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Critical Comparison of Phase-
Field, Peridynamics, and Crack
Band Model M7 in Light of Gap
Test and Classical Fracture Tests
The recently conceived gap test and its simulation revealed that the fracture energy Gf

(or Kc, Jcr) of concrete, plastic-hardening metals, composites, and probably most materials
can change by ±100%, depending on the crack-parallel stresses σxx, σzz, and their history.
Therefore, one must consider not only a finite length but also a finite width of the fracture
process zone, along with its tensorial damage behavior. The data from this test, along with
ten other classical tests important for fracture problems (nine on concrete, one on sand-
stone), are optimally fitted to evaluate the performance of the state-of-art phase-field, peri-
dynamic, and crack band models. Thanks to its realistic boundary and crack-face
conditions as well as its tensorial nature, the crack band model, combined with the micro-
plane damage constitutive law in its latest version M7, is found to fit all data well. On the
contrary, the phase-field models perform poorly. Peridynamic models (both bond based and
state based) perform even worse. The recent correction in the bond-associated deformation
gradient helps to improve the predictions in some experiments, but not all. This confirms the
previous strictly theoretical critique (JAM 2016), which showed that peridynamics of all
kinds suffers from several conceptual faults: (1) It implies a lattice microstructure; (2) its
particle–skipping interactions are a fiction; (4) it ignores shear-resisted particle rotations
(which are what lends the lattice discrete particle model (LDPM) its superior performance);
(3) its representation of the boundaries, especially the crack and fracture process zone
faces, is physically unrealistic; and (5) it cannot reproduce the transitional size effect—a
quintessential characteristic of quasibrittleness. The misleading practice of “verifying” a
model with only one or two simple tests matchable by many different models, or showcasing
an ad hoc improvement for one type of test while ignoring misfits of others, is pointed out. In
closing, the ubiquity of crack-parallel stresses in practical problems of concrete, shale, fiber
composites, plastic-hardening metals, and materials on submicrometer scale is emphasized.
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1 Introduction
In computational mechanics, enormous attention has recently

been paid to two numerical approaches—the phase-field (PF)
models [1–9] and the peridynamic (PD) models [10–14]. Yet
proper experimental justifications of both approaches by a suffi-
ciently broad range of the experimental results have been missing
despite the abundance and diversity of relevant experiments in the lit-
erature. A recent review [15] attempted to compare the performances
of these models on various experimental data, but the scope of that
review and the experiments examined was still far too limited and
scrutiny to shallow. Serious discrepancies with experiments and
their causes in the basic concepts continued to receive no attention.
The present objective is to remedy this situation.2

In the case of peridynamics, grave conceptual deficiencies have
been identified in 2016 [16], though only by theoretical analysis.

Even though several partial remedies of these deficiencies
[17–19] have been attempted, no comparisons of these remedies
with the full range of relevant experimental fracture data available
in the literature have been made. Therefore, the predictions of PF
and PD models are here compared to a broad range of classical lab-
oratory experiments important for practical applications and also to
the results of the recently developed gap test [20,21].
The experimental comparisons of PF and PD models that exist in

the literature (e.g., Refs. [15,22–24]) involve only a few selected
simple types of tests that can be fitted equally well by many differ-
ent models. Such selective comparisons are insufficient to justify
applicability in engineering practice. While peridynamics symposia
have, for instance, featured impressive, realistically looking, videos
of impact of projectiles, no comparisons have been made with the
ample existing data on the penetration depths, wall exit velocities
and crater dimensions and shapes for various entry velocities,
wall thicknesses, and projectile dimensions, which would have
revealed severe disagreements. Moreover, the material model
used has not been verified by the available comprehensive labora-
tory test data on small specimens, which could provide the material
constitutive properties. Such data cover the full range of uni-, bi-,
and tri-axial experiments, proportional and nonproportional, with
stabilized postpeak and rotating principal stress directions, under
various confinements, tension-compression transitions, unloading
and load cycles, etc. (e.g., Ref. [25]).

1Corresponding author.
2This article documents the comparisons with experiments presented in Northwest-

ern University joint TAM/SPREE lecture on Feb. 9, 2022 (see www.youtube.com/
watch?v=3aNiTC_igM4), which in turn was an extension of an ASME/IMECE
plenary lecture on Nov. 1, 2021 (www.youtube.com/watch?v=HvVOobdHUlw).
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Here, we aim to fill this gap, for both PF and PD models. In each
case, comparisons are also made with the predictions of the finite
element crack band (CB) model with microplane damage vectorial
constitutive model M73 [26,27]. Our study focuses mainly on con-
crete, not only because of the dominance of this material in national
economies and its huge CO2 footprint but also because the diversity
of the available fracture and damage test data on thismaterial is much
greater than for any other. Besides, other quasibrittle materials
[28,29], aswell as polycrystallinemetals and polymers atmicrometer
scale, are known to behave similarly [30] (the similarity includes
widely ignored phenomena such as the vertex effect [31,32]).
Model M7 for concrete, which is the damage constitutive model

used here [25,31], has been calibrated to fit virtually the full range of
material test data that exist for concrete [25], which include about
20 different types of material tests. In the CB model, the size of
the finite elements controls the crack band width and is proportional
to the material characteristic length l0 that serves as a localization
limiter. This length is best determined by fitting the test data on
the size effect, while the determination of l0 from stabilized post-
peak softening may be ambiguous [33]. A very rough estimate of
l0 is one to three times the inhomogeneity size of the material.

2 Overview of the Gap Test
The recent discovery [20,21] of the simple gap test revealed that

the fracture energy Gf and the effective width cf of the fracture
process zone (FPZ) depend strongly on the crack-parallel normal
stress σxx (= T ) in the direction x of crack propagation and, according
to a calibrated CB model, also on the crack-parallel stresses σzz and
σxz. In this test (Fig. 1(a)), elastic-perfectly plastic loading pads are
used to apply onto a standard notched three-point-bend beam a
uniform compression along the notch the end supports of the beam
are installed with a certain gap. These supports would engage in
contact only after a constant plastic plateau has been attained in the
pads (Fig. 1(b)). Scaled notched concrete beams of size ratios 1: 2:
4: 8 have been tested to extract the fracture energy. From their
peak loads (Fig. 1(c)), one can evaluate the fracture energy Gf and
the effective size cf of the FPZ by means of the size effect method
[34] (which is a standard RILEM Recommendation T89-FMT [35]
and is endorsed by ACI-446). This method can be reduced to
linear regression, which yields both Gf and cf (with their standard
deviations).
The tests show that the crack-parallel compression σxx (for metals

previously called the T-stress) has a strong effect on Gf (Figs. 1(d )
and 1( f )). This effect has for a long time gone unnoticed, obviously
because all the standard fracture specimens feature a zero or negligi-
ble σxx, σzz, and σxz. This effect was also unsuspected because in the
linear elastic fracture mechanics (LEFM) and the cohesive crack
model (CCM), the crack is assumed to be a line (of zero width at
crack front), while a line cut along the direction of a uniform uniaxial
stress field produces no stress change. The transverse normal stress
σzz has also a large effect, as indicated by the simulations in
Ref. [21]. A significant effect might also be expected for σxz.
In computations, one might be tempted to approximate the curves

in Figs. 1(e) and 1( f ) by explicit formulae. But this would not work
because the σxx effect is enormously path-dependent (Fig. 1(d )). If
there were no path dependence, the failure points highlighted in Fig.
1(d) for different loading paths shown in Fig. 1(d ) would have to
coincide. But they do not, by far, and so the modeling must be incre-
mental. This rules out the use of line crack models with variable Gf,
particularly the LEFM and CCM (and the extended finite element
(XFEM), as well), except for the rare situations in which the σxx
is a priori known to vanish.
The effective widths, cf, of the FPZ obtained with the size effect

method are shown in Fig. 1( f ). The increase of this width is

intuitively explained in Fig. 2(a). The fracture process zone in quasi-
brittle materials (as well as polycrystalline metals) consists of micro-
cracks of varied orientations. Static friction under moderate
compression σxx initially helps to resist slip, but once the inclined
shear microcracks slip, the friction drops, and all the slips combined
widen the FPZ.
The gap test results shown by data points in Figs. 1(e) and 1( f )

have been simulated in Refs. [20,21] by means of the crack band
model [26,36] in which the microplane model M7 for concrete
[31] has been used as the damage constitutive equation (the other
curves are explained later).
It should be pointed out, too, that the σxx effect occurs also in

plastic-hardening polycrystalline metals [37]. Their fracture has
so far been treated as a line, but the size of grain boundaries in
metals such as aluminum and their alloys indicates that the FPZ
width should be at least several micrometers (≈2− 50 μm, [38]).
Although the FPZ width is much smaller compared to the width
of the hardening yielding zone (roughly 10mm when σxx= 0), it
may produce a significant effect of σxx on Gf (or Jcr), in addition
to the well-known effect of the yielding zone size.
Figure 3 shows the results of the on-going gap tests of aluminum,

which is an extension of the tests reported in Ref. [37]. By using the
size effect law (SEL) for fracture transition to small-scale yielding
[37], one can identify the Gf values (equal to Jcr) for various
levels of σxx, as shown in Fig. 3. Considering that the effective
yielding zone rp remains the same for specimens scaled geometri-
cally to various sizes with a fixed σxx, the size effect curves in
this figure indicate [37] that Gf of aluminum depends significantly
on σxx, as shown in Fig. 3(a). The size effect also delivers the σxx
dependence of the yielding zone effective radius rp (Fig. 3(b)),
which is probably combined with the effect of σxx on the cf of the
FPZ (to distinguish these two effects, different kinds of tests are
necessary). A further discussion of metals is beyond the scope of
this article.
We note that the fracture energy obtained from the size effect

method agrees with the critical value of J-integral at the peak load
for specimens with different sizes. However, to incoporate the J-
integral calculations into the crack band model (with a proper con-
stitutive law), a contour to domain integral conversion is necessary
[37]. As the contour must not cross the FPZ, it needs to be drawn
carefully, considering the changing size of the FPZ due to σxx.

3 Overview of Phase-Field Concept
The phase-field concept was introduced more than half a century

ago in physical chemistry, as a way of “spreading out”, for numerical
purposes (e.g., Ref. [39], Fig. 2.2), the Heaviside step function that
represents a sharp interface between, for example, the solid and
liquid phases of the material (see [39, Fig. 4.1]). Similarly, a sharp
crack may be regarded as a Dirac delta function, and the idea is to
“spread it out” via a smooth “phase field”, φ, as shown in Fig. 4(a)
[1]. In the simplest form, the function φ is chosen so that the
energy minimization would cause the φ to decay from 1 at the
crack line to 0 as φ ∝ e±x/w0 . However, φ physically represents no
material damage characterized by some constitutive law and there
is no associated Irwin’s material characteristic length lc. The length
scale w0 merely serves the numerical purpose of anchoring a sharp
line crack with a point-wise tip to the mesh of elastic finite elements,
so as to achieve mesh independence of crack direction. The phase
parameter φ must be applied as a stiffness reduction factor in the
phase-field band of a width w0 spanning over a sufficient number
of finite elements. Thus,w0 represents a “fictitious” damage (or stiff-
ness loss) of the finite element system, as shown in Fig. 4(a) by the
exponential decay across the imagined (shaded) damage field
toward the line crack. Typically, the elasticity matrix of the material
is multiplied by c= 1−φ at all finite element integration points in
that band.
In each loading step (tn−1, t), n= 1, 2,…, one calculates the state

vector Xn = [un, φn]
T from the preceding state vector Xn−1 =

3The coding of model M7, both explicit and implicit, can be downloaded from
www.civil.northwestern.edu/people/bazant. It also includes the extensions to fiber rein-
forced concrete (M7f), rate effect, and comminution under impact.
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Fig. 1 (a) Gap test setup, (b) stress–strain curves of yield pads in uniaxial compression (lower
curve: σpad≈0.4σc, upper: σpad≈0.88σc), (c) typical load–deflection curve in the gap test,
(d ) failure points for different loading paths (were the failure path independent, the end points
within each oval would have to coincide), and (e, f ) The dependence of fracture energy Gf and
the effective process zone size cf on crack parallel compression σxx (the curves represent the
M7 crack band results). The solid-filled circles represent the average stress applied by the plas-
ticized pad, and the empty circles and solid curves represent stress σxx near the crack front.

Fig. 2 (a) Schematic of microcracks in the fracture process zone and how its size evolves
with σxx in quasibrittle materials: strengthening Gf—0<σxx<0.75σc (friction + interlock) and
weakening Gf—0.75σc<σxx<σc (slip + dilation and splitting bands) and (b) schematic of the
yielding zone expansion in ductile materials: 0 <σxx<0.4σy

Journal of Applied Mechanics JUNE 2022, Vol. 89 / 061008-3



[un−1, φn−1]
T by a variational algorithm (Fig. 4(a)) described as

follows:

un−1
φn−1

[ ]
⇒↓

[Ψe]Ψc=const. ⇒ min

[Ψc]Ψe=const. ⇒ min

⎛
⎝

⎞
⎠ ↑⇒ un

φn

[ ]
(1)

Starting with Xn−1 = [un−1, φn−1]
T , the free energy Ψe (Helm-

holtz’s, isothermal) of the finite element system with its applied
loads and imposed displacements is minimized while keeping the
phase-field parameter φ=φn−1 (or its free energy Ψcn−1) constant.
This yields a system of linear equations for u. Then, the free
energyΨc of the phase-field φ is minimized while keeping Ψe cons-
tant. This yields another system of equations for the discrete values
of φ. These minimizations may but need not be iterated. The result
is the new vector Xn = [un, φn]

T at the end of the loading step. This
alternative minimization (which is usually referred to as the “stag-
gered scheme”) makes the algorithm efficient.
The key feature of the phase field is the expression for the free

energy. Its convenient form is expressed as follows:

Ψc =
∫
Ω

Gf

2w0
φ2 + w2

0|∇φ|2
( )

dV (2)

where Gf is the fracture energy of the material which, together with
the elasticity matrix, forms the complete input of material proper-
ties, V is the volume of the body domain Ω, and ∇ is the gradient
operator. Upon minimization of Ψc, in which the expression in
the parenthesis was postulated in 1998 by Francfort and Marigo
[1], leads to the vanishing of the following expression as a function
of the transverse coordinate, x:

w2
0|∇φ|2 − φ2 = 0 (3)

This is a differential equation for phase-field variable φ. Its solution
for φ= 1 at the crack line is φ = e−|x|/w0 (Fig. 4). Some other expres-
sions, giving more complicated decay functions φ, have also been
introduced [40] to improve the representation of a certain type of
fracture.
To validate the phase-field models, good fits of a few selected

experiments, such as propagating curved cracks, have often been
presented as supportive evidence. For example, Ref. [23, Figs.
19,20] presented an experimental validation for a standard
compact tension specimen with a hole drilled on the side of the
notch extension line including (1) the up-and-down curve of load
versus deflection along with the curve of crack length versus the
crack opening displacement and (2) the crack path in the same speci-
men. The hole causes the crack to run toward it, and the phase-field
predictions matched these observations qualitatively and quantita-
tively. However, the question of scaling was left unanswered.
Another validation attempt used a standard double-edge-notched

tensile specimen under axial tensile loads at the ends. Without a
check of instability breaking symmetry, two opposite curved
cracks are predicted to propagate from both sides symmetrically
[41]. Even though the load versus displacement curve agreed with
the test, the overall failure prediction was unsatisfactory since the
energy analysis of the stability of the of postbifurcation path
[42,43] showed that only a crack from one side can propagate.
An obvious weakness of the phase-field model is that the existing

validated constitutive laws cannot be used directly. Instead, they
need to be approximated in terms of free or potential energy func-
tions, which cannot be fully equivalent and lead to complicated
material characterizations in terms of multiple inelastic functions
and complex loading/unloading responses.
Another weakness of the phase-field models is the arbitrariness in

the choice of boundary condition imposed upon the microscopic
force (i.e., the state variable that is work-conjugated with the
phase variable). Mostly, the Neumann boundary condition is
chosen, but with no meaningful physical justification.

4 Overview of the Concept of Peridynamics
The theory of peridynamics was formulated (and the new term

conceived) in 2000 by Silling [10]. Later it branched into several
versions [11,13]. The original and simplest version of peridy-
namics, the bond-based model [11], is characterized by the integral:

ρ(x)ü(x, t) =
∫
H
f u′ − u, x′ − x, t
( )

dH + b(x, t) (4)

where t= time, x= coordinate vector of material point, u= displa-
cement vector at the center point, ρ=mass density, b= body
force vector, H= volume or area within the assumed horizon,
f = assumed function characterizing the central interacting force
between material points. The bond-based version assumes that all
central–force bond interactions are independent of each other.

Fig. 3 Results of size effect tests of aluminumalloy: dependenceof (a) fracture energy
Gf and (b) effective radius of the yielding zone rp on crack-parallel compression σxx

Fig. 4 Schematic concept of phase-field φ, chosen with w0 or
supporting band, and profile of damage c=1−φ

061008-4 / Vol. 89, JUNE 2022 Transactions of the ASME



This assumption leads to a fixed Poisson’s ratio equal to 0.25 [44]
and limits further generalizations.
To overcome this problem, a version of peridynamics called

“state based’” [13] was created upon introducing the assumption
that the interacting forces within a horizon are inter-dependent
and could be characterized by means of the states of forces,
T, and states of deformation vectors in all the bonds emanating
from the same center, Y:

ρ(x)ü(x, t)=
∫
H
T(x, t) x′ − x

〈 〉[
− T x′, t

( )
x− x′
〈 〉]

dH + b(x, t) (5)

It has been generally overlooked that (as pointed out in Ref. [16])
peridynamics actually represents a mathematically rigorous refine-
ment and generalization of the “network model” proposed in
1977 by Burt and Dougill [45]. In that model, a field of random
nodes is created, and each node is connected by bars to all adjacent
nodes up to a certain maximum distance (which is what is in peri-
dynamics called the horizon radius). After criticisms at conferences,
these authors promptly switched to another approach.
In 2016 [16], several fundamental problems with the concept of

peridynamics were identified, as follows:

(1) Lattice microstructure: The basic physical problem with
peridynamics is that it implies a lattice microstructure
(Fig. 5(a)), which leads to a particle-skipping potential and
a neglect of shear interactions that resist particle rotations.
The lattice microstructure is unrealistic even for the state-
based version. Although that version allows the equivalent
continuum strain and stress tensors for each center point to
be calculated and thus any constitutive damage model
including the microplane model M7 to be applied, the

underlying lattice characterized by central forces exists
nonetheless.

(2) Particle skipping interactions are another physically unreal-
istic feature of peridynamics. These fictitious interactions are
particularly detrimental for the modeling of compression-
shear damage and fracture. In reality, the material contains
finite particles, which not only displace but also rotate
(Fig. 5(b)). Above the atomic scale, no potential communi-
cating particle-skipping interactions exists. Indeed, interac-
tions with the second and farther neighbors are
communicated through the intermediate particles, by inter-
particle normal and shear forces. The shear forces resist rel-
ative rotations of particles (which is the basis of the lattice
discrete particle model (LDPM)) [46,47]. Another oddity
of the particle skipping interactions is that, in the bond-based
version of peridynamics, the micromodulus governing the
overall material stiffness has the queer dimension of MN/m6.

(3) Boundary conditions: The peridynamic horizon that skips
several particles inevitably leads to unphysical boundary
conditions, as well as crack face conditions and FPZ
border conditions (Fig. 5). The horizon of the nodes
located near the boundary protrudes outside the boundary
or across the open crack. To prevent it, such interactions
must be deleted. This alone would, of course, significantly
decrease the stiffness and strength of the boundary layer or
crack surface layer (of thickness δB= horizon radius).

To clarify the last point graphically, consider the diagram
in Fig. 5(a), which shows the central force interactions within
a circular horizon that emanate from the central point. When
the horizon reaches beyond the boundary, the protruding
central force interactions must be deleted. But this causes a
major decrease of the stiffness and strength of the boundary
layer. Also, it degrades the accuracy of the calculation of the

Fig. 5 (a) Central forces (or lattice bonds) connecting each material point to all other material
points within its horizon, shown as two dashed circles, and the same for the horizon (unre-
duced) of a point at the boundary (note the reduced density of connections near the boundary)
[44], (b) particles (or grains) in a quasibrittle material and their interactions by contact normal
and shear forces, and (c) horizons spanning a crack or fracture process zone, with interac-
tions AA′, AA′ ′, AA′ ′ ′, BB′, CC′, and DD′ when considered undisturbed by the crack (note
that CC′ ′, DD′ ′ must be eliminated, while BB′ ′ is getting progressively weaker while moving
along the FPZ closer to crack tip)

Journal of Applied Mechanics JUNE 2022, Vol. 89 / 061008-5



deformation gradient in the correspondence state-based
method. To counter this problem, surface-correction factors
have been applied, as reported in Ref. [44]. But again this
is only a partial remedy.

Another problem arises in applying the free surface boundary
conditions. Since the displacement derivatives are unavailable
for PD, a surface traction needs to be smeared over a certain
volume. The displacement and velocity boundaries, however,
are usually applied indirectly onto an imagined no-fail zone
[44] considered as an undamaged zone of the material.

(4) Boundary conditions at crack faces and the FPZ dilemma:
The boundary problem is more severe and more complicated
at the crack faces, and even more so at the boundary of the
FPZ or the cohesive crack zone. Ahead of the crack and of
its FPZ (Fig. 5(c)), the central force interaction along
segment AA′ ′ crossing the crack extension line is, of course,
undisturbed. The interaction along segments or CC′ ′ or DD′ ′
crossing the open crack must be deleted, and the same
surface correction factor must be introduced. A tougher pre-
dicament arises for the interactions along segment BB′ ′ cross-
ing the FPZ, for which the central forces crossing the FPZ get
weakened only partly—strongly near the crack tip, where the
damage is high, but weakly near the front of the damage zone
(dashed ellipse in the figure), where the damage is still devel-
oping. A satisfactory, physically realistic resolution of the FPZ
predicament looks impossible (this will be shown in the fol-
lowing comparisons with experiments).

(5) Homogenization, localization, wave dispersion, fatigue:
Another physical problem, highlighted in Ref. [16], is that
the same material length, the horizon, governs both the
elastic homogenization and damage localization. Dispersion
of waves by damage or plastic zones and by innate heteroge-
neity cannot be distinguished and independently controlled.
However, experimental comparisons with wave propagation
experiments are beyond the scope of this study. So is the
fatigue loading of materials such as concrete [48], which is
another unresolved problem.

The fact that peridynamics preserves the mass automatically has
often been cited as an advantage over other computational models
for fracture and damage. However, various meshfree (or hybrid)
methods such as extended element-free Galerkin method, cracking
particle, material point method and, especially, lattice discrete par-
ticle method may be easily programmed to preserve the mass. It is
also no problem to program the crack band model to lump the mass
of failed elements into surrounding nodes. All crack band simula-
tions of projectile penetration run on Abaqus at Northwestern
University [49–51], including those with dynamic particle commi-
nution, as well as those in the wavecodes in national labs, were
implemented this way.
The previous criticism of peridynamics [16] was strictly theoret-

ical. No support by comparisons with experiments was given. This
is remedied here. Comparisons are given not only for PD but also
for PF models. In many cases, different versions of PD models,
i.e., bond-based and state-based, give very different predictions
for the same experiment. Even worse, subcategories of state-based
models, which are ordinary and nonordinary (the latter are usually
misnamed as the “correspondence-based”models [44]), suffer from
the same deficiency. In this study, both “state-based” model types
have been investigated. The performance of a bond-based model
[52] will be briefly discussed in Appendix B.

5 Comparisons With Critical Classical Experiments
Important for Practice
Seven models, which represent three main model types—PF, PD,

and CB, are here compared to the most important test data for qua-
sibrittle materials. They are as follows:

– CB-M7 is the crack bandmodel [26] with themicroplane model
M7 [25,31] as the inelastic constitutive law. Both the explicit
and implicit versions (the latter contained slight updates [53])
are freely downloadable.4 For scaled specimens, the size of ele-
ments in the damage zone, which represents a material charac-
teristic length, l0, is kept the same for all specimen sizes.

– bPF refers to the widely used (basic) phase-field model devel-
oped originally by Francfort and Marigo [1]. Its implementa-
tion in ABAQUS was carried out by Martínez-Pane ̃da and
coworkers [54,55].5

– bPD refers to the (basic) ordinary state-based model with
the critical-stretch damage law developed by Silling and
Askari [11]. The use of this model and peridynamic models
in general is facilitated by PERIDIGM, a C++ library originally
developed at Sandia National Laboratories [56].6

After a lecture at the ASME-IMECE annual meeting on Nov. 1,
2021, which revealed large deviations of peridynamic and phase-
field predictions from experimental evidence (see7), some discuss-
ers claimed that the poor predictions were not inherent to the
basic concepts of the models but were caused by oversimplification
of the constitutive law. It was also claimed that the PERIDIGM code
[56] at Sandia lab was not the state-of-the art and that it would fit
the data well if it were combined with a certain new material law
for concrete. But it turned out that this material law and its imple-
mentations for peridynamics were unpublished and unobtainable.
Apparently, this and other models were designed to capture one
important aspect of the targeted material, i.e., concrete [57,58],
while ignoring others. For PF models, some improvements to fit
few particular tests have also been published, but again, with a
focus on demonstrations of some mixed-mode loading cases
instead of checking the scaling and the full range of published
experimental evidence [40,59]. Therefore, to examine such claims
and purported improvements, four more models and their compar-
isons to experiments had to be added:

– CB-Gr is a tensorial damage constitutive model implemented
within the same finite element framework as CB-M7, except
that M7 has been replaced with the second-generation concrete
damage plasticity model (CDPM2) developed by Grassl et al.
[60]. This model is an update of Ref. [61] and represents argu-
ably the best plastic-damage constitutive models of concrete
formulated in the classical way—in terms of tensors, their
invariants, and loading surfaces.8

– PD-Gr is the implementation of the CDPM2 constitutive law
into Peridigm based on the nonordinary (correspondence)
state-based formulation.

– PDba-Gr is similar to PD-Gr. However, in this new develop-
ment, Bazilevs, Behzadinasab and Foster [62–64] corrected
the definition of the deformation gradient (1) by eliminating
the zero-energy mode of instability plaguing the conventional
PD theory; (2) by limiting the nonlocality of the model via the
reduction of the horizon to the nearest neighbors, which was
intended to avoid the overpredictions of the damage and plas-
ticity in the comparisons that follow; and (3) by treating peri-
dynamics as a discretization method rather than a model per
se (see a brief summary of the bond-associated PD in Appen-
dix E).9

A further study dealt with two recently developed PF models
[40,59,65] in which the constitutive laws were enriched to capture
the cohesive stress in tension, shear and the frictional contact

4www.civil.northwestern.edu/people/bazant
5www.empaneda.com/codes/
6github.com/peridigm/peridigm
7www.youtube.com/watch?v=HvVOobdHUlw
8github.com/seungwookseok/ABAQUS-version-CDPM2
9Prof. Bazilevs and Dr. Behzadinasab of Brown University are thanked for provid-

ing the C++ code ready to be used with Peridigm, which facilitated the peridynamic
implementation of the CDPM2 model. Both PD-Gr and PDba-Gr can be downloaded
from github.com/htn403.
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with dilatancy (see Appendices C and D). Their improvements,
however, were aimed to correct poor fits of only one or a few
types of experimental data. It was not reported whether the fits of
other types of tests got improved or worsened. These models are
as follows:

– PF-Wu is an enhanced phase-field model incorporating the
cohesive zone theory developed by Wu et al. [40,59] (see
Appendix C). This model can be downloaded from.10

– PF-Choo is an improved phase-field model proposed by Fei
and Choo [62], which is intended to capture the mode-II frac-
ture and the frictional slip between cracked surfaces (see
Appendix E).11 This model, though, could be applied only to
the confined compression of a slab experiment since it is two
dimensional.

The PF and PD models investigated here are the current
state-of-the-art representations of each model type (which are
either publicly uploaded on open-source domains or have been gen-
erously shared by the authors). The purpose of the direct compari-
sons of CB-Gr, PD-Gr, and PDba-Gr is to clarify whether the
deficiencies of PD are due to inadequacy of the material constitutive
model for broader applications, as some developers now claim, or to
its basic concept. For the comparisons to be fair, the PD-Gr,
PDba-Gr, and CB-Gr simulations of all experiments share the
same set of material parameters. The horizon radii in the peridy-
namic counterparts were taken as 1/2 of the characteristic element
size in the crack band model. We chose the horizons for PD
model in the same manner and set the critical stretch to match the
fracture energy, Gf, according to Silling et al. [13]. The influence
function in all PD models was considered constant. These require-
ments ensure that the results for various models be comparable.
However, the horizon dependence of PD models and the l0 depen-
dence of PF models will be addressed in detail later. The calibration
process for the present models is summarized in Appendix A.
In addition, we posit that a model that is updated to agree with

only one or few test types but is not compared to other relevant
tests of different sizes is questionable. What is needed is a model
that can adequately characterize various aspects of a given material
for general applications in practice. Selective ad hoc model adjust-
ments that improve one type of response but may compromise
another are hardly useful.
Most of the comparisons presented here (except one) deal with

concrete, for four reasons:

(1) The diversity of available fracture test types is for concrete
much greater than for any other material.

(2) The size effect data are plentiful and cover a broad range of
structural sizes.

(3) Concrete is an archetypical quasibrittle material, and its frac-
ture behavior is similar to all others (rocks, fiber composites,
tough ceramics, sea ice, rigid foams, bone, stiff soils, etc.,
and most materials on the sub-micrometer scale).

(4) In terms of nation-wide usage, financial outlays, and the
associated CO2 emissions, concrete outstrips every other
material by far (in terms of CO2 emissions, the
worldwide production of cement is about to exceed all
fossil fueled transportation, while suppression of fracturing
would diminish ingress of corrosive agents into concrete
structures, which would extend their woefully inadequate
lifetimes and thus mitigate the future demand for cement).

It is also worth noting that the hardening plastic metals exhibit at
macro-scale a few phenomena that are similar to quasibrittle mate-
rials—the vertex effect [32,66–68] or, for small-scale yielding, the
scaling of structural strength [37], to name a few. Therefore, a

model that can capture accurately the plastic and damage responses
is indispensable for any material.

5.1 Type 2 and Type 1 Size Effects. Scaling is the quintessen-
tial characteristic of every physical theory. In fracture mechanics,
most important is the size effect, which represents the dependence
of the nominal structure strength σN on size D of geometrically
scaled structures (σN=P/A, where P=maximum value of the
applied load or load parameter, A= bD in the case of two-
dimensional scaling, b= specimen thickness, D, A= characteristic
cross section dimension and area, measured homologously). In elas-
ticity with strength limit and in plasticity, there is no size effect
(except statistical), but in fracture and damage mechanics, it is an
essential feature.
The size effect law (SEL) is of two basic types. Type 1, which is

discussed subsequently, and type 2, which is stronger and typifies
reinforced concrete (RC). The latter type can be described by the
following equations:

σN = Bft 1 +
D

D0

( )−1/2

(6)

=
EGf

g′(α0)cf + g(α0)D

( )1/2

(7)

This SEL was discovered in 1984 [69]. Its relation to the fracture
energy, Gf, and to the FPZ size was found in 1987 [70] and in
1990 [35]. The SEL describes the gradual transition from strength-
based failures to brittle failures at increasing structural size D. In
1990, Eq. (6) was reformulated as Eq. (7), where g(α) is the dimen-
sionless energy release function of LEFM [35]. This was achieved
by means of second-order asymptotic matching [71] of the
approaches to the large-size LEFM asymptote (dashed in
Fig. 6(a)) and to the horizontal small-size asymptote correspond-
ing to plasticity (E = Young′s modulus, Gf=material fracture
energy, ft= tensile strength of material, B= dimensionless geometry
constant, cf=material characteristic length, roughly equal to 40% of
the FPZ length, α= a/D, α0= a0/D, a= crack length including the
cohesive zone, a0= length of open crack or notch).

Fig. 6 (a, b) Geometrically similar notched and unnotched test
specimens following type 2 and type 1 size effect laws and
(c)–(f ) Data comparisons with the optimal fits of test data using
various various models calibrated to coincide at the smallest
size

10https://github.com/jianyingwu/pfczm-abaqus or www.empaneda.com/codes/
11Thanks are due to Dr. Fei and Prof. Choo of The University of Hong Kong for

providing the code.
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The type 2 size effect occurs when there is a long enough
notch creating a positive geometry [71], or when the structure geom-
etry allows large stable crack growth prior to the maximum load
[27,71], as typical forRC, e.g., RCbeamor slab shear [71]. The initial
stable growth requires negative geometry (i.e., [∂KI/∂a]P < 0, where
KI= stress intensity factor and a= crack length). Failure under con-
trolled loadP occurs dynamicallywhen the geometry changes to pos-
itive ([∂KI/∂a]P> 0). In type 2, the geometry is initially positive (as in
3PB specimen) and material randomness affects significantly only
the coefficient of variation of σN, while the size effect on mean
strength is deterministic (energetic) for all structure sizes.
The type 1 size effect occurs, by contrast, for structural geome-

tries called initially positive (typical for plain concrete), in which
an unnotched structure fails under controlled P dynamically as
soon as a macro-crack initiates from a fully formed FPZ. For
small sizesD, stress redistribution occurs due to the initiation of dis-
tributed damage within the representative volume element (RVE),
which controls the small-size power-law asymptote. For very
large sizes, the type 1 size effect transits to the power law of the
Weibull statistical size effect, provided that fracture can initiate ran-
domly from many nearly equally stressed locations (this does not
happen for three-point bend beams and thus cannot affect the
mean maximum load). In addition, such a transition from the deter-
ministic to the statistical (Weibull or Gauss–Weibull) size effect
occurs, if at all, at sizes larger than those of the present tests
[71,72]. Consequently, the law of type 1 size effect [71,73],
derived by the matching of these two asymptotes, reads:

σN = σ0
D0

D

( )rn/m

+
rD0

D

[ ]1/r

(8)

where n/m= 1/12, r= 1 in typical concrete structures. For small
sizes considered here, the statistical size effect is negligible,
which ensues by setting 1/m= 0. The type 1 to 2 transition is
more complicated [33] and is not needed here.
The transition of the size effect from one power law to another is

very broad. It is governed by the material characteristic length cf
(typically about 0.4 of Irwin’s length). The bPF model involves
no material characteristic length (w0 serves only as a numerical
check for regularization). On the contrary, the horizon radius in
the bPD model is the material characteristic length, which is what
should govern its size effect transition.
Figure 6 shows, by circle points, the size effect test data of

Hoover et al. [74,75] for type 2 and type 1. However, the individual
data points are shown only for type 1. For type 2, the error bars
(i.e., ± standard deviation) had to be used because low scatter
makes the plot of data points too congested. No tests were
made for D= 1000 mm, but the size effect was extrapolated up to
D= 1000 mm, using the calibrated SEL. It should be mentioned
that Grégoire et al. [76] also performed similar experiments on spec-
imens of a different aspect ratio. They are not used here due to their
higher scatter and narrower size range but will be considered in
Appendix B.
To be comparable, all the predicted curves are calibrated to pass

through at least the first point representing the results of the speci-
mens with the smallest size. To illustrate more clearly the deviation
from the size effect law, the simulations are run for D= 1000 mm
beyond the size range of data (circle points), for both size effect
types. The following points should be noted:

– For type 2, the solid curve shows the optimum fit by the SEL
(Eq. (6)). The finite element predictions of the CB model with
microplane model M7 are represented by the dotted lines
passing through diamond-shaped points. They are satisfactory.

– Both phase-field predictions are shown by the crosses and tri-
angle points connected by line segments with the same colors.
For type 2, these predictions deviate significantly from the data
(Figs. 6(c) and 6(d )). Note that the deviations in PF-Wu are
larger than those reported in Ref. [77] for the same model.
This stems from the recalibration of the model to obtain

more accurate results for small-size specimens and to strike a
balance between the accuracy of type 1 and type 2 size
effects, provided that, importantly, the same set of parameters
is used. The fact that no transition exists and that these models
both result in straight lines, corresponding to power laws, is
incorrect. For the bPF, the slope in the log-log scale is −1/2
(Fig. 6(c)). This is correct only for LEFM, which is not the
case for these test data. For PF-Wu, the straight line slope is
less steep than −1/2, which is thermodynamically inadmissible
because such a power law implies a zero energy flux into the
crack tip [27,71,78]; see Appendix H.

– The PD models for type 2 not only deviate from the experi-
mental data but also produce wrong curvatures in the log-log
scale plots (Fig. 6(e), note that in the linear scale plots such
deviations can, and have been [52,77], misjudged as data
scatter).

– For type 1 (Fig. 6(d )), the results of PF-Wu model lie within
the scatter range of the experimental results, and so no limita-
tion to PF-Wu validity is indicated here. Similar to type 2, bPF
tends to result in a more brittle material behavior (manifested
by a smaller characteristic structure size). Moreover, the
curve shapes of these models for type 1 size effect disagree
with the mean data trend (Fig. 6(d )), and the bPF model
even diverges away from the data scatter band (note that
type 1 has a much smaller slope than type 2).

– Surprisingly, the three peridynamic models produce results
with greatly diverse trends and values (Fig. 6( f )). The bPD
model tends to capture accurately the trend, in proximity to
its CB-M7 counterpart, while PDba-Gr shows a significant
deviation from experiments. However, Fig. 7(c) shows that
the correct trend of the bPD model is associated with a
wrong mechanism. The extra energy is dissipated via branched
cracks instead of a gradual dissipation via a gradual softening
law. The PD-Gr model, however, shows an increasing trend at
larger D (Fig. 6( f )), which is physically impossible.

– To explain what happens in the PD models, the principal strain
contours that they deliver are compared with the CB counter-
parts. As obvious from Fig. 7, the breadth of the FPZ in PD-Gr
for type 1 is wider than it is in other models, even though the
horizon is of the same size. This overestimates the nonlocality
of the damage zone and leads to a spurious growth of the FPZ

Fig. 7 A comparison of damage pattern for D=92 mm among
CB, PF, and PD models
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across scales. The root cause of this overestimation may be
attributed to the zero-energy mode of instability discussed in
detail in Refs. [16,42,63,79]. The PDba-Gr shows a more
localized damage pattern, but it results in a longer crack at
the peak load (Fig. 7(g)).

– It should be here noted that similar phenomena for both type 2
and type 1 size effects were observed with a bond-based peri-
dynamic model studied by Hobbs et al. [52]; see Appendix B,
Fig. 24. For type 2, a power-law trend along with significant
deviations from experimental data [76] was observed. For
type 1, the strengths of scaled structures remained approxi-
mately the same across sizes, which was attributed to a lack
of statistical size effect calculations. However, this cannot be
true because the statistical size effect would require many pos-
sible potential failure locations with random material strength,
while, in three-point bending, the failure can start only at one
location, the bottom midspan [71,80]. In addition, the speci-
men sizes in this comparison are close to the deterministic
type 1 asymptote.

5.2 Concentrated Mode II Shear Fracture (In-Plane). The
double-notched four-point loaded Iosipescu beam shown in
Fig. 8(a) was used in the 1980s to prove that Mode II shear fracture
in concrete exists when large strain energy is getting released from a
narrow strip of material. In addition, this test also reveals that the
crack-parallel compression affects not only mode I but also mode
II (shear) fracture although, contrary to mode I, it decreases the frac-
ture energy, which is expected because a high-enough parallel com-
pression can alone produce splitting fracture. Normally the opposite
loads on Iosipescu beam are placed farther away from the notch, in
which case the computations indicate two curved cracks called
mixed-mode failure although they are of pure mode I at their tips.

They diverge to opposite sides of the crack line and can be repro-
duced well by many models. In experiments, only one curved
crack occurs because the path-stability criterion [81] excludes
both from propagating simultaneously.
More revealing was the 1986 test [79] in which the loads were

placed as close to the notch mouths as possible without shearing
of the crack mouth corners. This loading was shown to produce a
planar pure mode II shear crack [79]. Significant crack-parallel
compression exists, and its role is documented by this test. The
simulation results are presented in Figs. 8(c)–8(i), to be compared
with the experimental observation in Fig. 8(b).

– The CB-M7 and CB-Gr’s stress–strain relations both perfectly
reproduce the pure mode II crack creating sliding surfaces in
contact. Both models predict the crack to start from the
notch. Also, both predict the same strain level at the onset of
damage localization and both reproduce the planar Mode II
crack perfectly. Because of the finite width of the crack
band, they, of course, cannot reproduce explicitly the sliding
surfaces. These surfaces form not at the maximum load but
only during the postpeak, after full softening.

– The results of bPD and bPFmodels (Figs. 8(e) and 8(g)) might
look satisfactory except that the fracture damage band deviates
to the side of notch under the loading pad, which is incorrect.
The models do not distinguish shear from compression crush-
ing, which stems from the inability to discern various damage
mechanisms. Hence, they incorrectly predict splitting cracks
under the loading pads.

– The bPF and bPD models result in similar incorrect cracking
patterns (Figs. 8(e) and 8(g)). By using a single scalar fracture
criterion, they both favor the opening mode cracks. This causes
a diffused cracking pattern instead of a localized shear along
the notch extension line.

– The PF-Wu model captures well the straight propagation of
mode-II cracks subjected to concentrated load. This is so
thanks to the consideration of multiple principal stress compo-
nents in the damage phase variable, instead of one scalar stress
value, or Gf (Fig. 8( f )).

– In PD-Gr, we encounter again a delocalized damage
(Fig. 8(h)). In addition to the wide spread of the zone of prin-
cipal damage strain, the damage zone grows, curiously, in a
direction opposite that to that in bPD, away from the loads,
and its breadth is far too big.

– Among all the PD models, only the PDba-Gr produces the
correct crack path.

5.3 Compression-Torsion Fracture in Mode III (Antiplane).
This test (Fig. 9) was used in the 1980s to prove that mode III
shear fracture in concrete does exist [82]. A circumferential notch
was cut in a cylindrical specimen, and a torque was applied. It pro-
duced a perfectly planar mode III crack; see Fig. 9(b), left. Then
axial compression strain ɛ=−0.001 (for which the axial force P≈
was about 30% of the uniaxial compression strength) was
applied. A simultaneous torque then produced a conical mode III
shear failure shown in Fig. 9 (center). The axial strain level that
marks the change in the fracture mode was not measured and
has been extracted from calibrated CB-M7 simulations. The simula-
tion results of the two crack band models are shown in Figs. 9(c)
and 9(d ).

– The explanation of the change of mode is twofold: (1) Axial
compression causes the energy dissipation by mode II fracture
and frictional slip to be higher on the planar crack than conical
surface, and (2) in the light of the gap test and the splitting frac-
ture role in the mode II test, the compressive axial force com-
ponent parallel to the conical surface must have reduced the
mode III fracture energy (in fact, the analysis of this test
might be used to sort out the role of this component
quantitatively).

Fig. 8 (a) Four-point Iosipescu beam shear test setup,
(b) straight shear crack observed on geometrically scaled spe-
cimens, and (c)–(g) results for CB, PF and PD models
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– None of the models, except the two CBs, reflects the
plane-to-cone transition when ɛ increases.

– The flat mode III shear crack is reproduced perfectly in Figs.
9(c) and 9(d ). For torsion with axial compression, there is an
indication of mode III cone formation, clearer for CB-M7
than for CB-Gr, which indicates secondary fracturing to
spread to the side of the cone (Figs. 9(c) and 9(d )) further
shows the crack band prediction for a tripled axial compressive

strain ɛ=−0.003, for which the torque, in a cylinder of finite
length, should lead to a near-cylindrical failure surface,
although this has yet to be checked by experiments).

– The bPF shows, for ɛ= 0, a curved cylindrical surface propagat-
ing from the notch to the upper half of the specimen and a
detachment of the top part of the specimen. When ɛ increases
to a higher level, materials are removed from both halves, but
the mode III crack is missed in all the cases. All of this is

Fig. 9 (a) Torsion of axially constrained cylinders with circumferential notch, (b) plane-
to-cone transition of crack surface as the axial compression increases, and (c)–(g) results
for CB, PF, and PD models
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incorrect. PF-Wu incorrectly shows that the damage occurs
only near the circular edge of the notch and predicts no shear
crack formation. At ε = −0.3%, there is more diffused
damage formed around the notch edge, but again no shear crack.

– The bPD incorrectly indicates the formation of an inclined
crack farther away from the notch edge, both for ɛ= 0 and
−0.001. Note that these cracks form abruptly due to the
brittle nature of this model. For ɛ=−0.003, the results incor-
rectly suggest a plane crack propagating from the notch
edge, accompanied by axial splitting.

– Because the PD-Gr model cannot form a localized damage
surface, the notch in this model cannot propagate and the mate-
rial points adjacent to the notch begin to suffer from spalling.
At higher ɛ, this failure mode is suppressed. Instead, a curved
cylindrical surface is formed, similar to the case of the bPF
model.

– The PDba-Grmodel, however, can capture the cracks emanat-
ing from the notch and forming a flat horizontal surface. Nev-
ertheless, at high ɛ, the damage starts to spread out rather than
concentrating to a localized damage pattern.

5.4 Unconfined Uniaxial Compression and Shear Band
Growth. The axial compression test of a cylinder (diameter 10.1
cm and length 20.2 cm) is used at construction sites as the standard
quality check of concrete. The failure is triggered at Pmax by the
propagation of inclined shear bands consisting of dense axial split-
ting cracks (Figs. 10(a) and 10(b)), which look after Pmax like shear
cracks. The cylinder ends are assumed to be lubricated so that they
can slide perfectly (if there is significant friction, the damage would
spread widely and get combined with axial splitting). Figure 10(c)
compares the curves of axial average stress versus average strain.

– Both CB-M7 and CB-Gr fit the response curves well
(Fig. 10(c)) and both show the formation of inclined shear
bands (Figs. 10(d ) and 10(e), including the postpeak response
(which can be observed only in a very stiff frame with fast

servocontrol, as discovered in 1963 [83–86]). However, the
softening slope indicated by CB-Gr is steeper than in experi-
ments due to an underestimation of the frictional resistance.
Note that the shear band is subjected to crack-parallel compres-
sion, and the fact that CB models can capture it helps getting
correct results.

– The bPD gives the correct peak stress (Fig. 10(c)), but the
strain at peak stress is about 70% of what it should be, and
the steep postpeak stress drop is wrong. The problem is that
bPD does not have a state variable that can control the
gradual loss of material cohesion. Therefore, it predicts a
rather abrupt release of energy in the cylinder when the peak
load is attained. The specimen is wrongly predicted to fail
by distributed fragmentation, with no sign of shear band for-
mation or shear interaction between adjacent material points.
Also, the lack of shear interaction in bPD prevents capturing
the frictional slip, which leads to an incorrect sudden stress
drop (such a drop used to be seen prior to 1963, but this was
due to energy release from the soft testing machines used in
those times, rather than to the material properties).

– The bPFmodel gives unlimited elastic response,with no sign of
damage (or any growth of phase variable φ). This is not surpris-
ing since bPF can reproduce neither compression fracture nor
shear slip. It cannot develop a localized shear band even
when a small flaw is introduced in the FE system. The flaw pro-
duces a small bump (shown in Fig. 10(c)), but then the stress
continues to rise without limits (and the phase variable φ
increases to 1 throughout the entire specimen). Obviously, the
fracture of quasibrittle materials under uniaxial compression
can be captured only if shear boundaries are present in themate-
rial model (which will also be seen in the next experiment).

– The PF-Wu model, however, takes advantage of the deviatoric
stress response to generate damage (which, however, accumu-
lates mainly at the surface in contact with the loading plates).
Nevertheless, this requires a higher Gf, i.e., Gf= 1200 N/m, to
attain the observed compressive strength. The lack of the uni-
axial compressive boundary was shown in Ref. [59, Fig. 3]. To
remedy this problem, the frictional and deviatoric stress would
have to be somehow represented in the phase-field equation,
which seems to be difficult.

– The bPD model incorrectly shows the uniaxially compressed
specimen to fail by the removal of particles under the cones.
This in turn is a consequence of the excessively brittle
nature of the hypothesis of critical stretch of interparticle
connections.

– Both PD-Gr and PDba-Gr show a dense network of diagonal
crack surfaces, while the damage field in PD-Gr is more dif-
fused, which is not quite realistic.

– Even though the nominal stress–strain curves produced by
CB-Gr, PD-Gr, and PDba-Gr models are close to each
other, the failure mechanisms are not the same (see Figs.
10(e), 10(i), and 10( j)). This might be explained by the mate-
rial shear resistance that can arise either from a single inclined
plane or multiple inclined mutually orthogonal planes (see
Fig. 10(l )), as long as the total surface areas of frictional
contact are the same.

5.5 Confined Compression of Slab. Similar conclusions can
be drawn for a plate of sandstone (Figs. 11 and 12) confined in
two dimensions (2D). As described in Ref. [87], a plate specimen,
confined in cross-thickness direction and sliding between two stiff
steel plates, was compressed in vertical direction and subjected to
controlled lateral confining pressures pc= 0 and 8MPa
(Fig. 11(a)). In the case of PD models, due to the complexity of
applying a uniform pressure transverse to the specimen, pc is indi-
rectly generated by a layer of elastic-perfectly plastic material that
has a yield strength of 0.01 and 8MPa.

– In the diagram of average axial stress versus strain (Fig. 11(b)),
the down-and-up trend after the peak in the experiment at pc=

Fig. 10 (a) Uniaxial compression of cylindrical specimens,
(b) a typical damage pattern, (c) the average stress–strain
curves, (d− j) the damage pattern predicted by CB, PF, and PD
models, and (k ) different damage patterns may result in the
same average stress–strain responses
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8 MPa shows a hardening due to the increase of confining
pressure as the bolted plates resist the dilation of the specimen.
Therefore, in this regime, pc may have exceeded the expected
pressure of 8MPa.

– When only the response for pc= 0 MPa is used for the calibra-
tion, theCB-M7 prediction for 8MPa is satisfactory (especially
in view of the strange postpeak data).

– While the CB-M7 model shows a ductile response, the CB-Gr
exhibits at both pc= 0 and pc= 8 MPa an excessively brittle

response, with the axial splitting cracks forming an inclined
band and distributed damage forming at pc= 8 MPa under
the loading pads. Nonetheless, both show a change in the
direction of the localization pattern when pc is increased.

– The bPF model gives, again incorrectly, an unlimited stress
rise for both pc levels (Fig. 11(b)). Figure 11(e) shows the
absence of localized bands despite the introduced void,
which can be explained by the lack of a state variable control-
ling the deviatoric damage growth.

– For PF-Wu, there is a damage pattern similar to the uniaxial
compression. Unlike the bPFmodel, the PF-Wumodel consid-
ers the growth of deviatoric stress, but the absence of a variable
mode II fracture again leads to a wrong failure mechanism, i.e.,
damage near the loading pads (Fig. 11( f )). A more serious
problem is the average strength decrease when pc increases.
This can be explained by inappropriate constitutive representa-
tion of triaxial and biaxial stress boundaries, in which the pres-
ence of a lateral pressure increases the damage.

– The foregoing poor predictions are improved for PF-Choo
(Fig. 11(g)). This is largely due to its capability to account
for the growth of phase variable φ as a function of shear dis-
placement and frictional contact (see Appendix D for more
detail). However, the opening mode and antiplane shear
responses now become questionable.

– It appears that the common problem for all of the present
phase-field simulations is their inability to account for all
important damage mechanisms and for the transitions
between them. By using only one phase-field variable,
several damage mechanisms, if considered, must be tuned con-
currently, which leads to spurious damage development.
Recently, models with more phase-field variables [88,89]
have been formulated. However, the questions of the appropri-
ate number of phase-field variables to create a predictive
model, and of the interaction of their respective damage mech-
anisms, remain unanswered.

– The damage patterns at peak load in all PDmodels are unreason-
able for any pressure pc, even though the calibration ensures
correct Pmax at pc= 0. For bPD, instability occurs once the com-
pressive stress reaches the nominal strength value at pc= 0.
However, the typical diagonal damage pattern can still be
observed. When pc= 8 MPa, no clear pattern of cracking and
damage emerges. Rather, the material points at the corners are

Fig. 11 Fracture of transversely confined sandstone slab under
constant lateral confining pressure: (a) the loading configura-
tion, (b–g) comparisons between the CB and PF predictions,
including nominal stress–strain responses (b) and damage
pattern (c–g)

Fig. 12 Shows the same configuration in Fig. 11(a), but the predictions of the CB
and PD models, including nominal stress–strain responses (b) and damage
pattern (c–e), are compared instead
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stripped away by the biaxial loads. This causes an immediate
drop of load at pc= 8 MPa, which is unrealistic.

– The PD-Gr model produces an identical nominal strength at
low and high pc. However, the damage develops and
remains concentrated around the initial flaw, and no localized
damage band forms even after the peak load. This can again be
explained by the emergence of zero-energy mode instability,
leading to an excessively wide spread of inelastic strain.

– The PDba-Gr model overestimates the (mode-II) energy
release due to its denser network of localized damages. In addi-
tion, the dense network results in no well-defined diagonal
damage bands known to dominate the shear failure.

5.6 Confined Compression of Cylinder. Although this is not
a fracture test, it is important for some fracture simulations. When a
projectile impacts a concrete bunker, first very high confining pres-
sures briefly arise under the nose of the projectile. Under very high
pressures, concrete becomes a plastic material allowing shear angles
such as 70 deg without any fracturing [49,90]. The plastic deforma-
tion dissipates much impact energy prior to fracturing (and, during
subsequent fracturing, the comminution of particles dissipates more
energy [50,51]).
To test this phenomenon, a small cylindrical hole (19mm in dia-

meter) within a large diameter tungsten carbide vessel was filled
with small aggregate concrete [91] (see Fig. 13). This setup pro-
vided a near-rigid confinement with virtually zero lateral strain.
The cylindrical specimen confined in the hole was subjected to
high axial load developing pressures up to 2000MPa, 50 times

higher than the uniaxial compression strength. Wall lubrication
was provided by copper foil sliding under high pressure plastically.
Under such perfect confinement, concrete exhibits no softening.
The tangent modulus Et remains always positive. It first decreases
due to collapsing voids but later increases due to void closing,
greatly exceeding the initial elastic value El. At 2000MPa, the
initial porosity is reduced roughly to one half. Therefore, the
unloading modulus Eu becomes several times higher than its
initial elastic value El. Missing this behavior, the impact penetration
depths or wall exit velocities get grossly overestimated [51].

– Only the two CBmodels are able to capture the observed beha-
vior. They succeed thanks to a constitutive model that involves
a state variable simulating the change in void volume fraction.
Yet, in CB-Gr, the change of modulus Et is modest, while
CB-M7 not.

– The inability of bPD and bPF to capture complex triaxial stress
states suppresses the development of inelastic strain at material
points. In these models, the material keeps compressing
elastically.

– The PF-Wu model again shows a weakened resistance under
triaxial stress states. The specimen is predicted to fail at exces-
sively low σ even when an unrealistically high Gf, equal to
2500 N/m (instead of 100 N/m), is assumed.

– Despite using the same constitutive law, PD-Gr and PDba-Gr
show two different damage patterns and differ greatly in the
nominal stress–strain curves. In both models, damage accumu-
lates on the surface of the specimen and comes to play right at
the beginning of softening. During unloading, however,

Fig. 13 Compression of confined cylinder at virtually zero lateral strains: (a) the
loading configuration, (b) comparisons of the nominal stress–strain curves with
the unloading behavior and the damage pattern using corresponding variables
between CB (c and d), PF (e and f), and PD (g–i) models
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PD-Gr shows a significantly milder slope, or lower unloading
modulus Eu, than the CB counterpart and the data.

5.7 Vertex Effect. The term “vertex effect” stems from the
theory of incremental plasticity, in which the response to a load
increment tangential to the current yield (or loading) surface must
be elastic unless the yield surface has a corner, or vertex, at the
current state point in the stress space. In the case of a test cylinder
gradually loaded by uniaxial compressive force P (Fig. 14(a)), all
theories of plasticity based on tensor invariants (as well as most ten-
sorial damage theories), the loading surface is normal to the σxx axis
and crosses the axis smoothly, with no corner at the crossing. This
means that if one suddenly applies a shear stress increment σxy,
which is best done by means of torsional moment M (see the
loading path in Fig. 14(a)), then the incremental stiffness, according
to incremental plasticity, is supposed to be elastic. However, it was
experimentally demonstrated, first for metals in the 1950s [32,92],
and later for concrete [66], that the incremental response is much
softer than elastic. This is called the vertex effect (for a detailed dis-
cussion, see Sec. 25.4 in Ref. [93]).
Generally, the microplane model is expected to work since it

implies a very large number of stress–strain boundaries on the
microplanes, analogous to the tensorial loading surfaces in incre-
mental plasticity. Vectorial microplane boundaries of different ori-
entations exist everywhere in the stress space (i.e., the space of nine
tensorial stress components). They can be seen as the vectorial
analogs of the tensorial loading surfaces. The fact that they are vec-
torial rather than tensorial provides tremendous simplification and
helps physical insight. In the test of concrete, the vertex effect
begins when the axial force reaches about one half of the compres-
sion strength. It becomes particularly strong in the postpeak soften-
ing (which has no parallel in plastic metals).

– The microplane model M4, when used in CB-FE, was shown
in Ref. [25, Fig. 8] and earlier in Ref. [67] to reproduce closely

the vertex effect data observed on concrete in [66]. Here, the
same data (circle points in Fig. 14(b)) are compared with the
CB-M7 [25,31,53]. The CB-M7 vertex effect is seen to be satis-
factory though somewhat too strong (probably due to micro-
cracking zone being larger than in reality).

– Thanks to the scalar damage variables, the CB-Gr does exhibit
the vertex effect, too, and does so slightly better at a higher
compressive strain (black curve in Fig. 14(b)). Figures 14(c)
and 14(d ) shows that CB-Gr generates less microcracking
damage than CB-M7 at the same level of uniaxial compressive
strain, and that the strain localization starts at multiple planes
(Figs. 14(c) and 14(d )).

– While the CB models predict correctly the inclined localized
shear bands at progressively higher loads, both PF models
predict damage bands to form on planes normal to the cylinder
axis, i.e., cracks are generated at a low inclination at all levels of
the compressive strain. This leads to the wrong damage patterns
seen in Figs. 14(e) and 14( f ). For both bPF and PF-Wumodels,
the lack of frictional sliding and microcrack splitting mecha-
nisms prevents them from reproducing the change in damage
pattern at different compressive strains. This lack leads to an
elastic loading increment when the torque is superposed.

– Due to the abrupt failure of the bPDmodel under compression,
the torsional stiffness at strain ε > 0.22% is not available. The
cracking pattern of bPD disagrees with observations in exper-
iments, showing a localization into a twisted surface instead of
a tilted plane, even at low compressive strain. At higher com-
pressive strain, most of the particles are abruptly removed
before applying the torque, which causes stability loss (seen
as a massive damage volume in Fig. 15(b)).

– The localized damage pattern and the reduction of the initial
torsional stiffness of concrete produced by PDba-Gr agree
with its CB counterpart and with experimental data. The
success of this prediction is due to the fact that this experiment
depends only on the correctness of the tensorial constitutive

Fig. 14 A comparison of the capability to reproduce vertex effect of CB and PF
models
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law and is independent of fracture properties as well as the
characteristic length.

– Even though the torsional stiffness declines as ɛ increases, the
wide spread of microcracks, due to the underlying lattice struc-
ture, causes the PD-Gr to underestimate the torsional stiffness
reduction.

It is worth noting that the vertex effect is important for modeling
many practical situations in which the shear loading follows high
uniaxial or biaxial compression, and generally when the principal
stress directions rotate during loading, which is commonplace
(examples are the impact, or seismic shear loading of a vertically
compressed column or wall). The computer codes for the existing

Fig. 15 Comparison of the capabilities to reproduce the vertex effect with the CB
and PD models

Fig. 16 (a) Patterns of diagonal cracks at the peak load of RC beams with different sizes and
(b) a sketch of the mechanics governing the strength of scaled RC beams; both were
reproduced from [71] (the zone of possible crack tip locations, of different likelihoods, was
considered in calculating the size dependence of the coefficient of variation of strength [72])
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popular plasticity models based on invariants miss the plastic vertex
effect. As long as the computer analysts insist on tensorial models
with invariants and one or two loading surfaces, this remains an
insurmountable deficiency. After initial frustrations [93], the
vertex effect has simply been ignored after 1980 in computational
plasticity, although this is acceptable only for near-proportional
loading. Only recently has the question been revived and discussed
again [68].

5.8 Diagonal Shear Failure of Reinforced Concrete Beams
and Slab Punching. This has been a formidable problem, arguably
the most difficult one in fracture mechanics. It has been studied for
over a hundred years and by fracture mechanics for four decades.
Many RC structures collapsed unexpectedly in this manner. The
observed load capacity, with its size and shape effects, has never
been successfully predicted by LEFM, nor by the cohesive crack
model. Why?
The answer has recently been given by the gap test. The line crack

models, such as LEFM or CCM, can predict correctly the mode I ini-
tiation of the main diagonal crack, which happens at about 0.5 Pmax.

But at the maximum load, Pmax, at which the crack already extends
through about 80% of the cross section (Fig. 16), the compressive
stress σxx along the crack, transmitted along an imagined compres-
sion “strut” parallel to the crack (the darker strip above the main
crack in Fig. 16(b)), nearly attains the uniaxial compression strength
limit f ′c . At that moment, the crack-parallel compression reduces the
mode I fracture energy to almost 0, as recently revealed by the gap
test [20,21]. The failure finally occurs by the propagation of a
compression-shear band of splitting cracks across the top of the com-
pression “strut” and the push-up of the triangular wedge above the
crack tip (of length ac marked in Fig. 16(b)) [94,95]. This is a
failure mode that follows closely the type 2 size effect, as confirmed
bymany tests and physically explained by the release of strain energy
from the compression “strut,”which increases quadratically with the
beam size.
Enormous funds have been spent worldwide on the tests of this

kind of failure. The database, which was assembled in 1984 at
Northwestern and was later more than doubled by the ACI Commit-
tee 445, contains now over 800 test series collected from the liter-
ature [96]. The scaling of the shear failure is particularly well
documented by the recent tests of Syroka-Korol and Tejchman

Fig. 17 (a) Typical observed crack patterns in RC beam shear at Pmax/3 and Pmax and
(b)–(h) their simulations by CB and PF and PD models
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[97]. Geometrically scaled RC beams of three sizes (or depths), with
D= 200, 400, 800 mm (Fig. 16(a)), were tested. The observed diag-
onal shear cracks are plotted in dimensionless coordinates in
Fig. 16(a), in which all the beams coincide. The crack paths for dif-
ferent sizes are seen to almost coincide as well, and the Pmax occurs
when the crack tip reaches almost the same point in dimensionless
coordinates.
As confirmed generally by the database, the RC beam shear

strength σN follows the size effect law as closely as the data
scatter permits one to discern; see Fig. 16(b) (based on this fact
and on a similar analysis of slab punching fracture, the SEL has
been incorporated into the ACI-318/2019 concrete design code).
The simulations by the CB-M7, shown in Fig. 16(b), agree with
the test data within their inevitable scatter.
The performance of themodels is comparedwith the experiments in

three aspects: the development of cracks whenP increases, the consis-
tency of the main crack paths at the peak load for various beam sizes,
and the prediction of the structural strength of scaled beams.

– The fracturing starts by many distributed cracks at Pmax/3. At
Pmax, which eventually localize into one main diagonal crack
(Fig. 17(a)).

– BothCBmodels show the formation of distributed cracks atP≈
Pmax/3 and of a large diagonal crack atPmax; see Figs. 17(b) and
17(c). However, the distance between the cracks in CB-Gr is
larger than typical, and some of these cracks still contribute to
the dissipation at Pmax, instead of a single diagonal crack as in
CB-M7.

– A common problem of bPF and PF-Wu is an unrealistic
pattern of crack formation (Figs. 17(d ) and 17(e)). Both incor-
rectly show the formation of a single bending crack at the
middle cross section of the beam, followed by extensive
debonding of steel bar from concrete, and only after that a
wide inclined zone of diffused damage leads to failure. More-
over, for all sizes, the bPFmodel shows no peak load, wrongly
predicting a continuing load increase without failure. This is a
major deficiency. It gets only slightly mitigated in PF-Wu, but

Fig. 18 (a) Observed crack paths, (b) results of simulations of size effect in scaled RC beams
of three sizes, and (c)–( f ) simulated fracture patterns (or damage zones) at Pmax for specimens
of different sizes D (increasing upward), for CB and PF models
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the lack of a major crack at the peak load still leads to gross
overestimation of the beam shear strength (Fig. 17(d )).

– The bPD model incorrectly indicates the formation of several
scattered cracks at Pmax/3. At the maximum load, Pmax, these
cracks lead to widespread damage at the wrong place. The
brittle nature of bPD further triggers multiple splitting
damage under the loading pads. After that, debonding
happens between concrete and steel.

– The PD-Gr model predicts a completely wrong crack pattern,
in which neither the distributed bending cracks nor the major
diagonal shear crack appears. Instead, an inelastic zone initi-
ates under the loading pad and spreads out when the load
increases.

– The PDba-Gr model predicts the formation of a narrow array
of bending cracks and the failure then happens due to a major
vertical crack instead of a diagonal one. Both are incorrect.

Figure 18(a), drawn in relative coordinates, shows again for con-
venience of comparison the diagonal crack locations and shapes,
marked by discrete points, as obtained at Pmax in the tests of geo-
metrically scaled beams [97]. The points coincide remarkably
well, as they should. This confirms the geometric similarity of the
failure patterns.

– Both CB models are consistent in the location and inclination
of the diagonal crack at the peak load, and match the experi-
mental size effect well. However, for CB-Gr, the inclination
angle for beam depth D= 360 mm is incorrect. It is lower
than for the other two sizes D and the location of the
inclined crack is incorrectly shifted toward midspan (Figs.
18(b)–18(d )).

– The load–displacement curves resulting from the bPF model
do not show any peak load; rather the load continues to
increase without failure. Therefore, to compare and interpret
the damage patterns and strengths, the peak had to be taken
as the values at certain displacements marked as “fictitious”,
particularly at δ= 10, 20, 40 mm for D= 200, 400, 800 mm
(Fig. 18(e)),

– Somewhat lesser errors occur in PF-Wu. But the lack of a
major crack at the peak load still leads to gross overestimation
of the beam shear strength (Fig. 18(b)). Also, the PF-Wu

model shows, incorrectly, a strength increase with increasing
beam size. The culprit is obvious in Fig. 18( f ), where the
peak load is accompanied by a diffused zone of debonding
and an inclined damage zone. The volume of this zone
grows as D increases, which dissipates more energy.

– Even greater problems are found in the bPD model
(Fig. 19(b)). The cracking patterns in beams of different
sizes are inconsistent and incorrect. They evolve from inclined
cracks to complete concrete-steel debonding at the peak load,
and a major erosion of the material points. Even though the
predicted strength values of scaled beams fall within the exper-
imental scatter range, the mechanisms corresponding to these
results are wrong (Figs. 19(a) and 19(b)). Also wrong is that
the trend and curvature of the bPD size effect curve in
Fig. 19(a) is opposite to that of the SEL.

– Similarly, the PD-Gr model does not produce a consistent
trend of σN versus structure size D (Figs. 19(c)). This is in
turn due to the inconsistency in the crack patterns predicted
for various sizes. For example, while the bending damage
dominates the failure mechanism for the size of D=
200 mm, the failure of beams with D= 400 and D= 800 mm
shows a local accumulation of damage under the loading
pads and nearby.

– The data in PDba-Gr model follow a trend opposite to other
PD models, i.e., the nominal strengths are significantly lower
than those observed experimentally. However, the cracking
patterns are also inconsistent among beam sizes. While the
failure mechanism at the small size is caused by localized
bending cracks, the failure of beams with D= 400, 800 mm
transits to damage accumulation under the loading pads, and
bond breakage ultimately leads to a removal of material
from this area.

The punching of RC slabs by a supporting column is a similar
shear problem, except that the expansion of the punch zone is
resisted by circumferential tension that provides radial confinement
[98]. There exists an ACI-445 database of 440 test series conducted
worldwide. The database confirmed that the nominal punching
strength follows the SEL, Eq. (6), and this equation has been intro-
duced also into the punching provisions of the ACI-318/2019
design code. As shown in Ref. [98], the CB model fits the data
closely, while it is expected that PD and PF models would not,
for the same reasons mentioned earlier. Because of the similarity
to beam shear, the simulations of slab punching are here omitted.

5.9 Axial Double Punch of Cylinders. This simple 1989 test
[99] is an excellent check on the compression shear failure. The
most important is the size effect when this test is scaled [99]. The
double-punch loading of concrete cylinder produces a conical
shear crack under each punch. Then, the penetration of the cone
into the cylinder pushes the peripheral parts apart, and circumferen-
tial tension causes axial splitting cracks subjected to crack-parallel
compression. The size effect is simpler and easier to evaluate than it
is for the Brazilian split-cylinder test, for several reasons: (1) the
scaling of the double-punch test is not complicated by changes of
curvature of the Hertzian contact; (2) it does not use soft loading
strips causing dissimilarity of Brazilian tests at increasing diame-
ters; and (3) the plastic wedge zone forming under the loading
strip in the Brazilian tests disturbs the geometrical similarity as
the diameter increases.

– Both CBmodels predict a pattern agreeing well with the exper-
iments of all sizes. The CB-Gr model shows a more diffused
damage than the CB-M7, but the main crack is correctly pre-
dicted by both. For larger D (from 76.2 to 1219mm), the
CB-Gr model overestimates the nominal strengths, which is
due to excessive fracture energy.

– Both the bPF and PF-Wu models fail to reproduce the conical
damage surface and show an incorrect failure mechanism. The
bPF model leads to a cylindrical, rather than conical, damage

Fig. 19 (a) Simulation results of size effect in scaled RC beams
of three sizes and (b)–(d ) simulated fracture patterns (or damage
zones) at Pmax, for specimens of different sizes D (increasing
upward), for CB and PD models
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surface, having the same diameter as the punch. The splitting
starts, incorrectly, from this cylindrical surface. This also leads
to excessive brittleness (i.e., sudden load drop). The PF-Wu
shows only concentrated damage under the plate. For both
PF models, the variation of the nominal strength across sizes
follows, incorrectly, the power-law trend seen as a straight
line in the log-log scale, similar to their Type 2 size effect
behaviors for the crack of opening mode; see Fig. 6 (note
that if data were plotted in the linear scale, such an obvious
deviation would likely be ignored as the data fall within the
scatter band).

– All PD models either overestimate or underestimate the
nominal strengths for every specimen size D. For the case of
bPD and PDba-Gr, not only they underestimate the fracture
energy but also they show a wrong curvature of the type 2 size
effect plot. These errors can be explained by Figs. 20(h)–20( j).
The excessively brittle bPD model releases the strain energy
abruptly by the removal of a near-cylindrical volume ofmaterial
points, which ultimately leads to the splitting of the cylinder.
The PDba-Gr, on the other hand, captures the conical surface

under the loading pads. However, these surfaces localize to
form, incorrectly, two elongated cones connected at
apices while splitting cracks connecting the cones and separat-
ing cylinder parts are missing.

– The increasing trend of the size effect curve produced by
PD-Gr (Fig. 20) is physically impossible. This stems from
the increasing volume of damage predicted by this model as
D increases. Compared with CB-Gr and PDba-Gr, this
model shows a damage pattern resembling conical cracks,
but the damage is spread out too widely.

5.10 Comparisons with Gap Test. Finally the new test, the
gap test, which has already been discussed in Fig. 1, and whose suc-
cessful simulations by CB-M7 was presented in Figs. 1(e) and 1( f ).
Due to differences in accuracy of various numerical models, the size
effect method, when applied to different models, yields for the same
material different values of fracture energy Gf0 at σxx= 0; see
Fig. 21(a). Therefore, to facilitate comparisons, ratios Gf/Gf0 are
used as the coordinate in the diagram of Fig. 21(b).

– Both CB-M7 and CB-Gr follow the trend of gap test, which is
an increasing Gf through low to medium σxx and weakening at
high σxx. Quantitatively, though, the CB-M7 captures the var-
iation of fracture energy Gf with σxx better than CB-Gr
(Fig. 21).

– The PD models cannot predict the effect of crack parallel stress
on Gf at all. Furthermore, due to their excessive brittleness, the
bPD incorrectly shows a monotonically decreasing Gf,
explained by sudden bond breakages upon reaching their com-
pression strength limit. This model predicts a premature failure
(marked by ×) much before reaching the material compression
strength σc. Among the PD models, PDba-Gr shows the least
error and captures at least the increasing trend of Gf as σxx
increases.

– As σxx increases, the bPF model shows incorrectly no change
in Gf, which confirms it is a LEFM model. The formulation of
PF-Wu, however, generates an FPZ with nonzero width that
can interact with σxx. Yet this model gives an insufficient
monotonic growth of Gf, which terminates prematurely (indi-
cated by another × point) because, in using the size effect
method, the gap test fails by compression before the gaps
close. This is similar to what happens in the compression
test of 2D confined specimens in which the biaxial stress
state actually weakens the calculated response.

5.11 The Lack of Objectivity of Some Phase-Field and
Peridynamic Models. Structural analysis must be physically
objective. This means that its results must be independent of
human choice, particularly of the chosen quantities such as the
mesh size (except for numerical errors that converge to zero with
model refinement). When, however, the strain softening was intro-
duced into the FE analysis, the mesh sensitivity of strain softening
was found to be unobjective. The spurious mesh sensitivity was the
initial reason for postulating the necessity of material characteristic
length [100], in strain-softening material. It was justified by contin-
uum smoothing of a material with microstructural heterogeneity
and, in CB and cohesive crack models, by the interaction of fracture
energy Gf with material strength ft, two physical characteristics of
different dimensions, N/m and N/m2. When the stress attains the
strength limit, a crack can form and propagate, but it will propagate
only if a sufficient energy required by the fracture process zone is
also supplied. Also, the results of the gap tests indicate the exis-
tence of at least two independent material lengths that determine
the fracture energy Gf in quasibrittle materials [101].
In the bPF model, however, the crack is a line and its growth is

fully characterized by Gf. The phase-field width w0 is an extra quan-
tity with no physical justification. Its purpose is purely computa-
tional—to anchor the crack in the mesh without directional bias
(note that w0 has nothing to do with Irwin’s material characteristic
length EGf /f 2t , characterizing the cohesive crack and CB models).

Fig. 20 (a) Double punch test of a cylinder [99] with schematic
failure mechanism, (b) its size effect obtained from Marti’s 1988
tests [99], compared to predictions of various models, and
(c)–(h) failure patterns predicted by various models

Fig. 21 (a) The deviations from the experimental fracture energy
of CB, PF, and PD models. (b) Gap test results showing the re-
lative change of measured concrete fracture energy Gf versus
crack-parallel compression σxx, normalized by uniaxial compres-
sion strength σc, and comparisons to CB, PF, and PD models.
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However, the predictions of PF models are found to depend on the
choice of ratio w0/h (arbitrarily taken between 3 and 6). This is
unobjective. For instance, in the bPF prediction of an unnotched
3PB specimen strength with w0= 10 mm (or w0/h≈ 3), the peak
load in Fig. 6 is different from that in Fig. 22(a), in which it is pre-
dicted with w0= 20 mm (or w0/h≈ 6).
The sensitivity to the choice of w0 is also a serious conceptual

problem of many other PF models, except that the Gf0 value in
the PF-Wu model for σxx= 0 is insensitive to w0 [102]. However,
if σxx≠ 0, then PF-Wu, too, is sensitive to w0 choice (note that, in
Fig. 21(b), PF-Wu fails to capture the regime of weakening Gf).
We posit that the modification in the phase-field functions (see
Appendix C) inappropriately generates a finite-width FPZ.
However, the FPZ expands in size as w0 increases at σxx≠ 0,
which leads to an excessive dissipated energy (Fig. 22(b)).
The crack band model overcomes the objectivity problem (except

for a small numerical error) by adjusting the postpeak softening
based on the element size [26,27,71]. For example, Grassl et al.
made an adjustment to the softening slope corresponding to different
element sizes in the CDPM2 (CB-Gr) model [60]. In addition, there
is no objectivity problem if the element size in the damage zone is
kept the same when the structure size is increased. This way is more
accurate and is the preferred approach despite its computational burden.
Peridynamics, too, has an objectivity problem with respect to

the choice of horizon radius. Similar to PF-Wu, PD models
produce an FPZ scaled with the choice of the horizon size.
Despite the inherent adjustment within the Grassl et al.’s model,
which should suppress the spurious sensitivity with respect to dif-
ferent horizon radii in a way similar to the CB-Gr model, the
PDba-Gr model still generates a larger FPZ width and predicts
a higher peak load of the notched specimen, as shown in
Fig. 22(c). This also applies to PD-Gr.

6 Discussion and Summary
6.1 Peridynamic Dilemma at Boundaries, Distorting the

Size Effect. The present comparisons confirm that the PD theory

cannot be cured by introducing a better damage constitutive
model. The problem is deeper.
As already pointed out, the need to cut off the potential or central

force interactions in proximity to the boundary modifies the proper-
ties of the boundary unrealistically, due to sparser horizon connec-
tions in the boundary layer of a thickness equal to the horizon
radius, δh (Fig. 5(a)). The cutoffs make this layer weaker and
softer. To compensate for it at least partly, the properties within
the horizons crossing the structure boundary or the crack face
have usually been adjusted in some way, as already mentioned
while discussing Fig. 5. The toughest problem is a horizon crossing
the FPZ (or the cohesive zone) in front of a crack. In such a horizon,
the cross-interactions must be weakened but not eliminated
(Fig. 5(c)). The weakening should be modest near the front of the
cohesive zone, and strong in its tail, close to the open crack tip.
The boundary and crack line corrections of the horizon have differ-
ent effects on different kinds of fracture. They are particularly dis-
ruptive for the size effect.

6.2 Comparison of Performance of 7 Models in Tests of 11
Types. The results of the foregoing comparisons are summarized
in Table 1. The performance of the CB-M7 model is good
(labeled OK) in all the 11 tests considered. The performances of
bPF, PF-Wu, and bPD models range from poor to wrong in all
the 11 tests except one, the concentrated shear test, in which their
performances are satisfactory (or fair), which means less than
good. The PF-Wu model can somewhat capture the type 1 size
effect, but poorly. Among the PD models, PDba-Gr manages to
capture more experimental observations than the others, but in 7
out of 11 tests, it is still incorrect. Notably, the PD-Gr model fails
in all the tests, which implies a deeper conceptual problem for all
PD models.

6.3 Poor Performance: Where Does It Matter in Practice?

(1) Shear failure of RC beams, slabs, footings, prestressed or
not

Fig. 22 The dependence on length-scale parameters of PD and PF models

Table 1 The performance of CB, PF, and PD models on 11 types of experiments

Test type CB-M7 CB-Gr PF PF-Wu PD PD-Gr PDba-Gr

1. Size effect, type 1 OK OK Wrong Poor Wrong Wrong Wrong
2. Size effect, type 2 OK OK Wrong Wrong Wrong Wrong Fair
3. Concentrated shear fracture OK OK Fair OK Fair Wrong OK
4. Compression-torsion fracture (mode III) OK Fair Wrong Wrong Wrong Wrong Wrong
5. Uniaxial compression OK Fair Wrong Wrong Wrong Wrong Fair
6. Confined compression of slab OK Fair Wrong Wrong Wrong Wrong Wrong
7. Confined compression of cylinder OK Fair Wrong Wrong Wrong Wrong Wrong
8. Vertex effect OK OK Wrong Wrong Wrong Wrong OK
9. Diagonal shear failure of RC beams OK Fair Wrong Wrong Wrong Wrong Wrong
10. Double punch OK Fair Wrong Wrong Wrong Wrong Wrong
11. Gap test OK Fair Wrong Wrong Wrong Wrong Wrong
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(2) Horizontal shear of columns, shear walls, tall pylons in
earthquake

(3) Prestressed containment or pressure vessel failures
(4) Safety of dams
(5) Penetration of projectiles into concrete walls, exit speed
(6) Safety of anchors in rock or concrete
(7) Failure of composite beams
(8) Fracking, especially with poromechanical stress transfer to

solid
(9) Hydraulic fracturing for geothermal energy or CO2

sequestration
(10) Slow subcritical growth of crack systems in geology
(11) Rupture and growth of earthquake faults
(12) Sea ice sheet pushing on a fixed structure, icebreaking
(13) Load-bearing capacity of floating sea ice
(14) Fiber composite airframes—fuselage crack, wing box, wing

shear, rudder
(15) Tunnel collapse, rock burst in mine stopes and deep

boreholes
(16) Many cases of fracture of fatigued metals, bone, and other

biomaterials
(17) Stiff soils, rigid foams, printed materials, etc.

6.4 Crack-Parallel Stresses: Where Do They Matter in
Practice?

(1) Shear failure of RC beams and slabs
(2) Cracks in prestressed concrete
(3) Longitudinal crack in pressurized aircraft fuselage
(4) Crack in the casing of solid-propellant rockets
(5) Shear crack in aircraft wing, wing box, rudder,

and stabilizer
(6) Fracking, especially with poromechanical stress transfer to

solid
(7) Sea ice sheet pushing on a fixed structure
(8) Pressure vessel fractures
(9) Fracture in arch dam or arch bridge abutments, in footings
(10) Crush cans for automobile crashworthiness
(11) Cracks caused by projectile impact
(12) Cracks in inflatable shells
(13) Most thermal cracks
(14) Cracks in geology, in seismic events
(15) Pullout fracture of anchors from rock or concrete
(16) Fuselage cracks, shear cracks in fiber composite wings,

wing box, rudder
(17) Shear crack in fiber composite wind turbine leafs
(18) Particle comminution in projectile impact
(19) Fracture of fatigued plastic-hardening polycrystalline

metals
(20) Burst of mine stopes, borehole breakout, failure of tunnels,

excavations
(21) Fracture of bone, dental materials, other biomaterials, etc.

7 Closing Comments
The PF model is currently the best approach for simulating

curved or branching sharp LEFM cracks, though only in situations
with negligible crack parallel stresses, and with no inelastic beha-
vior outside the crack line. Unfortunately, such situations are rare
in practice.
To become viable in general situations, the PF models would

need to be fundamentally modified to consider:

(1) A fracture process zone (FPZ) of finite width and finite
length;

(2) An FPZ characterized by a sufficiently realistic (multiparam-
eter) tensorial constitutive model with multiparameter
damage (such as microplane model M7);

(3) Inelastic behavior outside the crack line;
(4) The lack of objectivity with respect to the choice of the

phase-field band width w0. The modified model would
have to represent sufficiently well the experimental stress-

strain and failure data as well as the crack-parallel stress
effect.

For PD to become viable as a general predictive model, one
would need to:

(1) enhance the microstructure with particle rotations;
(2) introduce dilatant frictional inter-particle shear;
(3) avoid a particle-skipping force potential;
(4) find a way to implement realistic boundary conditions,

including those at the crack faces and at the fracture
process zone boundary;

(5) overcome the lack of objectivity with respect to the choice of
peridynamic horizon (as well as the wave dispersion prob-
lems identified in 2016) [16].

These improvements seem impossible without a fundamental
change of concept, which would inevitably lead to something like
the LDPM [47,103].
The crack band model with the M7 microplane constitutive

model agrees satisfactorily with all the existing experimental evi-
dence and is predictive. Nevertheless, a further improvement is
desirable to make the band run through the finite element mesh in
any direction with zero mesh bias.
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Appendices

Appendix A: The Calibration Process
In view of their diverse features, each model in this study had to

be calibrated differently. The finite element discretization (which
serves as the geometry for all methods) began by selecting the
element size. For CB models applied to experiments lacking size
effect data (which are what matter most), the element size was ini-
tialized as the maximum aggregate size of concrete, da, and then
updated between da and 3 da based on the optimum fitting of exist-
ing data. For PF models, a sufficient number of elements need to be
included in the band width w0 to avoid mesh bias and ensure the
convergence, which normally range from three to six elements.
For PD models, the horizon size was chosen to be 2.5–3 times
the element size. For fairness of comparison, the horizon radius
was chosen to be 1/2 of the crack band width. This ensured that
the same RVE volume would be involved in the energy dissipation
and that the PD results would be as close as possible to CB results
(note that the PD models behave strangely when the element sizes

12www.civil.northwestern.edu/people/bazant, github.com/htn403
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are spatially graded to vary between a chosen minimum and
maximum; e.g., in the unnotched three-point bend specimens in
Fig. 7, the crack tends to form where small elements transit to
larger elements rather than at midspan).
In the next step, the model parameters have been calibrated to fit

best the data for each experiment. In the case of size effect tests, the
calibration was based on the peak loads and the load–displacement
curve for the smallest specimen, and then adjustments were made
for larger sizes. The size effect data, if available, were prioritized
over the postpeak data for one size, as they are more unambiguous
[75]. Whenever available, data of other tests for the same concrete
were also considered; e.g., Hoover et al. [33,74] performed uniaxial
compression of cylinders and prisms, Brazilian tests, size effect
tests on beams with different notch-to-depth ratios, etc., on the
same concrete with a high consistency. For experiments with
more limited material data, qualitative characteristics like crack pat-
terns were also taken into account.
One must also note that each model requires different amount of

data. The bPF model uses only three parameters—E, Gf and
Poisson ratio ν. Hence, it requires fewer data than the CB-M7
model, which involves eight free parameters E, ν, k1,… k6, although
default values are often used for the last 3 free parameters (also,
some parameters are more relevant than others, e.g., ν is unimpor-
tant for the type 2 size effect tests).
Even though the parameters of CB-Gr, PD-Gr, PDba-Gr) were

kept the same in most cases, PD-Gr and PDba-Gr yielded some
odd results. While, for example, the same parameter set (p1)
resulted in the same nominal strength of the smallest specimens
for type 1 size effect, a discrepancy occurred for type 2 (Fig. 23).
To make the results comparable, Gf and ft had to be rescaled to
give the same strength for the smallest-size specimens (p2).

Appendix B: Comparisons of Bond-Based Peridynamics
to Size Effect Tests
For reasons stated in Sec. 4, the present comparisons used the

(ordinary and nonordinary) state-based PD. However, the recent
results of the bond-based version are worth mentioning. Hobbs

et al. [52] recently studied the bond-based model for concrete
and was the first to present (in Nov. 2021) the PD simulations
of size effect in fracture, using published test data on similar
notched and unnotched three-point-bend specimens of various
sizes. These authors compared the PD results with the
maximum load data measured in [73], but did not present the stan-
dard log-log diagram of size effect. This diagram is here repro-
duced (Figs. 24(a) and 24(b)) from the maximum load values
evident from Hobbs et al.’s plots of load–deflection curves for
various specimen sizes, for both type 1 and type 2 size
effect laws. As shown, Hobbs et al.’s simulations with the bond-
based PD completely miss the experimentally observed transi-
tional size effect, for both types. Further note that, similar to
some cases in Fig. 6, type 2 again gives a straight line, which cor-
responds to a power law and its slope corresponds to an exponent
different from −1/2. This value makes the model thermodynami-
cally inadmissible [27,71,78]; see Appendix H.
Hobbs et al.’s type 1 simulations give no size effect. This error

cannot be attributed to a lack of Weibull statistics because the spec-
imens are of the three-point-bend type, in which the zone of
maximum stress involves only one RVE. To observe the statistical
size effect, there must be a large zone in which the crack can orig-
inate from many RVEs, at many random locations [27,71]. Such a
zone is best created in uniform tension specimens and, in a limited
way, also in four-point bend beams with a very long segment of
constant bending moment.

Appendix C: Phase-Field Modifications by Feng and Wu
Wu [59] modified the degradation and the dissipation functions

of the original PF model [1] to approximate the energy dissipation
by the cohesive force acting along the FPZ. His energy density
reads:

Ψ(ε(u), g(φ)) = g(φ)Ψ+
0 (ε(u)) + Ψ−

0 (ε(u))

+
Gf

4cww0
w(φ) + w2

0|∇φ|2
( ) (C1)

where g(φ) =
(1 − φ)d

(1 − φ)d + aφ(1 + bφ)
, a =

4EGf

πw0f 2t
(C2)

Ψ+
0 =

σ1〈 〉2+
2E

;

Ψ−
0 =

1
2E

σI σI〈 〉− + σ2II + σ2III − 2ν σIIσIII + σIσIII + σIσII( )[ ]
(C3)

w(φ) = 2φ − φ2, cw =
∫1
0

�����
w(ζ)

√
dζ (C4)

By using calculus of variations, one can find the solution [u, φ]T that
minimizes the integral of the energy function (C1) over the entire
domain.

Appendix D: Phase-Field Modifications by Fei and Choo
Fei and Choo separated the energy density into three parts:

elastic, fracture, and interfacial friction, separated by a threshold
fracture energy Ht:

Ψ =Ψe + Ψ f +
3G fII

8w0
φ + w2

0|∇φ|2
( )

(D1)

where Ψe =
∫t
t p

σbulk : ε̇dt −
∫t
t p

[1 − g(φ)]τbulk γ̇dt (D2)

Fig. 23 Calibration of the peridynamics models for (a) type 2
and (b) type 1 size effect

Fig. 24 The predictions for type 2 and type 1 size effect using a
bond-based PD model by Ref. [49]
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Ψ f =
∫t
t p

[1 − g(φ)]τr γ̇dt (D3)

g(φ) =
(1 − φ)n

(1 − φ)n + mφ(1 + pφ)
, n = 2, p ≥ 1, m =

3G fII

8w0

1
Ht

(D4)

Appendix E: The Mathematical Basis of
Bond-Associated Peridynamics
The PD deformation gradient is originally defined in [13,44]. If

combined with nodal quadrature, it permits zero-energy deforma-
tion modes [18,104]. Therefore, in a recent development [62,63],
a new Lagrangian correspondence-based deformation gradient
associated with bonds connecting material points X and X′ has
been proposed:

F X, X′( )
= Favg X, X′( )

+ Fcorr X, X′( )
(E1)

Favg X, X′( )
=
F(X) + F X′( )

2
(E2)

Fcorr X, X′( )
= x′ − X

( )
− Favg X, X′( ) · X′ − X

( )( )
⊗

X′ − X
( )
X′ − X
( )∣∣ ∣∣2

(E3)

the authors computed the basis-function gradient by methods com-
monly used in the mesh-free formulation. The accuracy of the gra-
dient calculation is assured by the polynomial-reproducing
conditions imposed on these basis functions.

Appendix F: The Mathematical Form of CDPM2 Model
by Grassl et al.
The stress tensor at a material point is computed by:

σ = 1 − ωt( )σt + 1 − ωc( )σc; σ = De : ε − ε p
( )

(F1)

The plasticity part of the model can be written as follows:

f p σ, κ p

( )
F σ, qh1, qh2
( )

(F2)

ε̇ p = λ̇
∂gp

∂σ
σ, κ p

( )
(F3)

Note that the plastic potential gp and plastic loading function fp are
different. The growth of compressive and tensile damages is
described as follows:

fdt = ε̃t(σ) − κdt (F4)

fdt ≤ 0, κ̇dt ≥ 0, κ̇dt fdt = 0 (F5)

ωt = gdt κdt , κdt1, κdt2( ) (F6)

fdc = αcε̃c(σ) − κdc (F7)

fdc ≤ 0, κ̇dc ≥ 0, κ̇dcfdc = 0 (F8)

ωc = gdc κdc, κdc1, κdc2( ) (F9)

Appendix G: Basic Features of Microplane Model
The classical plasticity and damage models use the stress and

strain tensors with tensorial invariants and their constitutive law is

defined by loading surfaces, normality rules, plastic-hardening
parameter(s) and damage parameter(s). Such models are called
tensorial. The microplane constitutive model also relates the stress
and strain tensors. But the constitutive law is vectorial
[26,27,31,71,105]. It is defined as a relation of the stress vectors to
the strain vectors, the latter representing the projections of the
strain tensor onto a generic plane of arbitrary orientation within
thematerial, called the microplane. The use of vectors helps physical
insight, intuitively reflecting the microcrack openings, compression
splitting cracks, shear slip, and frictional dilatancy. The algorithm is
explicit, delivering the stress from strain, but it can be an advantage
that on the microplane level it is easily converted to an implicit algo-
rithm delivering the tangential stiffness tensor on the continuum
level [53].
M7 is the latest in a series of progressively improved models

M1–M7. In M7, as well as M3 and M4, all the inelastic behavior
is characterized by the stress–strain boundaries. The return (or
drop) to a boundary is in each loading step done at a constant
strain (which amounts to a special case of the radial return
algorithm for the tensorial models). The drop to the boundary on
the microplane level suffices to guarantee nonnegativeness of
energy dissipation. There is no need for nonassociated plasticity
violating the normality rule. Unequal friction and dilatancy angles
on the continuum level are reproduced automatically, with no pos-
sibility of negative energy dissipation (the nonassociatedness is a
nonissue for microplane model).
The stress tensor is obtained variationally according to the prin-

ciple of virtual work, by properly weighted integration over all
spatial orientations. The integration is carried out numerically
over a hemispherical surface according to one of the optimal Gauss-
ian formulas. It amounts to weighted summation over a set of dis-
crete microplanes (for good accuracy, their number per
hemisphere must be at least 21 but typically is 37).
The boundaries of negative slope define the evolution of damage,

and the horizontal ones define plasticity. There is no need for hard-
ening plasticity, since it is automatically generated by interaction of
the microplanes. Also, there is no use for a separate damage param-
eter per se, and there exists no single damage variable (they are
many). There are one normal component and two shear components
on each microplane. By using 37 microplanes per hemisphere, one
has effectively 37 × 3= 111 possible damage and plasticity sources.
In effect, this is a sort of analog of multisurface plasticity with 111
independent loading surfaces, which are, however, vectorial rather
than tensorial. This feature explains why the vertex effect is
endemic and why it can occur at any point of the 9D space of
stress tensor components. Beginning with Koiter [106,107] and
Phillips et al. [108], it has been widely acknowledged that multisur-
face plasticity is more realistic, but 111 (even 10) plastic loading
surfaces in the tensorial, rather than vectorial, space would be virtu-
ally intractable, both for model development and computer model-
ing (an omnipresent vertex effect nevertheless exists also in the
tensorial endochronic theory [109] which, however has other
limitations).

Fig. 25 (a) A curved crack on the compact-tension specimen
with a hole in front of the notch is captured by the CB model in
(b), and (c) The load versus crack-opening–displacement curve
of the specimen in (a)
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The fact that all the response within the boundaries is treated as
elastic is a significant simplification. Curved rising stress–strain
response is nevertheless automatically reproduced, thanks to differ-
ent boundaries kicking in gradually in subsequent loading steps.
The damage is generated on softening stress–strain boundaries at
some microplanes but not at others, which is what creates the
strong path dependence of the constitutive law at continuum
level. The generation of damage on a microplane does not
proceed monotonically. The damaged material can even stiffen
when, e.g., hydrostatic pressure or transverse compression gets
superposed on damage in shear.
During unloading and reloading, different microplanes become

active. This is what reproduces the Bauschinger effect and the
correct response under load cycles [110]. Even though the plentiful
test data on cyclic and fatigue fracture are not covered here, the
ability to capture the opening and closing of microcracks and
sequential microplane activation in a material experiencing multiple
loading cycles is also an important capability of model M7. The M7
crack band model [25,110] has been shown to possess such a capa-
bility. It can predict the behavior up to several thousand load cycles.
The explicit description of damage on each microplane helps.
One feature that simplifies model formulation is that one-to-one

relations between the conjugate stress and strain components on
the microplanes are sufficient. There appears to be no need for
cross-interactions such as the Poisson effect on the microplanes.
The reason is that such cross effects are automatically generated
by the interaction of microplanes of different orientations.
For a finite crack front width, the direction of crack growth is sig-

nificantly affected by the triaxial stress state at the front. This effect
plays a role in the curved propagation of a crack band in a compact
tension specimen in which a hole has been drilled on the side of the
crack extension line. As mentioned in Secs. 3 and 4, both PF and PD
[23,111] predict a smoothly curved crack running into the hole.
Despite the ruggedness imposed by the mesh, the M7 crack band
model, too, predicts a similar curved path into the hole (Fig. 25).
Note that, even if the band were not rugged, the path could not
be identical. The reason is that the aforementioned triaxial stress
effect, influencing the crack path direction, cannot be captured cor-
rectly by the PD and PF models. Therefore, and also because of
missing the crack-parallel compression, the PD and PF crack
paths cannot be quite realistic. This triaxiality effect in the FPZ is
best manifested by sideways crack propagation in orthotropic
fiber composites, making a sharp angle on the crack path. Such as
path is correctly predicted correctly by the crack band model
[112] but not by LEFM, PF, and PD models (nor by the cohesive
crack model).
What matters for the good performance of CB-M7 is that this

model implies three independent material characteristic lengths.
The M7 correctly captures the fact [27,71] that the tensile postpeak
softening curve begins with a steep softening slope and ends with a
very long tail. The area under the initial slope is called the initial
fracture energy Gf. The total area including the whole tail is
called the total fracture energy GF. The corresponding Irwin’s
lengths, which are lf = EGf /f 2t and lF = EGF/f 2t matter mainly
for the length of the FPZ, while the w0 is a material length charac-
terizing the FPZ width, considered as the crack band width. The
ability to capture all the three material characteristic lengths is an
advantage of the crack band model compared to others.
Normally, the microplane model for concrete is calibrated by

adjusting its three scaling parameters to fit the tensile strength and
Young’s modulus. Four more parameters can be easily adjusted
to fit the confined compression data. The initial fracture energy Gf

is obtained through the fitting of the maximum loads for scaled
notched fracture specimens using the size effect law (if such data
exist). If Gf is specified, the scaling parameters of M7 are best
adjusted so as to fit the size effect law (SEL) that corresponds to
the Gf value [27,71]. Alternatively, a given Gf can be matched as
the area under the initial tangent of the postpeak softening load-
displacement curve (corrected for dissipation away from the FPZ,
if any). The total fracture energy GF is obtained as Gf times the

ratio of the total areas under the total load–displacement curve
and under its initial tangent.

Appendix H:Why the Slope of a Straight-Line Size Effect
in the Log-Log Plot Cannot Differ From −1/2
In a quasibrittle structure significantly larger than the FPZ, the

energy flux into the crack front is given by Rice’s J-integral [113]
over a closed contour containing the whole FPZ, e.g., a small
circle C of radius r containing the FPZ:

J =
∫
Γ

�Wdy − nj sijui,1ds
( )

, �W =
∫
sijdϵij (H1)

Here, ds = rdθ and dy = rdθ cos θ. The displacement field farther
from both the FPZ and the structure boundaries has the radial
dependence ui∝ rλ. Hence, ϵij∝ rλ−1 and σij∝ rλ−1. Therefore, J∝
r2λ−1. Since J must be finite, the only admissible value of Re λ is
1/2. The scaling law must, therefore, be σN∝D−1/2. Hence, if the
log-log plot of structural strength versus size shows the slope of
−1/η with η> 2, it means that σij∝ r−1/η and J∝ r1/2−1/η→ 0,
which is impossible.
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[53] Nguyen, H. T., Caner, F. C., and Bažant, Z. P., 2021, “Conversion of Explicit
Microplane Model With Boundaries to a Constitutive Subroutine for Implicit
Finite Element Programs,” Int. J. Numer. Methods Eng., 122(6), pp. 1563–1577.

[54] Navidtehrani, Y., Betegón, C., and Martínez-Pañeda, E., 2021, “A Unified
Abaqus Implementation of the Phase Field Fracture Method Using Only a
User Material Subroutine,” Materials, 14(8), p. 1913.

[55] Navidtehrani, Y., Betegón, C., and Martínez-Pañeda, E., 2021, “A Simple and
Robust Abaqus Implementation of the Phase Field Fracture Method,” Appl.
Eng. Sci., 6(6), p. 100050.

[56] Parks, M. L., Littlewood, D. J., Mitchell, J. A., and Silling, S. A., 2012,
“Peridigm Users’ Guide,” Techincal Report, Report No. SAND2012-7800.,
Sandia National Laboratories, NM.

[57] Niazi, S., Chen, Z., and Bobaru, F., 2021, “Crack Nucleation in Brittle and
Quasi-Brittle Materials: A Peridynamic Analysis,” Theor. Appl. Fract. Mec.,
112(4), p. 102855.

[58] Wu, P., Zhao, J., Chen, Z., and Bobaru, F., 2020, “Validation of a Stochastically
Homogenized Peridynamic Model for Quasi-Static Fracture in Concrete,” Eng.
Fract. Mech., 237(10), p. 107293.

[59] Wu, J.-Y., 2017, “A Unified Phase-Field Theory for the Mechanics of Damage
and Quasi-Brittle Failure,” J. Mech. Phys. Solids., 103(6), pp. 72–99.

[60] Grassl, P., Xenos, D., Nyström, U., Rempling, R., and Gylltoft, K., 2013,
“Cdpm2: A Damage-Plasticity Approach to Modelling the Failure of
Concrete,” Int. J. Solids. Struct., 50(24), pp. 3805–3816.

[61] Grassl, P., and Jirásek, M., 2006, “Damage-Plastic Model for Concrete Failure,”
Int. J. Solids. Struct., 43(22–23), pp. 7166–7196.

[62] Behzadinasab, M., and Foster, J. T., 2020, “A Semi-Lagrangian Constitutive
Correspondence Framework for Peridynamics,” J. Mech. Phys. Solids.,
137(4), p. 103862.

[63] Behzadinasab, M., and Foster, J. T., 2020, “Revisiting the Third Sandia Fracture
Challenge: A Bond-Associated, Semi-Lagrangian Peridynamic Approach to
Modeling Large Deformation and Ductile Fracture,” Int. J. Fracture, 224(2),
pp. 261–267.

[64] Behzadinasab, M., Trask, N., and Bazilevs, Y., 2021, “A Unified, Stable and
Accurate Meshfree Framework for Peridynamic Correspondence Modeling—
Part I: Core Methods,” J. Peridyn. Nonlocal Model., 3(1), pp. 24–45.

[65] Fei, F., and Choo, J., 2020, “A Phase-Field Model of Frictional Shear Fracture in
Geologic Materials,” Comput. Methods. Appl. Mech. Eng., 369(9), p. 113265.
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[69] Bažant, Z. P., 1984, “Size Effect in Blunt Fracture: Concrete, Rock, Metal,”
J. Eng. Mech., 110(4), pp. 518–535.
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[71] Bažant, Z. P., Le, J. -L., and Salviato, M., 2021, Quasibrittle Fracture
Mechanics and Size Effect: A First Course, Oxford University Press, Oxford,
UK.

[72] Luo, W., Le, J.-L., Rasoolinejad, M., and Bažant, Z. P., 2021, “Coefficient of
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[98] Dönmez, A., and Bažant, Z. P., 2017, “Size Effect on Punching Strength of
Reinforced Concrete Slabs With and Without Shear Reinforcement,” ACI
Struct. J., 114(4), p. 875.

[99] Marti, Z. P., et al., 1989, “Size Effect in Double-Punch Tests on Concrete
Cylinders,” ACI. Mater. J., 86(6), pp. 597–601.
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[110] Kirane, K., and Bažant, Z. P., 2015, “Microplane Damage Model for Fatigue of
Quasibrittle Materials: Sub-Critical Crack Growth, Lifetime and Residual
Strength,” Int. J. Fatigue., 70(1), pp. 93–105.

[111] Zhang, G., 2017, “Peridynamic Models for Fatigue and Fracture in Isotropic
and in Polycrystalline Materials,” Doctoral thesis, The University of
Nebraska-Lincoln, Lincoln, NE.
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