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Recent optimum fitting of the data from eleven different types of distinctive fracture tests of
quasibrittle materials, including the gap tests and the size effect tests, revealed that the crack
band model (CBM) with the M7 damage constitutive law outperforms all the other existing
computational fracture models for concrete. This is attributed to physically correct boundary
conditions, especially those at the crack faces,to the crack front of finite width which allows
using a triaxial tensorial damage constitutive law, and to choosing for this law a realistic
material behavior description, the M7. Nevertheless the CBM has limitations—the width of
the crack band cannot be varied, the statistically smooth damage distribution across the band
cannot be resolved, and the propagation direction is biased by the mesh orientation when
a regular mesh is used. These limitations have been overcome by the smooth crack band
model (sCBM), which uses unconventional homogenization of damage mechanics to yield an
additional Helmbholtz free energy density, called the “sprain energy”. This energy is a function
of the curvature tensor (or a hessian) of the vectorial displacement field, called the ‘“sprain
curvature tensor” (or sprain tensor for brevity), which is a sum of the strain gradient tensor
and, importantly, the rotation gradient tensor. But, in a previous study, difficulties arose in
computational implementation—the use of constant-strain elements required the curvature to
be resisted by sprain forces that represented the derivatives of sprain energy with respect to
nodal displacements and had to be applied on the nodes of adjacent elements. The need for
adjacent nodes is here avoided by a variational derivation of the Isogeometric Smooth Crack-
Band Model (isCBM). The microplane damage constitutive model M7 for concrete is adopted,
which is made possible by establishing the relations of the sprain stress (or spress, for brevity)
and sprain on microplanes of arbitrary orientations. Using Isogeometric Analysis (IGA) based on
non-uniform rational B-Splines (NURBS), the excessive displacement curvature and its resistance
(spress) can be described by the shape functions with C!-continuity. Computational results
show that the orientation bias of regular meshes is eliminated while keeping the constitutive
law intact, which is important for compatibility with the existing material laws in general.
In addition, comparisons with experimental data reveal that isCBM with M7 can reproduce
the correspondence between the size of the fracture process zone and the fracture energy, as
indicated by gap tests. Finally, the isCBM does not compromise the strain-path-dependence of
material response.
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In honor of Huajian Gao, a great friend, supportive colleague, and a top applied mechanician of his generation, on the occasion of
his 60" birthday.

Yuri Bazilevs and Zdenék P. Bazant, speakers at the Workshop in honor of Gao.
1. Introduction

Finite element analysis of fracture began with Ray W. Clough’s 1962 epoch-making assessment (Clough, 1962; Clough and Wilson,
1962) of the safety of cracked Norfolk Dam using over a hundred constant-strain triangular finite elements of a continuum that he
derived variationally in 1960 (Clough, 1960). Yet, six decades later and thousands of papers published, the theory of computational
fracture mechanics is still far from being complete.

Recent comparisons with eleven published distinctive types of fracture tests of quasibrittle materials important for practice,
particularly with the gap test, the size effect tests and the shear fracture tests, revealed that the recently popular peridynamics and
phase field models (Bazant et al., 2022) cannot fit the published data and show major discrepancies. Their fundamental hypotheses
were also shown to be unrealistic. Besides, peridynamics as well as the classical nonlocal models give unphysical representation of
boundary conditions, which is particularly problematic at near-tip crack surfaces and at fracture process zone (FPZ) interfaces. The
crack band model (CBM) (Bazant and Oh, 1983; Bazant and Planas, 1998) was shown in Bazant and Nguyen (2023) to outperform
the other methods and agree with all the data from the distinctive fracture tests.

In addition to correct boundary conditions, the main asset of CBM is the finite width of its fracture process zone (FPZ) allowing
the use of a tensorial triaxial damage constitutive law, which must, of course, be realistic to achieve good performance. Nevertheless,
there are limitations—(1) the width of the crack band cannot be varied, (2) the gradual, statistically smooth, variation of damage
across the band cannot be resolved and, (3) the propagation direction is biased by the orientation of mesh lines if a regular (rather
than random) mesh is used.

All three limitations were overcome by the smooth crack band model (sCBM), developed in 2022 by Zhang and Bazant (2023).
The sCBM enforces nonlocality by limiting the curvature (characterizing the hessian) of the vectorial displacement field. This is
achieved by an unorthodox material homogenization which shows that, for damage behavior, the Helmholtz free energy density of
the material must consist not only of the strain energy, ¥, as in classical continuum mechanics, but also of an additional energy
density, @, called the sprain energy (the term “sprain” was co-opted from medicine where it refers to a ligament damage distributed
over a finite length, as opposed to ligament rupture). @ is a function of the “sprain tensor”, defined as the tensor of curvature (or
hessian, or second gradient) of the vectorial displacement field. The latter has the dimension of m~! and is multiplied by the material
characteristic length /, to become dimensionless. The resistance of the curvature development, or sprain, will force the variation of
damage across the crack band to be gradual, almost smooth, hence the name of the method. It is important to note that the sprain
tensor represents a sum of the strain gradient tensor and the rotation gradient tensor. The lack of the latter has been a limitation
of the recent computational strain-gradient models, particularly in the case of shear damage and fracture.

The use of sCBM based on constant strain elements ran into computational difficulties. The derivatives of sprain energy with
respect to nodal displacements provided self-equilibrated sets of forces, called the sprain forces (Zhang and Bazant, 2023), some of
which had to be applied on the nodes of adjacent elements to resist excessive curvature (or sprain). However, implementing it in a
commercial finite element (FE) code such as Abaqus was found to increase the running time by one to two orders of magnitude. To
avoid it, it is obviously necessary to apply all the curvature resisting forces within one and the same finite element while ensuring
continuity of the first displacement gradient across the finite element boundary. Unfortunately, the standard quadratic and cubic
finite elements cannot satisfy this requirement. Therefore, we turn to the isogeometric analysis (IGA) in which full displacement
gradient continuity is enabled by the non-uniform rational B-Splines (NURBS) (Hughes et al., 2005; Cottrell et al., 2009), whose
knot spans and control points are designed to produce shape functions with C!-continuity.

If adjacent nodes are not considered, the nodal sprain forces become undefinable. Rather, we need to introduce the derivative of
the sprain energy density with respect to the sprain tensor. This derivative calls for a mechanical quantity that has a role similar to
the stress tensor and is work-conjugate to the sprain (or displacement curvature). For brevity, we introduce for this quantity a new
term—the “spress”, of dimension N/m, which is a higher-order counterpart of stress (dimension N/m?), and has the same dimension
as the surface tension or fracture energy. The spress may be regarded as the surface density of sprain energy.

While the material behavior on the level of first displacement gradient (i.e., the deformation tensor) is traditionally described
by the stress-strain constitutive relations, the material behavior on the level of the second displacement gradient, or sprain, must
be described by the spress—sprain constitutive relations. If a sprain potential exists, its derivatives provide the spress—sprain relation
and the corresponding sprain stiffness tensor. In the previous work (Zhang and Bazant, 2023), the spress—sprain and stress-strain
constitutive relations were implicitly considered as separate. In general, though, these relations are likely to be combined, which is
what is considered here.

Adapting microplane model M7 for concrete to the spress—sprain relations is another challenging goal of this study.

The strain-field regularization approach proposed here may be clarified by the following physical observations. The inho-
mogeneities in quasi-brittle materials (Fig. 1a) are normally homogenized into a material point constitutive law based on local
deformation (dashed line in Fig. 1a). In many cases, such homogenization suffices to capture the material behavior but, when the
damage is localized, key information goes missing because the local field variation (solid line in Fig. 1a) is also important. For
example, the coarse aggregate pieces of higher stiffness cause locally elevated strains and stresses with a certain minimal spacing
of microcracks. Likewise, this microstructural behavior resists the relative rotations of adjacent aggregate pieces or of adjacent
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Fig. 1. (a) Local variation of the strain profile around a mean strain value is caused by the inhomogeneity within a mesoscopically homogeneous material; (b)
1D displacement of a material point within a microscale cell equals to the sum of the mean profile and local oscillations.

representative volumes of the material. This cannot be adequately captured by the classical equilibrium-based homogenization.
Rather, as proposed in Zhang and Bazant (2023), it is the homogenization of energy that helps to explain the necessity of the
aforementioned additional sprain energy, @

Placing the isCBM into the broad context of quasibrittle fracture mechanics and its regularized computational modeling is
postponed to Appendix H.

2. Microscale-mesoscale bridging
2.1. General formulation

We assume that a mesoscale cell of volume V, contains a heterogeneous microscale structure (see Fig. 1b). A similar as-
sumption was used in other theories, such as mechanism-based strain gradient plasticity (Hutchinson and Fleck, 1997), imbricate
continuum (Bazant, 1984), and the variational multiscale method (Hughes et al., 1998).

The center of such mesoscale material cell has the coordinates X in the (undeformed) referential configuration. The location of
a material point within this cell in the current configuration is

x=X+a+i (€}
Taking the gradient with respect to the referential coordinates yields
F=1+Va+Va, 2

where V = V,. The gradient with respect to the current configuration V_, if it exists, will be explicitly stated. Here, @ is the
displacement at the center of the mesoscale cell and @ is the displacement of any microscale material point within that cell (see
Figs. 1b, c).

The Green-Lagrange (GL) strain of a microscale material point can be computed as

oSl
1]
= l\)l'—‘ N =

~1)= % [(I+Vﬁ+Vﬁ)T (I + Vi + Vi) - 1]
(V)" + Va+ (Vi)' - Vi + = [(Vﬁ)T + Vit + (Vi)' - Via| +
(V) - Vi + (Vi)' - V| , 3

where the Inlxed terms represent the interaction of the mean and microscale displacements.

We denote by X the location of a micro-scale material point in the mesoscale cell (see Fig. 1b). While a higher-order theory
could be derived by keeping the quadratic and higher-order terms, we take here a Taylor-series expansion at X keeping only the
linear term. This gives

ua=VvVa-X. (C)]
Taking a gradient of the above expression yields

- - %, -
Vii = 0,6, = 9y (0xt; X ) = (0,0x1;) X = —— X = X 5
TU; .I(KtK) (.IKt) dXJ()XKK NikiA Kk )
Note that the X is treated as a constant because the microscale material points share the same mesoscale coordinates with the
center point of mesoscale cell. Here, 7, x; is the (J, K) component of the Hessian of the displacement vector. A symmetric permutation
nyx; = Nks; is applied to enforce the symmetry of mixed partial derivatives.
Rewriting Eq. (3) using index notation yields

. R 1 . . L 1 . . . .
Ey=E;; + 5 (nIKJXK +nyxr Xk + WPRIWPQJXRXQ) + 5 (aI”iWJKiXK + dJuin[KiXKv) (6)
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where E;; = %(d jiy + 050y + 0,00 i) is the mean-field GL strain. Eliminating the higher-order terms in Eq. (6) results in

. . 1 R L. R R .
Ejp=E;,+ 5 (’7.IKiFil +'711<iFiJ) Xk =L+ EZk Xk @

where

[I])

1 . .
K =5 (nyxibir +nixiFiy) - (8

With the current index notation convention, the symmetry of = is similar to that of #, i.e., Z;;x = =, ,¢. Note that the lower-
case index in Egs. (5) and (7) represents the displacement. From this point on, the “hat” notation will be dropped to simplify the
presentation.

We denote the second Piola—Kirchhoff (PK2) stress by § and invoke the principle of virtual work over a mesoscale cell as follows:

/S,,aE,,dv:/ S1/BE ; + 85 x X )dV. ©)

¢ c

Recognizing that in the above equation the variations E and 65 are constant over a mesoscale cell, we obtain

/ S1y6E; AV = (S1,8E;; + Ty jk8Z1,x) Ve 10)

c

where the stress resultants S and T are given by

1 .
Sy, = 7/ 5,,dv an
cJV,
1 .
Tk = 7/ S XgdV 12)
e Jv.

Updating the notation used in Zhang and Bazant (2023), we use £ for the sprain (or sprain curvature) tensor and T for the spress
(or spress tensor, or sprain energy gradient tensor). Note the symmetry of S and T, namely, S;; =.5;; and T;;x = Tj;g, which is
the same as that of FE and =, respectively.

The same procedure can be repeated to define the spress—sprain tensors corresponding to the microscale PK1 stress P and the
deformation gradient F, which we call Q and 7). Obviously, they are also work-conjugate quantities. The derivation of Q;;x from
Si5Erp.Tryk. gk, and np g is presented in Appendix A.

2.2. Linearized small-strain version

For a linearized theory, the mesoscale-microscale relation may be rewritten as

- 1 5 5 1
by =€+ 5 (ks +nskr) Xg =€y + &k Xgiers = 3 (0puy +0,uy). 13)

Applying the principle of virtual work over a mesoscale cell gives

/ &14681,dV = (0,561 +71,x6E15k) Ves a4

c

where the stress resultants are given by

1 -
oy = 7/1/ 6dV (15)
< ¢
1 L
Tk = 7/1/ 6y XgdV (16)
¢ ¢

3. Governing equations of mechanical equilibrium
3.1. Small-strain version

The virtual work within volume V' (here one needs to distinguish V" as the domain volume from the mesoscale cell volume V)
can be written in terms of the variation of the gradient, and the hessian of a virtual displacement su. We have

/V(6”(3]514,+T”K()J6,<5u,)dV=/SnJ (a,,—a,(r,,(,)au,ds+/s[n,r,,K (0kdur)] ds

—/V (07017 — 0k 0s7rsk ) SurdV. a7)
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In Eq. (17), the divergence theorem has been applied. Here note that éu; and dgéu; are not independent. Therefore, it is necessary
to decompose 9y éu; into the surface and normal gradients. The normal gradient is given by

0" =n,a,, (18)
while the surface gradient by

Oy =O0x —ngnyoy =850y —ngn;oy = (8;x —ngny)o;. 19
The second term on the RHS of Eq. (17) yields

/S [nytrrk (0% +ngo")du;| dsS
=/5 (nyngrsx) 6"5u1dS+/S (0'n;) nKnJ'r”K(Su,a’.S'—/Saj< (nyrsx)6urdsS (20)
In the last equation, the surface divergence theorem has been applied, i.e.,
/Sa;‘ (qi,Ju,)dS:/S(a;‘n,.)n,cp,,u,ds 21)

Therefore, the displacement field needs to satisfy one governing equation and two natural boundary conditions so that the internal
and external virtual work would be in balance, i.e., [¢r;0"6u;dS + [¢t;6u;dS — [, f6u;dV = Wy, Véu;. This implies,

f1="0; (677 —0kx7rsx) + by = piiy on Q (22)
tr=ny (0” - aKrIKJ) +ny (6fnl-) ngTrrk — Oy (nJTUK) = ti"t on (02), (23)
Fp=ngngTrig = r?Xt on (0£2), 24)

where b; and pii; arise as the body and inertia force terms.

3.2. Finite-strain version

Following the same procedure, one can write the mechanical equilibrium conditions for the large-deformation case:

Jr=09; (PIJ - aI(QJKI) + by = pii; in 2, (25)
ty=ny (Pry—0xQxys) +(9/m) nyngQrxr — 0y (nyQrir) =1 on (09),. (26)
rp=ngngQrgr = "}m on (0€2),, 27)

Here P;; is the first Piola—Kirchhoff (PK1) stress (or the transpose of the nominal stress). Other terms were explained in the previous
section.

4. Constitutive modeling
4.1. Two simple hypotheses for introducing the sprain into damage constitutive law

Finding the optimal and most realistic way of combining the strain and sprain in the constitutive law is a challenge made difficult
by lack of experimental data and micro-mechanical theory for test specimens subjected to the second displacement gradient. Lacking
such data, we have two simple choices:

* Separate sprain constitutive law
« Sprain incorporated into an existing constitutive law

In this study, we focus on the latter approach.

4.2. Constitutive laws for spress—sprain relation

In this section, the relation of spress to the sprain deformation or, in short, the spress—sprain relation, is derived and compared
with the conventional strain-stress law in the microscale cell. We start with the most simplified damage law—Mazars’ scalar
continuum damage model, even though its practical applicability is rather limited. Then we extend the modeling to a more realistic
case—the M7 microplane damage model.
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Fig. 2. (a) A one-dimensional bar containing a weak material point at the middle of its length is subjected to uniaxial tension; (b) A 1D illustration of the
constitutive law described in Egs. (29)-(33).

4.2.1. Mazars’ scalar damage model
Mazars (1984) and Pijaudier-Cabot and Mazars (2001) proposed a damage model based on the Helmholtz free energy that is
released through a damage variable w,

1 1
f(E.w)=3E, :D,: E,=3(1-wVE: D, : E. (28)

where D, is the elastic stiffness tensor of the pristine material and E, is the “intact” strain. Despite its limitations, e.g., the inability
to represent the effect of crack parallel stresses or shear loads, this simple damage constitutive model will suffice for demonstration
purposes.

The PK2 stress and thermodynamic force Y (the quantity conjugate by work to the damage variable ) are calculated as

_of o an .

S——dE—(l 0)’D, : E (29)

Y=—%=(l—w)E:De:E (30)
o)

The damage potential, which characterizes the relation between the change of the damage variable and that of total strain E;; is
chosen as

w=1-\/€_° [exp(—c_eo >] @1
¢ er—ep

¢=_ max(y) (32)
loading history

7= Y G (o (33)
k=1,dim

where y, is the kth-eigenvalue of E. In this model, the microcracks are assumed to rotate, aligning always with the principal strain
directions. Also, only the positive parts of principal strains are considered, which is expressed by applying the Macaulay brackets ( )
to the principal strains. The damage initiation strain is e, = f,/E, where E is the Young’s modulus and f; is the cohesive strength.
The fracture strain is calculated via

e, =gs/fiteg (34)

where g is the apparent energy dissipated by one material point (energy per unit volume, see Fig. 2b). The apparent fracture strain
e, is, therefore, not the strain where the cohesive stress reduces to zero, but the intersection between the initial softening slope with
the horizontal axis. Hoover and Bazant (2014) pointed out that this value, g, would be directly related to the initial fracture energy
G and the total fracture energy G of the material. Hoover and Bazant (2014) also indicated that while the former dominates the
load capacity of structures while the latter is essential where energy dissipation matters, as in projectile penetration. In this light,
the initial fracture energy of the material is computed as G, = 0.5gWchqar, Where 0.5g, is the area of the triangle shown in Fig. 2b
and w,,, is a size (usually referred to as characteristic size) that captures the extent of the damage zone. The quantity w,, plays
the role of a localization limiter.

4.2.2. Derivation from a constitutive model
As the coordinate origin of X, is located at the centroid of the cell, the following equations hold:

1 5 1 . 1
— dv =1; X, dVv =0; — X, X, dvVv = —56,,., 35
V;A /VC k I/C</VC k% m 12 km (35)

where /, is the size of the mesoscale cell.
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Variation of a physical quantity within a mesoscale cell can be approximated via a Taylor series expansion as

oo op < <2

) = plxog + —2 |5 X +OX) (36)
and, if such a quantity is homogeneous of order 1 with respect to X, (i.e., f(AX) = Af(X)), the expression simplifies to

Pg_p (37)

0X

Implicitly, we assume that the mesoscale cell size /, is smaller than the relevant structure size or the ligament length in the notched
specimens.
Owing to the explicit form of Mazars-Pijaudier’s constitutive law, the stress average may be computed as

Siy= Vi/v SrrdV =1 = 0)*(D)rsxr & (E)kr (38)

c

The spress, on the other hand, becomes

1 R
Tk = 7/ SpyXgdV
cJV,

2 0
= = [0 = (D) pedxr —2(1 - @) == (D)1 1 (E) Ly Sk r Epors (39)
12 0Epg
where
[e_g + (G - )] dim
9 ¢ er—eo {—e (A )H(Ag)
90 _ exp (-2 ) 3 A v, v (40)
Y 2.]% {—eg rTe/ k=
? exp __ef—e()

Here H is the Heaviside step function and N, is the eigenvector corresponding to the kth eigenvalue of the stretch tensor U.
One may wish to simplify the form of the spress in Eq. (39). For this, the following observations may be used:

+ The sixth-order tensor that relates the T;;x and =;;x can be computed from the fourth-order elastic tensor and damage
coefficient.

+ Another noteworthy feature of the sixth-order tensor is the separation of 6y from the remaining terms, this means that the
resistance only appears in the direction where the higher-order derivative is taken.

+ The growth rate of damage in this sixth-order tensor is slower than that of the fourth-order tensor due to the emergence of
the lower order term 1 — w.

From these observations, we suggest the following form of the spress tensor:

2

Tk = ﬁ(l - w)ﬂDIJKPQREPQR’ (41)

where Dk por = (D,)17pedkr is the sixth-order elastic tensor. The term (1 —w)? is used instead of (1 — ) to take into account the
averaged nature of this approximation and § < 2 makes sure that the damage driving 7}, is growing slower than the one driving
SIJ.

4.2.3. Comparing the spress—sprain law to a general spherical-deviatoric decomposition of isotropic third-order tensors
Following Monchiet and Bonnet (2011), any third-order tensor having the symmetry property =;;x = =;;x can be decomposed
as

E=E +5,+5,+E, (42)
Note that this form is a generalized version of the SFH decomposition (Gurtin and Anand, 2005a,b). The spherical (volumetric) and
deviatoric parts of & may be written as

- | - -

(:ul)“K = 3 (251';'1( - :Kii) o1y (43)
- 1 — _ 1 — —

(':'v2)1JK =0 (3= = Zur) sk + 10 (3% — Ziis) 1k (44)

and

+ (Zus +2553) 511(] (45)

— | _ — 1 - —
(:zlz)”,( = 3 (2:IJK —ZJKJ T :JKI) 30 [(10'::‘1‘[{ - lO:K[i) ory

+ (45 —351) 6k + (455 —354y) 511<]’ (46)
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respectively. These tensors are mutually orthogonal, thatis, =, : £4,, =0and £, : £, =0, 54, ! E4, = 0. Vm # n. The
quadratic invariants are then formed by taking norms of these tensors.

For the constitutive law to be objective, it should be formulated in terms of these invariants via a sixth-order tensor. Here, we
consider the isotropic case only. According to Monchiet and Bonnet (2011), any sixth-order isotropic tensor can be expressed as a
linear combination of six independent terms:

T =10 + 1dy + 1305 + 1,ds + i K + i Ky, (47)
with
I = % (2T, =Ty), (48)
I = é (3T4 =), (49)
I3 = é (2T5 —Ts) (50)
I, = % (3Ts —T3), 5D
Ky =3 (T, 275) = o (T) +2T0) = 2 (T +27,), (52)
]Kz_%(TZ—T5)+%(T4—T1+’H‘3—T6), (53)

where the T-terms can be found in Appendix B. We note that J,—J, terms represent the volumetric and K; — K, the deviatoric parts,
respectively. The spress—sprain constitutive law may be expressed in a general form as

T=T:E. (54)

We can now rewrite Eq. (41) as follows:

12
Tryg =01~ a’)ﬁl_rz [A81,8po + H(S1pSig +6106,p)] Sk REPOR (55)

From Appendix B, we can see that only T, and T, appear in Eq. (55). While T, is present in both the volumetric and deviatoric

parts, T, only appears in the latter. The independent material constants in Eq. (47) can now be expressed as follows:
, 2 . 7o . 12
=0 -w)ﬂl—’z(u +2u); 4, = (1 —w)ﬂl—’za; Iy=0;0=f =i =0 —a))ﬂl—tZZM (56)

These relations come from the solution of the linear system of equations shown in Appendix B. Note that, in the metric system, the
units of ji and 1 are Pa-m?, suggesting a length scale over which the spress will take effect.

4.2.4. Separation of shear and tensile regularization length scales
From Eq. (55), we can take advantage of the fact that T, only appears in the deviatoric part of T to differentiate the regularization
of opening and shear crack width. By applying different length scales to the corresponding terms controlling these mechanisms, we
obtain
2 2
Tk = |- w,)ﬂl—’zasuapg +(1- ws)ﬂﬁy(é,Pa,Q +6700,p) | SkrEPOR (57)

where w,,®, are the variables controlling the tensile and shear damage. The effective damage may be computed as o = 1 — (1 —
w,)(1 — w,) in this case

4.3. Coupling of the strain and sprain deformation tensors

To further prevent localization, one can define an equivalent strain with contributions from both E and E. Using Mazars’ scalar
damage model as an example, the resistance against stretching parameter may be defined as

(58)

or, more generally, as
/?=f(x)+wt< Z, EE[)_C> (59

Here, C is chosen by the user and its value depends on the level of noise in the discrete model. To distinguish between the volumetric
and deviatoric damage, the following form could be used:

;?=f()()+w,< E, EU—C,>+wS< E, Ed—CS> (60)
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As is evident from Egs. (39) and (58), both /, and w;, (or w, and [, in the case of a shear crack) contribute to the strain regularization.
While the former controls the coupling between sprain and spress, the latter relates the strain and sprain tensors. A parametric study
presented later in the paper will reveal the effects and relative importance of each term.

Up to now, there emerge four length-scale parameters, /,, w,, I, w, that control the localization behavior in the opening and shear
cracks. Constraints such as /,/w, = [,/w, or I, = [, may be applied in order to avoid model overfitting.

4.4. Adaptation to a vectorial form of the constitutive law—microplane model M7

Usually, stress—strain constitutive laws are formulated for a stress tensor where the strain tensor or its increment are used as input.
However, such laws can also be derived from the vectorial projections of these tensors on the so-called microplanes, representing
planes of various discrete orientations that may be imagined as facets whose normals represent numerical integration points on a
spherical surface centered at the continuum point (Bazant and Oh, 1985; Bazant and Planas, 1998; Bazant et al., 2021). In this work,
we use the M7 version of the microplane model for concrete. Both the general description of the microplane theory and specific
formulations for the M7 model can be found in Caner and Bazant (2013a,b) and Nguyen et al. (2021a) and are also provided in
Appendix C.

To regularize the problem of cracking, we consider the microplane strain vector on a generic microplane and decompose it into
the normal and tangential vectors (Fig. Appendix-1c). These vectors are the projection of the continuum strain tensor onto the
microplanes, and we further decompose them into the microplane normal and tangential strain vector components (Bazant and Oh,
1985). For the normal component, defined by unit normal vector n, we obtain:

Ejynng = Epyngng +nyny 21, Xg (61)
The position vector can be decomposed into normal and tangential components as:
X = UXlyng + 1Kl g + 1 X prmg). (62)

where / and m are orthogonal unit vectors in two suitably chosen orthogonal in-plane directions L and M (Bazant and Oh, 1985).
I X1lxs 1X1I 7, I X5 are projections of X on N, L, M directions. Therefore, if we only focus on the variation of E along the normal
directions, following terms will remain:

Ey =Nk Sk (63)
Similarly,
Er=LykEnk 64
Em =MpkEnk (65)
where
1 1
Nigg =npgng; Lppg = EnK(ll"J +imnp)i Mgk = Enk(mlnl +mynp). (66)

Note that, =, =, , £, represents the variation of normal and tangential components of the microplane sprain deformation vector
along the normal direction; see Fig. Appendix-1c. A complete set of terms should include:

Nisx =ng(g +mg). ©
1

L= 5(11( +mg)ny +1ynyp), (68)
1

MIIJK = E(IK +mg)mpny +myny). ©9)

The microplane stresses can therefore be written in terms of the equivalent microplane strains instead of the conventional ones
as

Sy = SN(ENa EL, EM);SL = SL(EN, EL,E}\/IXSM = SM(EN,EL» EM), (70)

with the following definitions of the equivalent normal and tangential microplane strains:

Ey=Eyx+ wt<|NIJKEIJK| -Cn) (71)
Ey = Epy +wy( MIJKEI.IK| -Cs). (72)
Ep =Ep+w( £IJKEIJK| = Cg). (73)

The increment of the microplane-projected second-order stress is now given by

45y = BN (4B +wal|zy| - C 74
N= T& N T W (l-—N|_ N ) (74)
0Ey
0S8, _
ASL_E<AEN+I’UIA<|—’N|_CN>)



H. Nguyen et al. Journal of the Mechanics and Physics of Solids 181 (2023) 105470

08t _
+ E (AEL + wsA<|‘—‘L| - CT))

S

+ =L (AEM + w0, M|y —CT)), 75)
OE
9S8y -

a8y = S5 (AEN + w, A 5| - CN>)

Sy _

+ E (AEL + WSA<|'—’L| - CT))
oS

+ M (4B + w Al Zy |- o). 76)
OE

where the explicit expressions for the tangent moduli were derived in Nguyen et al. (2021a).
On each microplane, the spress—sprain relation may be expressed as

12
13 —_

Ty = ;3En 3N 77
12

T, = éfTsL, (78)
12

Ty = l_sngEM (79)

Note that the microplane spresses are decoupled, and £y, & are the deformation-dependent secant microplane moduli. For an elastic
material in a pristine state these are given by

_£
1-2v’
E(1 —4v)
Er=E&pg = (— (81)
(1 =2v)(1 +v)
The principle of virtual work for the spress is employed to convert the vectorial representation of the microplane model to the
tensorial one used in the governing equations of mechanical equilibrium. For this, we write

En =Eno = (80)

— 3 - - -
Trx6Z15x = o ?{(TN(?:N + T 65 + Ty 6Z5,)dS
s
3 —
=5 }é(-"/UKTN + LT + MpxTy)dS 65k, (82)
which implies
3
Tk = . %(NI,IKTN + LT+ MpTy)dS. (83)
s

In the above equations, ¢ is the integral over a unit hemisphere. It is approximated according to the optimal Gaussian integration
formula for a spherical surface (Bazant and Oh, 1986).

Remark 1. It can be seen from Appendix D that the sixth-order constitutive tensor given by Eq. (83) resulting from the microplane
theory does not follow the form given by Eq. (57). To make the formulation compatible with Eq. (57), instead of using Eq. (83),
one can use Eq. (57) directly with the damage variables defined as the mean stiffness degradation of all the microplanes, namely,

& &
o =1-> ¢ Ndsiw =1-> ¢ Lds. (84)
27[ S €N0 : 27T S gTO

Remark 2. We note that while higher-order microplane models were formulated before (see, e.g., Lale et al., 2017; Ozbolt and
Gambarelli, 2018; Lale and Cusatis, 2021), these approaches included only the strain gradient and missed the important effect of
material rotation gradient, which is included in the sprain tensor.

5. Discretization using isogeometric analysis

The discrete equations of mechanical equilibrium (under the small-strain assumption) are obtained using a standard Galerkin
technique (Belytschko et al., 2014; Hughes, 2012). We assume that the ith Cartesian component of the displacement field is
approximated as

uf’ = Z NAul’.q, (85)
A
where A is the nodal index, N* is the basis function associated with node A, and uiA is the nodal displacement unknown. Introducing

the displacement approximation in the weak form of the governing equations of mechanical equilibrium results in the following
semi-discrete equations:

/V(aIB?i+rIkP?ik)dV=/SNAtf’“dS+/VNAb,-dV—/VNApii,»dV. (86)
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Here, I =1,....3in2D and I =1,...,6 in 3D, is the index of the Voigt notation, If’“, b; and p are the external traction, body force
per unit volume and the solid mass density, respectively, B?l. is the standard strain—displacement matrix given by

[ N4 0
A _ A
B} = (11 N 2‘2 (87)
| N»Xz N-xl
in 2D and by
[ N4 0 0
X1
0 N, 0
o o N4
B?f = 0 NA N:F (88)
X3 X2
Nt 0 N4
>A3 A !
L X N,xl 0

in 3D. In addition, in Eq. (86), a new quantity Pf,. . emerges, which we call the sprain-displacement matrix given by

A A
N,x|x| 0 N,x]x: 0
A _ A .pA _ A
PIil - 0 N,xle > PIi2 - 0 N,xzxz (89
A A A A
»X2X] X1 X] XX XX
in 2D and by
C A g A
NA 0 0 NA ,? 0
A
N o, 0 0 N %y 0
0 0 N4 0 0 N4
PA _ ,X3X] ,PA _ ,X3X)
it — 0 A A T2 T 0 A A
WX3X] XX WX3X) X2 Xo
N4 0 N4 N4 0 4
X3X| SX1X| >X3X7 X1 X2
A A A
L XX X1X] 0 | 2Xp X9 XX 0
_ A -
NA 0 0
A
0 - 0
0 0 N4
A _ X3X3
Pis=l A 4 (90)
2X3X3 sX2X3
A A
,X3X3 0 N,X]X3
A A
L »X2 X3 »X1X3 0 _

in 3D. Linearization of the internal work terms in the Galerkin formulation given by Eq. (86) results in the following expression for
the left-hand-side stiffness matrix:

AB
"= ) { o e, mt

AT t B A7 t B
PO (Cm), B 4P (CER) P } av. o

where the tangent stiffness tensors C*" are given by

(C82),, = S2L:(C8) = 22 = o,

_) — _( tan) _ _’( tan _ 0Ty
()6_, SE/1Jk a‘f]k TE)IkJ 66.,

TE) Tkdm — M (92)

Calculation of the sprain terms in Eq. (86) makes use of the second derivatives of the displacement field and the corresponding test
functions. As a result, the proposed approach must rely on the approximation that is at least C!-continuous. While several options are
available, we choose to discretize the equations using IGA based on Non-Uniform Rational B-Splines (NURBS) (Hughes et al., 2005).
The geometric modeling flexibility combined with higher-order accuracy and smoothness of IGA has led to its superior performance
for a variety of solid and structural mechanics systems (Hughes et al., 2005; Cottrell et al., 2009; Pigazzini et al., 2018; Alaydin
et al., 2021; Li et al., 2022; Li and Bazilevs, 2023) and it is felt that IGA is particularly well suited for the present application.

6. Computational results

Unless otherwise stated, all the present examples use quadratic NURBS with C!-continuity.

11
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6.1. 1D bar in tension

We consider a 1D bar of length L under tension as illustrated in Fig. 2a. The governing equations are the 1D counterparts of
Egs. (22)-(24) with the boundary conditions

u(0) = 0;u(L) =i > 0. (93)

A material point at the mid-span is assumed to be slightly weaker than ones in the rest of the bar. This set-up triggers damage
at this point, ensuring a deterministic and unique result. We use a constitutive law described by Egs. (29)—(33) (see Fig. 2b), in
which the equivalent strain 7 is computed from ¢ = du/dx and & = d?u/dx2. The initial fracture energy of the material is of the
form G, = 0.5g;Wcpnqr, Where wep,, is a length scale representing the size of inhomogeneity in the quasibrittle material and g, is
defined as in Eq. (34).

The computational results are shown in Fig. 3 using a mesh size of 4 = L/20. Both linear (for /, = 0) and quadratic (for /, > 0)
NURBS of maximal continuity are considered. Note that linear NURBS are equivalent to linear finite elements. Figs. 3a, d show that
the localization of the strain appears at the pre-damaged location.

When /, is non-zero, the localizing strain spreads over a few knot spans. The spreading extends further when /, is increased (see
Figs. 3e, ). The stress profile is no longer constant due to the presence of the spress z. This regularization effect is explained by the
emergence of the sprain ¢ (see Figs. 4a—c), which is symmetric about the pre-damaged region, and the corresponding spress, which
suppresses abrupt changes in the strain field. The distribution of sprain exhibits convergence under mesh refinement.

Remark 3. Similarly to /,, w, also has a spreading effect on the localized strain. However, it is only effective when used with
non-zero /,. A more detailed discussion can be found in Appendix E.

The force-displacement curves (Fig. 4d) support the fact that strain regularization corrects the pathological mesh-dependence
behavior of the discrete solution. When /, = 0, for linear finite elements, the strain will always localize in one element whose size
can be reduced, theoretically, to zero. This causes the unrealistic deviation between the solid and dashed curves (corresponding to
the h = L/20 and h = L/40 computations, respectively) of the force-displacement response shown in Fig. 4d. However, when /, is
non-zero, this deviation vanishes and the results converge under mesh refinement.

Remark 4. Energy dissipated by the damaged bar can be computed from g, (see Eq. (34)) and characteristic length w,,. The latter
may be estimated as

Wehar = 1.32

wy
14+ w, <E£> ] U + L) 94)

t

Here w; = 2.27; w, = 0.356, and [, is an intrinsic localization limiter of a numerical method (e.g., local mesh size). The softening
slope, in the case of continuum damage model, is given by E, = f,/(e; — ¢). The derivation of w,, is summarized in Appendix F.

6.2. Comparison of the nodal sprain forces

In the original development of the sCBM (Zhang and Bazant, 2023), a different approach was used. On a regular Cartesian
mesh, the curvature of the displacement vector (or the second derivatives of the hessian of the vectorial displacement field) was
represented by its finite difference approximation. Then the derivatives of the sprain energy with respect to the nodal displacements
provided self-equilibrated forces, called the sprain forces, that had to be applied to resist excessive curvature (the sprain forces
represented the spress multiplied by the tributary volume of each node) Note that the use of finite differences required construction
of a Cartesian mesh around the notch tip. In the 1D setting, two schemes were used to distribute the forces to the nodes: (a) The
“triplet” case in 1D, in which the computed nodal sprain force f was distributed to the node and its nearest left and right neighbors
as focpm = L=/ 2f,—f1T; (b) The “quintuplet” case in which the computed nodal sprain force f was distributed to the node and its
four nearest as fyopy = [-f,—F-4f.—fF.—fIT.

In the IGA-based isCBM formulation, the nodal sprain forces come from the sprain terms in the semi-discrete weak formulation
given by Eq. (86) and are consistent with the choice of NURBS approximation:

fiscem =/VT1kP;\,-de- (95)

Fig. 5 shows a comparison between ficpy and fycpy for the 1D bar problem. Note that the sprain force f is scaled such that its
magnitude is comparable to the maximum of fi,cpy. Fig. 5 shows that the two nodal force definitions show a very similar profile,
with the degree of similarity increasing with the increasing order and smoothness of the NURBS approximation. In addition, both
nodal force fields vanish at the boundary as desired. These results suggest that the form of the sprain forces designed at the discrete
level in sSCBM to achieve the desired strain regularization outcomes is naturally reproduced in the variational framework of isCBM.
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Fig. 3. Normalized displacement, strain and stress fields in the 1D bar for & = 0.07¢,L and a = 3.2¢,L; (a, d, g) [, = 0; (b, e, h) /, = 0.08 mm; and (c, f, i)
1, =0.2 mm. The knot span A= L/20 and L =10 mm.
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force—displacement curves (A is the cross-section area of the bar); and (e), (f) Consistency of the normalized ¢-field when the mesh is refined (knot span
h = L/40).
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Fig. 5. Comparison of the nodal sprain forces for the 1D bar problem. To enhance the clarity of the figure, the locations of the bars in the bar graph are
intentionally selected such that ficy and fyepy are visually distinctive.

6.3. Three-point bending of notched beams: Alleviating mesh-direction bias

We consider a single-edge-notch beam subjected to three-point bending. The problem setup is shown in Fig. 6a where we set
D = 50 mm and L = 175 mm. The computations are done using the M7-microplane model (Caner and Bazant, 2013a,b; Nguyen
et al., 2021a; Bazant and Oh, 1985; Bazant and Prat, 1988), whose parameters are summarized in Table 1; see Appendix C. Here
we make use of the sprain formulation given by Egs. (55) and (84), and refer to it as the partial approach. The total approach makes
use of the sprain formulation given by Eq. (83). A comparison between the two approaches is provided in the following section.

After the coarsest NURBS mesh is constructed, the control points at the top surface of the beam are displaced in the horizontal
direction, which introduces a mesh-direction bias without changing the problem geometry. The mesh is then refined to carry out the
computations. The mesh-direction bias is characterized using the angle # as shown in Fig. 6b. The angle ranges from no deviation
(6 = 0°) to an extreme case of § = 40°. The resulting meshes are shown in Fig. 6c.

For this setup, independent of how skewed the mesh is, the cracks should propagate straight up. However, the local nature of
damage is well known to produce mesh-dependent solutions. In this case, the damage zone clearly follows the mesh direction as
shown in Fig. 6d. This, in turn, generates significant differences in the force-displacement curves at the structure level for both
the peak load and softening slope, as shown in Fig. 6h. The case of non-zero I, is able to alleviate the mesh direction bias as
shown in Fig. 6e. Fractures no longer localize in a narrow band of elements and propagate mainly in the vertical direction. This
mesh-independent nature of the solution yields consistent force-displacement results for both the peak load and softening slope (see
Fig. 6e).
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Fig. 6. Notched beam subjected to three-point bending. (a) Problem setup; (b) Definition of the mesh bias angle 6; (c) Problem meshes for different values of
0; (d)—(e) Directional bias in the solution, which is corrected by the isCBM when /, increases from 0.0 mm (d) to 0.5 mm (e); (f) The effect of /, on the fracture
energy, apparent structure strength and post-peak behavior.

Figs. 6d-f show that both the mesh-size and direction objectivity of the results improves as /, increases. The FPZ also grows in
size and changes shape leading to a higher peak load in the force-displacement curve in Fig. 6f. Parameter /, controlling the FPZ
size should, therefore, be carefully considered and included in the model calibration process.
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Fig. 7. (a)-(b) Effectiveness of the partial vs total formulation in distributing the strain over the FPZ for the /,( = 0.2 mm) with 6 = 0; (c) Effectiveness of the
partial vs total formulation in correcting the mesh-direction bias.

6.4. Comparison between the total and partial sprain formulation of the M7 model

In this section, we compare the performance of the partial (i.e., using Eqgs. (55) and (84)) and total (i.e., using Eq. (83)) isCBM
formulations of the M7 model. Fig. 7a shows that the partial approach has a stronger regularizing effect on the FPZ as opposed to
the total case, which gives a more localized distribution of ¢. This trend can also be observed in the force-displacement curves in
Fig. 7b, which shows a lower failure load and a more brittle post-peak response (i.e., steeper softening) for the total case. Finally,
as evidenced in Fig. 7c, the partial approach is also more effective than the total in alleviating the mesh-direction bias. However,
despite the somewhat underwhelming performance demonstrated, we believe the total approach may be improved further to achieve
better performance, which we leave to the future work. For the remainder of the section we will employ the partial approach, which
appears to be robust, and relatively simple to implement.

6.5. Experimental validation

6.5.1. Size effect test

The size effect test is an efficient and distinctive way (Bazant and Nguyen, 2023) to determine the FPZ size and initial fracture
energy of the material. Based on a common experimental setup, e.g., the three-point-bending test configuration of single-edge-
notched beams (Figs. 8a-b), the tests are performed on scaled specimens (Bazant and Kazemi, 1990; Bazant and Planas, 1998). After
obtaining a peak load for each case, a fitting procedure is used to obtain both the initial fracture energy G, and the characteristic
size of the FPZ ¢, (Nguyen et al., 2020a,b, 2021b; Dénmez et al., 2023) via the following equations:

%0
oy=———:G, = a(z)DogO/E, cp= gOD/g(') (96)

T+ D7D,
where g, and g[’) are the dimensionless function that describes the geometry of the beams and its derivative.

Here, experiments by Grégoire et al. (2013) are chosen to validate the proposed framework. Fig. 8c shows a consistent increase of
the peak load across the specimen sizes when /, increases from 0 to 0.2 mm. The nominal strengths computed from these peak loads
(on = F/bD, where b is the out-of-plane thickness of the beams) are compared with the experimental results in Fig. 8d, showing a
good fit. Notably, in the range of D’s considered in the experiments and for /, = 0, the nominal strength approaches a straight line
with slope —1/2 on a log-log scale at a faster rate. This is because localized cracks generate a relatively small FPZ compared with
the structure size. When regularization is applied, quasi-brittle behavior of the material is better represented and the peak force
response is much closer to the experimental data.

The good agreement of the isCBM formulation with the size effect tests is not a random coincidence. Indeed, when overlaying
the damage zones of the different-size specimens (such a zone is defined by the boundary delimited by the inelastic strain in the
y-direction), their sizes and shapes are almost identical. It is worth noting the non-vanishing width of the FPZ, which becomes
important when crack-parallel stress is present in the structure (Nguyen et al., 2020a,b).
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Fig. 8. (a)-(b) Size effect test in which the beams have dimensions D = 400,200, 100,50 mm; (c) Force-displacement curves for beams of different sizes. Dashed
curves represent /, = 0 mm, while solid curves represent /, = 0.2 mm; (d) The predicted nominal strengths are compared with the experimental data, showing
good agreement of the sprain formulation with the size effect law; capturing this effect is possible due to the existence of a finite-size FPZ ahead of the tip
whose size remains relatively consistent among the beams of different sizes (e).
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Fig. 9. (a) Sandstone prism subjected to biaxial compression under plane-strain conditions. Here, H = 100 mm, b = 50 mm, and 7 = 50 mm; (b) Force—displacement
curves for /, =0 mm and /; = 0.2 mm compared with the experimental data. Shear band profile for /, = 0 mm (c) and /; = 0.2 mm (d). Microcrack patterns of
cemented rocks (Geel, van, 1995; Wen et al., 2023) (e) and strain profile measured by the digital image correlation (DIC) technique (Wang et al., 2019) (f),
confirming the enhanced shear band width that is well captured by the isCBM.

Remark 5. In some cases, the aggregate may be chemically weakened leading to through-aggregate cracks with near-zero
width (Zhou et al., 2021). For this, Eq. (55) may be modified to adapt to such cases where g can be made a function of a chosen
chemical potential reducing the crack band width to account for this weakening effect.

6.5.2. Regularization of a shear band

The current framework is not limited to opening-mode cracks and naturally applies to other phenomena such as localized shear
or diagonal splitting bands. To demonstrate this, we carry out simulations of an experiment on sandstone under plane-strain biaxial
compression (Wen et al., 2023). At the front and back surfaces of the specimen, a rigid frame was attached to constrain the z-
displacement. At the side surfaces, in the x-direction, pressure was applied to vary the biaxiality of the stress state (here we consider
only the case pf zero confining pressure). A compressive displacement was applied to the top and bottom surfaces of the specimen.
See Fig. 9(a) for the problem setup.
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In the case of I, = 0 (see Fig. 9c), the shear deformation is localized into a narrow band whose size scales with the local mesh
size and is smaller than the inhomogeneity length scale of the material. As a result, the predicted force—displacement curve shows a
slightly softer behavior compared with the experimental data (see Fig. 9b). When /; = 0.2 mm, the width of the shear band expands
(see Fig. 9d), leading to a better match with the experimental results. Note the difference between the numerical and experimental
curves in the post-peak regime. This might be caused by an overestimation of the cohesion-friction transition of the M7 constitutive
law for concrete, which needs to be re-calibrated for sandstone.

The difference in the load—displacement curves is not sufficient for reaching a definitive conclusion and thus requires additional
validation. For this, a comparison is made between the simulation results and digital image correlation (DIC) measurements for the
microcrack patterns and strain profile across the band (Wen et al., 2023; Geel, van, 1995; Wang et al., 2019) in Figs. 9e—-f. The
maximum principal strain profiles, measured across the shear band and shown in Fig. 9f, revealed that the strain profile is spread
within a finite-size band, which is well captured by the isCBM formulation. Finite width shear bands (or diagonal splitting bands)
appear to be common among cemented rocks where the microcracks contribute to the dissipation of inelastic energy prior to a major
failure (see Fig. 9e).

It is worth noting that in some cases of dynamic shear, the release of energy may be so abrupt that a large amount of released
heat suffices to weaken the mechanical properties of aggregate, which may lead to a near-zero-thickness shear band (Rice, 2006)
(I, =~ 0). In this case, /; or p can be made a function of inelastic work and gradually reduced to zero as the state variables reach
their critical values.

Remark 6. The present formulation of the sprain microplane model has been driven by simplicity. In future work all the distinctive
tests studied in Bazant and Nguyen (2023) should be simulated and it is expected that a refinement of the sprain microplane would
be required. Nevertheless present formulation suffice to demonstrate the viability of the isCBM.

7. Conclusions

1. The present IGA formulation of the smooth crack band theory based on the hessian tensor of the displacement field (i.e., the
sprain deformation tensor) is shown to regularize the strain field of quasibrittle damage and prevent nonphysical excessive
localization.

2. The novel homogenization approach is used to explain the emergence of the tensors of sprain (as a deformation characteristic)
and spress (as the work-conjugate of sprain tensor representing the sprain energy derivatives with respect to the sprain tensor
components). The spress—sprain relation is part of the constitutive law of the material.

3. The analysis revealed two different regularizing material characteristic lengths, one of which couples the strain and sprain
deformations, while the other couples the spress and sprain tensors in the constitutive law and equilibrium equations.

4. These lengths, together with the damage law, ensure the correct fracture energy and damage zone width, length and shape,
reflecting the material physics.

5. An attractive feature of the present methodology is that it is, in principle, applicable to any material model. This is attested
by the present study of the isCBM formulation using a simple bar-in-tension problem, combined with the M7 microplane
model of concrete failure. This is documented by computer simulations of the size effect and shear band localization.

6. The isogeometric analysis (IGA) provides a natural and convenient way to achieve the complete C'-continuity of the
discretization required to implement the isCBM formulation. It clearly demonstrates that the resulting IGA-based sCBM
framework, accompanied by the M7 model of concrete failure, is able to remove the spurious mesh-size dependence of the
discrete solutions and is also effective in correcting the mesh-orientation bias of regular meshes.

7. The size and shape of the fracture process zone and the fracture energy are here shown to match the size-effect experiments.
The size effect is one of the distinctive tests to validate emerging computational methods for fracture.

8. Moreover, the present formulation is able to regularize the shear-band width in quasibrittle materials, with a regularizing
length chosen as independent of the opening-mode damage. This attests to the versatility and general-purpose applicability
of the present method.
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Appendix A. Derivation of P,Q from S,T, =, E, F, and

Because the incremental work must be preserved regardless of the sprain deformation tensor, the following equation must hold:

S1y0Er; +Tryx0Z1 5k = (ForSir + Trrxniko) 8For + ForTrrxdnrko 97)

From the definition of #; g, it is obvious that it has the same symmetry of =, ;. Taking the time derivative of Eq. (8) gives:

8Er; =05 (8Fg; Fry + Fri6Fgy), (98)
8217k = 0.5 (8nyxoFor + NykodFor + 6nixoFor +MixkodFor) (99)
Therefore,

Spj0Er; +Tryg6=1x =05 (Slj5FR1 Fry + SIJFR15FRJ) +

0.5 (T x0mx0For + TrrxnrkodFor + TrixdnikoFos + TrrxnikodFor) (100)
Due to the symmetry, we can rewrite:

S1y0Er; +Tryx651 5k = (ForSyr + Trrxiiko) 5For + ForTrixdnrxo (101)

Comparing Egs. (97) and (101) and altering the indices, we obtain:

Ok = S%’TJH (FxkoTorys) (103)

and

Py =FioSos tokiTiok | (104)

It should be noted that P,;, and Q,,x are naturally coupled through the deformation gradient and sprain deformation tensors.
Therefore, unlike the conventional definition of the PK1 stress, the mesoscale spress and sprain terms also contribute to P;;.

Appendix B. A complete decomposition of a sixth-order isotropic tensor

(TI)I.IKPQR =0170pg0kr (105)
1
(T2) sk por = 3 (81p6,0 +6106sp) Okr (106)
1
(T3)IJKPQR =5 (81x6sr +61r8sk) Bpo (107)
1
(T4)IJKPQR =3 (5KP5QR + 5PR5KQ) o1y (108)
17,
(T5)IJKPQR 4 [("IP‘SJR + 5IR5JP) oko + (51Q51R + 51R51Q) 5KP] (109)
1
<T6)IJKPQR =2 [(51P‘SQR +8106pRr) 8k + (8,p60R +6108pR) 511<] (110)
The linear system with six variables that results in Eq. (56)
2
2 1- 1 1 I
A =2 d = —il — —di,=(1 — )= A: 111
5/11 5/12 5= 3k (A -o)4 111
1 2 z
Th+Sh =1 -0)52u 112
3 + 3 ( 0))12 H; (112)
2 = 1 2 1
_A. - _A. -_ m el i = 0. 11
M TsMT 3= (113)
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Fig. Appendix-1. (a) In concrete, the constitutive law can be constructed via the mesoscale behaviors of microplanes. For example, interactions between two
aggregates across the one plane can be lumped into microplane 1, while those across come other inclined plane are lumped into microplane 2; (b) the microplane
strain vectors, including the normal, ¢,, and tangential (shear) components, ¢, represent the projections of the strain tensor onto each microplane. Through
these vectors, the material responses are formulated according to the microplane constitutive law; (c) the variation of the normal and tangential strain vectors
in the normal direction.

3.0 2
L 20— Sy 4 iy = O; 114
shTshTht gk (114
2. 2
. —=Zn :0; 115
=3k (115)
1= 3. 4 1
LY S e A S 3 116
s TsMT ST 30 (116)

Appendix C. A summary of microplane model

While the tensorial models construct the relation between the stress and strain tensors using tensorial invariants together with
loading surfaces, normality rules, plastic-hardening parameter(s) and damage parameter(s), the microplane constitutive model does
the same with a vectorial formula (Bazant and Planas, 1998; Bazant et al., 2021; Bazant and Oh, 1985). In this type of constitutive
law, the strain vectors are computed based on the projection of the strain tensor onto generic planes of arbitrary normal directions,
called the microplanes. The use of vectors instead of tensors assists the physical insight, intuitively reflecting the microcrack
openings, splitting, shear slip and frictional dilatancy (see Fig. Appendix-1 for a clear illustration). The microplane theory has been
applied to concrete (both plain and fiber-reinforced), fiber composites, shale and other anisotropic rocks, soils, metals, elasto-plastic
metals (Brocca and Bazant, 2000), shape-memory alloys, and ceramics subjected to monotonic, cyclic, and sustained loadings. The
microplane model has also been generalized to fatigue up to several thousand load cycles (Kirane and Bazant, 2015).

M7 (Caner and Bazant, 2013a,b) is the latest in a series of progressively improved concrete models starting in 1985 with M1.
In this model, all of the inelastic behaviors are characterized by stress—strain boundaries, and the return to a boundary is done at a
constant strain in each loading step (this is a special case of the radial return algorithm). The energy dissipation on the microplane
level is guaranteed to be non-negative. Hence the non-associated plasticity with its computational limitations is made unnecessary
and apparent violation the normality rule in the stress space does not matter since the impossibility of negative dissipation is
guaranteed vectorially on the microplanes. There is no possibility of negative dissipation due to unequal friction and dilatancy
angles. Through a properly weighted integration over all spatial orientations (Bazant and Oh, 1986; Stroud, 1971), the stress tensor
is obtained by the variational principle of virtual work. A numerical integration over a hemispherical surface is carried out according
to an optimal Gaussian formula whole integration points, with certain weights, represent the discrete orientations of the microplanes.
Although the minimum number of microplanes is 21, typically 37 microplanes are used for better accuracy (Bazant and Oh, 1986)).

On the boundary describing the stress—strain vectorial relations, while a negative slope in the stress—strain plane defines the
evolution of damage, a horizontal slope defines plastic yielding. Similar to crystal plasticity models, the interaction of microplanes
may generate hardening plasticity or damage at the tensorial level. Moreover, separate damage variables (like w in the case of
continuum damage model in Eq. (29)) is not needed, and the inelastic deformation can be defined by subtracting the elastic
deformation from the total one.

As a result of the strain tensor projection, one normal components and one shear component, i.e., ey and £ (see Fig. Appendix-1),
arise on each microplane, the latter of which is then further projected onto two predefined bases tangential to the microplane as ¢;
and £,,. When 37 microplanes per hemisphere (Bazant and Oh, 1986) are used, one has 37 x 3 = 111 variables driving damage and
plasticity, which is equivalent to 111 simultaneous loading surfaces. The strain tensor projection represents a kinematic constraint
of the microplanes, which is the opposite of the static constraint in which the stress tensor is projected on the microplanes (the
dual static constraint was used in the classical slip theory of plasticity of Batdorf and Budiansky (1949) but in the case of softening
damage was found prone to instability).

The multi-surface feature explains why the vertex effect (for the definition and discussions on this effect, see Gerard and Becker
(1957), Budiansky (1959), Caner et al. (2002) and Jirasek and Bazant (2001)) can occur at any point of the nine-dimensional
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Table 1
M?7-microplane model parameters for Sections 6.3-6.5.
Parameters Sections 6.3-6.4 Section 6.5.1 Section 6.5.2
E 30000 31500 30000
v 0.18 0.18 0.18
ky 0.00012 0.00008 0.00003
ky 80 55 40
k; 20 15 15
ky 45 40 40

space of stress tensor, which would not be allowed by the loading surfaces of hardening plasticity. It also is worth noting that
the damage generation on softening stress—strain boundaries typically occurs only at some microplanes but not at others, and that
loading, unloading or reloading may selectively occur of various microplanes. All this gives rise to a strong and highly varied
path-dependence of the microplane constitutive model.

Also note that the generation of damage on a microplane does not proceed monotonically, and that a damaged microplane
can regain the stiffness under compression when it is subjected to, for example, hydrostatic pressure. The microplane model
allows simplifying the vectorial constitutive law as one-to-one relations between the conjugate stress and strain components on
the microplanes. No cross-interactions such as the Poisson effect on the microplanes need to be considered since such cross effects
are automatically generated by interaction of microplanes of different orientations.

When the projection is applied to the total strain tensor, the elastic Poisson ratio of the microplane material model cannot exceed
0.25 (Bazant and Oh, 1985). However, Bazant and Prat (1988), Carol and Bazant (1997), Carol et al. (1991) and Bazant et al. (2000)
showed that the problem could be solved by decomposition of the normal strain into deviatoric and volumetric components, and
projecting each component on the microplanes separately.

It was thought that the microplane model is computationally more demanding than the tensorial constitutive models with
invariant. For a finite element (FE) system with about 50 unknowns computer run time is indeed far greater. But the experience
with wavecodes such as EPIC (Johnson et al., 1996) or PRONTO (Taylor and Flanagan, 1989) showed that for a system 10 million
unknowns the difference is imperceptible. The reason is that the computational work increases linearly with the running time of
material model but quadratically with the number of kinematic degrees of freedom.

Several further observations can be made on the incorporation of M7 model into the isCBM framework:

Both width and length of the FPZ (wgp; and /gp;) depend on the constitutive law and the regularizing material characteristic
lengths.

These two independent material characteristic sizes co-exist, implying the inadequacy of any models that confine the cracks
into a zero-width line (or surface). The evolution of each size depends on the stress state and the loading path that leads to
such stress state, as illustrated in Nguyen et al. (2020a,b).

+ A parameterization procedure should start with assuming an /, that is related to the inhomogeneity size. Next, calibrate the
model parameters to match both the shape and size of the FPZ (which is best described by the size effect test, helped by digital
image correlation) and the resulting fracture energy.

Calibrated parameters for Sections 6.3-6.5 are summarized below (See Table 1)

We note that the parameters used in this paper were not taken from either (Nguyen et al., 2021a) or (Caner and Bazant, 2013b).
This is because in the conventional crack-band model, the crack tends to localize into one element width. Therefore, the parameters
are calibrated so that the energy dissipated in that narrow zone reflects the material fracture energy. In isCBM, the FPZ involves
multiple element width enclosed within a smooth FPZ, and the parameters should be modified such that the sum of energy dissipated
by these elements will reflect the fracture energy.

Appendix D. The relation between second- and third-order linear elastic stress-strain relation based on microplane theory

Stress—a second-order tensor

3 &r
Sy = Z?i [(SNnIn_,nPnQ) + T(n15” +ny6;)(npdip +npdip — 2nPnin-)] dS Epg
En —&r 28y +3&r
= [(T) 816pg + <T (87pbro +6108:p)| Epo (117)
= [A8;,8pg + U1 pds0 +81085p)| Epg (118)

The last equation leads to the definition of &y,&; in Egs. (80)-(81). Note that, the following integrals computed on the unit
hemisphere S have been used:

}{ npnyds = Zs,, 119)
g 3
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2r
fgnannPnQdS=E(élJEPQ+51P5JQ+51Q5!P) (120)

Spress—a third-order tensor
Rewriting Egs. (77)-(79) and substituting them in the PVW, i.e., Eq. (83), yields:

3 Er
Trk = Z}é[(‘91\/”1nJ"K”P”Q"R)‘F T"KnR("I"PSJQ"'

nngéyp +nynpdrg +nyngdrp — 4n1anPnQ)] dS Epgr (121)

Hence,

3
Trrx =5 [ (En —Sr)jén,njnKnPnQan5+

&
TT snKnR (npnpdso+nnpdsp +nynpbrg +nynpdp) dS] Zpor (122)

We can apply the following equation:

}énannKnPnQanS = 2 (515K pdor *+ 31,0k00pR + D110k ROpo+
01k0rpbor +0r1k6100pR + 61K O ROPOT
01pbrkbor +0rpdrodkr + 6rpdrROKOT
61007k0pr + 0100 POk R + 6100 ROKPT
61r85k8po + 61RrE POKQ + 51R51Q51<P> (123)
The third-order stress then reads:

(En = &r)
Tk = [ 105 <5IJ5KP5QR +07y0k0pR *+ 0170k ROPOT

6rx61pSor + 61k6700pPR + 61k 6rROPOF
S1pOrkOor T 01pOy0KkR *+ 61pOyROK QT
61067k 6pR + 61007POKR + 6100 ROKPF
01ROrkSpo + 61RO TPOKQ + 51R5JQ5KP)
+§—£ <5JQ5U<5PR +6700rp0kR + 6700rROKPF
0rpbribor + 67p0r00kR + 67PO1ROKQF

0100k 0pr + 0100 pOkR + 6100 ROk P

S1pSrkSgr +01pOroOkR + 51P5JR51<Q) ] Zpor (124)

Appendix E. Effect of w,

We now take a closer look at the static equilibrium condition (Eq. (22)). Incorporating the constitutive law (Egs. (29) and (41),
assuming zero body force, b, = 0) yields:
2
Ir &
12 9x2
with g < 2. The damage variable is computed from (31) and the equivalent strain reads:

% [(1 — @) Ee] - [(1-w)EE] =0 (125)

7=e+w(¢ -0 (126)

Therefore, in Eq. (125), both w, and I, are present. C = 10~!° to suppress the noise from round-off errors. The Macaulay bracket is
removed as the entire bar is in tension. Two cases can be considered:

@l =0uw>0

I, = 0 means that the coupling between sprain and spress is non-existent, so the strain profile must satisfy (1 —w)? Ee = constant.
When w, = 0, the strain will localize into one bar so that the unloading and the softening section of the bar must reach the same
stress level. However, when w, # 0, such a localization will lead to a high |&| value, and the damage will arise at the neighboring
points. This will result in a violation of the stress equilibrium condition (see Figs. Appendix-2a—c for the first-iteration profiles of the
deformation fields). Therefore, the strain and sprain deformations within w, will redistribute to satisfy the constraint 1 — @ « £70.
This can only be achieved by a fixed constitutive law, which is both inconvenient and non-physical. Therefore, with a general
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Fig. Appendix-2. (a) For w, > 0 and /, = 0, no equilibrium solution can be found after the damage arises, leading to the oscillation of the iterative solution;
b-(c) The effect of non-zero w, on the enhanced distribution of strain and sprain deformations in a 1D bar subjected to uniaxial tension.

constitutive form, there does not exist a convergent solution for this problem. In fact, the iteration will diverge or the adaptive time
step will reduce to an infinitesimal value.

®)/,>0,w,>0

To resolve the above-mentioned problem, a non-zero w, needs to be used with non-zero /,. Figs. Appendix-2g-i show that w, has
a spreading effect on both the strain and sprain deformation profiles compared with the case where only /, is used (Figs. Appendix-
2d-f). Also, the profiles in Figs. Appendix-2h-i exhibited a more gradual reduction of the strain and sprain deformations at the
boundary of the regularizing length.

Appendix F. Derivation of w,,. from the exact solution of a 1D bar

In 1D, a closed-form solution satisfying Eqs. (22)-(24) and the boundary conditions in Eq. (93) is feasible. For the elastic bar,
rewriting the equilibrium of stress gives:

do

dx

The constitutive relation is:

=0 (127)

o= FEe (128)

So, the governing equation becomes:
de
dx

However, when a crack is initiated at the mid-length, i.e. x = L/2, a slight modification is necessary. We introduce a source term
in Eq. (129) to represent the strain burst, i.e.,

=0—->¢e=const. >u=ux/L (129)

e(x) = =aé(x— L/2) (130)
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where § is the Dirac—delta function. The form of the source term function makes sure the second boundary condition in Eq. (93) is
satisfied, so that only the first boundary condition needs to be satisfied. This leads to the solution u = #H(x — L/2), where H is the
Heaviside function. It should be noted that the constitutive relation in Eq. (129) must be satisfied everywhere in the bar except for
x = L/2, so that the stress in the bar would vanish (i.e., the bar gets completely unloaded).

When the higher-order term appears, we apply the same strategy as for the non-local governing equation. For the elastic bar:

%—%=O—>a—%:consn—>%—%(%g—j:):const. (131)
Similarly, for the damaged bar, a Dirac delta source term will appear, i.e.,
%—%(i—iji‘é):aa(x—uz)—» %—%%:ﬁ&(X—L/Z) (132)
As the damage does not occur at the boundary, we can rewrite the boundary condition (24) as:
0 =7(L)=0 - E—I?@(x:Oorx:L):O (133)
12 dx?

Therefore, only three boundary conditions remain, i.e., u(0) = d>u/dx2(0) = d?u/dx2(L) = 0.
The solution of Eq. (132) is:

u=Cjexp <—¥x> +Czexp<2>/§x> + u,(x) (134)
t t

where u), is the particular solution.

exp <—21I3x> [H (x- %)exp(#x) +H(Z-x) exp(%)]

+2p<21£> [H (x_g)exp<_¥x)+n(§ _x)exp<-fL>] (3s)

cosh(ﬁL/l,) cosh(\/gL/l,)

Cy=-i ;C = i——————
exp (4\/§L/1,) —1

1—exp (—4\/§L/I,)

The analytically calculated displacement giving the strain and sprain deformation fields of the analytical solution is plotted in
Fig. Appendix-3. Note that the strain field in Figs. Appendix-3e, f is concave rather than convex, due to the exponential shape. This
is the result of the discontinuous ¢ at x = L/2, shown in Figs. Appendix-3h, i.

Now we define Ax.q as the distance at which the strain value reaches C% of the maximum strain (e,,,,,; see Fig. Appendix-3f).

u, =

<
ARSI}

and,

(136)

o | Lt ew (-2\/§L//,) Lo (2\/§L/lt> +1
U . exp (—4\/§L/l,) exp (4\/§L/I,> -1

€ = 0.5¢,,, at Axsyq ~ 0.451, and € = 0.1¢,,, at Ax;q, ~ 1.32/,. The latter can be taken as characteristic width w,,. In reality,
this value may also depend on E and E,, which are the Young modulus and the initial softening slope of the constitutive law. The
distance should converge to 1.32/; as E, —» c. We may then propose a power-law dependence in Eq. (94), which is confirmed by
Fig. Appendix-4.

(137)

Appendix G. Further details of the analytical solution of the 1D bar

The second-order derivative of the particular solution, Eq. (135), reads:

8 LB [ cm B oo (2) (- 222
L

exp<2fx)}[n(x;)exp(fo>+H(;x)exp<\f -
2 (x- 2) (138)

From the boundary conditions u(0) = d?u/dx2(0) = 0, we have

L
C, + C, = —iicosh <\/l——3> (139)

t
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Fig. Appendix-3. Analytical solutions of the normalized displacement (a—c), strain (d-f), and sprain deformation (g-i) of a 1D bar subjected to uniaxial tension
(with 1, =0;0.05L;0.2L). Note that, the ¢ and & value at x = L/2 were computed using the central difference approximation of the displacement field.
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Fig. Appendix-4. The material characteristic size wg,,, as a function of the regularizing length /, and E/E,. Note that in the natural log-log scale this function
asymptotically converges to a straight line as E/E, - o, suggesting a power-law function.

On the other hand, from d’u/dx2(L) = 0 we obtain:

—4\/3L
C, =-C; exp( ?/3 ) (140)
t

Solving these two Egs., we obtain C;, C, in Egs. (136)

The first derivative of the analytical solution is:

%z_zl_%,ex < 23 >+li—c2 <i >+— 141)

. dx
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where

by Vi {_exp<_¥x> [H(x_g)exp<2fx>+n(§_x)exp<@>]
+exp<2>t/§x> [H (x— %)exp (-#x)ﬂi(% -x) exp<_ 1,3L>] } (142)

e=—2(x>3)=0 (143)

Appendix H. Broader context

The finite dimension of fracture process zone and its consequence

Quasibrittle materials are materials in which the fracture process zone (FPZ) has a finite length and, importantly, also a finite
width. This feature, a consequence of material heterogeneity, is what limits localization of material damage (Bazant and Kazemi,
1990). In (perfectly) brittle materials this is not the case at normal scales of application. However, on sufficiently small scale every
brittle material becomes quasibrittle, while at sufficiently large every material can be treated as brittle, although this is frequently
beyond practical reach. The heterogeneity can be due to inclusions or patches of different properties, to weak interfaces, or to the
deepest nano-structure as in polymers where the crazing is due to the length of macromolecular chains. In concrete, the archetypical
quasibrittle material, it is the mineral aggregate size that limits damage localization at fracture front, before damage can coalesce into
rough continuous crack (Bazant and Planas, 1998). Other materials that are quasibrittle at normal scale of usage are fiber-reinforced
concrete, sea ice, tough ceramics, fiber composites, stiff foams, many rocks, wood, carton, bones, biological shells, etc.

A classical way to capture quasibrittleness has been the cohesive crack model, conceived in 1958 by G.I. Barenblatt (Barenblatt,
1959, 1962) (for errors in history see Chorin and Bazant, 2022). However, the gap tests (Nguyen et al., 2020a,b) showed in 2020
that the assumption of a line crack with a scalar stress-separation relation was valid only if the crack-parallel stresses were negligible,
which is rare in practice. The gap test demonstrated that not only the length but also the finite width of a fracture process zone (FPZ)
governed the fracture behavior. Hence, for a numerical method to adequately describe the fracture behavior, a tensorial damage
constitutive law must be formulated to capture the evolution of the FPZ.

In recent decades, the study of nano-to-microscale behavior has shed more light on its effect on the macroscale fracture behavior
of materials. Several studies (Zhang et al., 2021; Yang et al., 2021; Zhang et al., 2022) showed that materials seemingly brittle at
the macroscale (Yang et al., 2017) normally exhibit inelastic zones of nanometer size, due to nanoscale inhomogeneity. This makes
them quasi-brittle at that scale.

The fracture of plastic-hardening metals is more complicated because the softening damage in the FPZ is not surrounded by an
elastic zone but by a yielding zone, causing that two length scales, characterizing the widths of crack front and of yielding zone,
intervene (Nguyen et al., 2021b; Donmez et al., 2023). These length scales characterize the dislocation pile-ups and void coalescence
at the crack front and are functions of the size of the polycrystal grains. For example, dislocations tend to migrate, accumulate and
form micro-voids at the grain boundaries due to the lower energy barrier. These micro-voids then coalesce and result in a major
crack. Therefore, the size (and shape) of the crystal grains affect the yielding and fracture resistance of these metals. The plastic
yielding and fracture of these materials are there governed by zones with finite dimensions (Hancock et al., 1993; Gao et al., 1996;
Yuan and Brocks, 1998; Zhu and Leis, 2006; Liu et al., 2019). However, in other cases, dislocation arrest at crack boundaries explains
the Hall-Petch effect of grain size on the yield strength and hardening slope of metals (Hall, 1951). (However, one needs to see that
yet Hall-Petch effect is a material size effect which must not be confused with the structural size effect (crystal size versus structure
size).) For these reasons, the cracks in polycrystalline metals are not line cracks, as typically considered, but have an FPZ of finite
width, about 5 pm, which suffices to cause a strong dependence of fracture energy on the crack-parallel stress (Donmez et al., 2023).

The crack front width in polycrystalline metals and the transition from large-scale to small-scale yielding were recently shown to
require a generalization of size effect law in which the large-scale yielding causes the size effect to exhibit intermediate asymptote
(in the sense of Barenblatt, 1996, 2014). The use of this asymptote enables an alternative method for determining the J-integral
by size effect tests of relatively small size. The microscale width of the front of a crack within the yielding zone of polycrystalline
metal causes the fracture energy (or J-integral) to depend on the crack-parallel stresses (or T-stress). As a result, the crack front
constraint caused by plasticity within a yielding zone (YZ) at the crack front would alter the fracture energy of the material (in a
way similar to the J — Q or J — T constraint). The scaling law for the transition from large-scale to small-scale yielding (Donmez
et al., 2023) and the associated crack-parallel stress effect should be a basic check for developing computational a model of fracture
of polycrystalline metals.

The presence of the finite-size FPZ at other materials is evidenced by their effect on semiconducting 2D materials, reinforced
concrete, fiber composites, bone, sea ice, etc.; e.g. Yang et al. (2021), Zhang et al. (2022) and Brockmann and Salviato (2023).

26



H. Nguyen et al. Journal of the Mechanics and Physics of Solids 181 (2023) 105470

Table 2
Pros and Cons of some common strain-regularization methods.
Method Pros Cons
Gradient damage * The results are consistent « A well-established constitutive law is difficult to implement
regardless of mesh size « Length scale interpretation for quasi-brittle and ductile
» Ensures delta-convergence of a damage is ambiguous
smearing length scale « Resistance to the gradient of material rotation tensor is
ignored
» Boundary conditions are nonphysical, and on the crack
surfaces near the tip particularly harmful
« Convergence often requires extremely fine mesh along the
crack path and local mesh refinement.
« Experiences stress-locking (Jirdsek and Zimmermann, 1998;
Zhang et al., 2015; Wu et al., 2020)
Strain-gradient + Can be used with any * One extra degree of freedom is needed, which increases the
constitutive law computational cost in data storage and linear system solver
+ The results are consistent *+ Need for additional essential boundary conditions, which
regardless of the mesh have no physical basis, particularly deleterious on crack
surfaces near crack front
« Resistance to the gradient of material rotation tensor
derived from the displacement field is ignored
Integral-type + Can be used with any * Results depend on the attenuation function
nonlocal damage constitutive law « Storage of nodal solutions and state variables must be
* Nonlocal strain is easy to shared across processors presenting challenges to efficient
compute parallelization
« The necessary adjustment of boundary conditions is
nonphysical and particularly deleterious on the crack
surfaces near the tip
« Often problematic for damage zones near the domain
boundary
Viscous + Can be used with any « Damage develops too slow or too fast if the viscosity is not
regularization constitutive law right, and gives realistic results for only one loading rate
« Improves “well-posedness” of unknown a priori
the problem and nonlinear + Adds a bias to the unloading process and load cycling
convergence « Does not predict a spatially constant fracture energy and

gives distorted results due to locally nonuniform loading
rates (Langenfeld et al., 2022).

Higher-order continuum theory

Material rotations were also used in other models. For example they appear in Cosserat and micropolar-based continuum
approaches (Cosserat and Cosserat, 1909; Eringen, 2012), but in a different context—continuum smoothing of elastic materials
with microstructure. These rotations represent independent degrees of freedom and not derivatives of the displacement field. The
purpose is, e.g., to distinguish the rotations of joints from rotations of beams in an elastic framework (Cedolin et al., 2010, chapter
2), or to represent the rotations of grains in a shear or compaction band of granular material. As another example, Placidi et al.
(2018, 2022a,b) considered gradient regularization in a variational framework, yet the choice of the energy function was arbitrary
and not reflecting material heterogeneity effect.

To capture numerically the size and shape effects of the inelastic zones and the corresponding energy that they release or
dissipate, several methods have been proposed. For YZ, strain-gradient plasticity theory using the gradients of the strain field to
limit the dislocation density in a certain volume of metal (Hutchinson and Fleck, 1997; Gurtin and Anand, 2005a,b) was used to
capture the microscale physics of the yielding process. However, the small-size asymptotic behavior was shown to exhibit power-law
scaling of unreasonably large exponent (Bazant, 2002).

For fracture and damage due to the localizing tendency of softening material points, a few regularization methods have been
proposed to accompany physically sound constitutive laws. These methods include, but are not limited to, partial regularization
techniques (a widely used example is the crack-band theory (Bazant and Oh, 1983)), gradient damage methods (among them is the
notable phase-field method (Marigo, 1989; Pham et al., 2011; Miehe et al., 2016)), strain-gradient methods (Peerlings et al., 1996),
integral-type nonlocal damage methods (Pijaudier-Cabot and Bazant, 1987; Bazant, 1994), or regularization methods based on real
or artificial viscosity (Ladeveze, 1992, 1995; Ladeveze et al., 2000). The relative strengths and weaknesses of these approaches have
been discussed in the literature and are summarized in Table 2.

Similar localization limiters were also used for crystalline metals. In single-crystal metals, the flow strength depends on the
statistically stored and geometrically necessary dislocation densities (Ashby, 1970; Russell and Ashby, 1970), which, in turn, are
functions of the local variation of the deformation field. This observation gave rise to strain-gradient plasticity theory (Hutchinson
and Fleck, 1997) which, however did not perform very well. It was soon replaced by the (very successful) mechanism-based strain-
gradient plasticity (Gao et al., 1999) in which, as already mentioned, the strain gradient tensor enters only through its invariants,
as scalar parameters in a regular hardening plasticity model. The necessity of this revision was also identified in Bazant (2002) by
showing unrealistically strong asymptotic size effect of the strain gradient theory.
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