s to his father,. Zdenek J. Baiant, Professor Emeritus 
of Foundation Engineering at the Czech Techmcal. Umv~rsity (CVUT) in Prague, and to his grandfather 
Zdenek Baiant, late Professor of Structural Mechamcs at CVUT, for having excited his interest in structural 
mechanics and engineering; t.o his collea~u~s and res~arch assistants, for many stimulating discussions; 
and to Northwestern Umverslty, for provldmg an environment conducive to scholarly inquiry. He also 
wishes to thank his wife Iva for her moral support and understanding. Thanks are further due to Carol 
Surma, Robin Ford, Valerie Reed and Arlene Jackson, secretaries at Northwestern University, for their 
expert and devoted secrctanal assistance. 

The second author wishes to express his thanks to his mother Maria Rossell6, and to his sisters Joana 
Maria and Marfa for their continuous encouragement. He also wishes to thank his wife Diana for h 
patience and moral support: He further expresses his th:rnks to Manuel Elices, professor and head ~~ 
Department of Materials SCience, for hiS contmued teachmg and support and for allowing the author to 
devote so much time to his work on thiS book; to assistant professor Gustavo V. Guinea for his stimulatin 
discussions and friendly support; to Claudio Rocco, visiting scientist on leave from the Universidad de 19 
Plata (Argentina), for providing t~st results and pictures for the section on the Brazilian test; to Gonzal~ 
Ruiz, assistant professor, for provldmg test results and figures for the section on minimum reinforcem t. 
and to all the colleagues, research students and personnel in the Department of Material Science for t~:' ' 
help in carrying out other duties which suffered from the author's withdrawal to his writing of the boo~r 
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