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The modeling of high velocity impact into brittle or quasibrittle solids is hampered by the
unavailability of a constitutive model capturing the effects of material comminution into
very fine particles. The present objective is to develop such a model, usable in finite
element programs. The comminution at very high strain rates can dissipate a large portion
of the kinetic energy of an impacting missile. The spatial derivative of the energy
dissipated by comminution gives a force resisting the penetration, which is superposed
on the nodal forces obtained from the static constitutive model in a finite element
program. The present theory is inspired partly by Grady's model for expansive comminu-
tion due to explosion inside a hollow sphere, and partly by analogy with turbulence. In
high velocity turbulent flow, the energy dissipation rate gets enhanced by the formation
of micro-vortices (eddies) which dissipate energy by viscous shear stress. Similarly, here it
is assumed that the energy dissipation at fast deformation of a confined solid gets
enhanced by the release of kinetic energy of the motion associated with a high-rate shear
strain of forming particles. For simplicity, the shape of these particles in the plane of
maximum shear rate is considered to be regular hexagons. The particle sizes are assumed
to be distributed according to the Schuhmann power law. The condition that the rate of
release of the local kinetic energy must be equal to the interface fracture energy yields a
relation between the particle size, the shear strain rate, the fracture energy and the mass
density. As one experimental justification, the present theory agrees with Grady's
empirical observation that, in impact events, the average particle size is proportional to
the (�2/3) power of the shear strain rate. The main characteristic of the comminution
process is a dimensionless number Ba (Eq. (37)) representing the ratio of the local kinetic
energy of shear strain rate to the maximum possible strain energy that can be stored in
the same volume of material. It is shown that the kinetic energy release is proportional to
the (2/3)-power of the shear strain rate, and that the dynamic comminution creates an
apparent material viscosity inversely proportional to the (1/3)-power of that rate. After
comminution, the interface fracture energy takes the role of interface friction, and it is
pointed out that if the friction depends on the slip rate the aforementioned exponents
would change. The effect of dynamic comminution can simply be taken into account by
introducing the apparent viscosity into the material constitutive model, which is what is
implemented in the paper that follows.
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1. Introduction

In spite of the recent advances in the constitutive modeling of concrete, the finite element models for impact of
missiles onto the walls of concrete structures often severely overestimate the depth of penetration and, in the case of
perforation, the exit velocity. By contrast with impact on thin walls (o10 cm) or high rate tensile fracture, the penetration
of thick walls causes comminution of a significant portion of concrete into fine particles (0.01 mm�1 mm). The
underestimation of the exit velocities and penetration depths is severe even when the finite element code uses a highly
realistic constitutive model such as the new microplane model M7 (Caner and Bažant, 2013; Caner et al., 2013), which is an
improvement of model M4 (Bažant et al., 2000) and provides very good fits of virtually the complete range of the
experimental data from diverse types of uniaxial, biaxial and triaxial tests, including the tests of vertex effect, tensile and
shear fracturing and the compression-shear behavior under very high confinement. The additional resistance to penetration
due to the viscoelastic rate effect and to the rate-dependence of crack growth does not suffice by far for obtaining correct
predictions of impact.

The macroscopic constitutive equation with softening damage, calibrated by standard laboratory tests at low strain rates,
cannot describe material comminution into sub-mesoscale particles. It can capture only the energy dissipation by mesoscale
fragmentation, i.e., the creation of fragments of the same order of magnitude as the dominant mesoscale material
inhomogeneities, such as the largest aggregate pieces in concrete. This is the only kind of comminution that occurs in the
standard laboratory tests of damage behavior. This limitation applies even if the constitutive equation is enhanced by the
material rate effects, which include viscoelasticity and the rate dependence of mesoscale crack growth.

The purpose of the present paper is to show how a constitutive model can take into account the energy dissipated by
material comminution at very high strain rates (see Fig. 1 adapted from Reinhardt and Weerheijm, 1991; Kipp et al., 1980).
The spatial derivative of the energy dissipated by comminution represents a compressive force resisting the penetration,
which has the effect of greatly increasing the finite element nodal forces obtained with a standard macroscopic
constitutive model.

The literature on the analysis of impact is vast and great progress has been achieved in many directions (Mott, 1947;
Grady and Kipp, 1979; Grady, 1982; Mescall and Weiss, 1984; Grady, 1985, 1990; Grady and Kipp, 1995; Camacho and Ortiz,
1996; Grady, 1998; Shih et al., 1998; Cadoni et al., 2001; Gailly and Espinosa, 2002; Gatuingt and Pijaudier-Cabot, 2002;
Doyoyo, 2002; Forquin et al., 2008; Deshpande and Evans, 2008; Wei et al., 2009; Grady, 2010; Ferri et al., 2010; Kožar and
Ožbolt, 2010; Adley et al., 2012; Ožbolt et al., 2011; Frank et al., 2012). As it appears, however, there exists no constitutive law
that would capture the effect of material comminution and could be used to formulate an initial-boundary value problem
underlying a finite element formulation. One important advance has been the development of the so-called “Mescall”
models (Mescall and Weiss, 1984; Doyoyo, 2002; Deshpande and Evans, 2008; Wei et al., 2009; Kožar and Ožbolt, 2010; Ferri
et al., 2010). But although they describe the nucleation and branching of dynamically propagating individual cracks they do
not provide a constitutive model for a finite element code, describing the behavior of a material comminuting into a vast
number of tiny fragments. The present work aims to provide for the Mescall zone an alternative model that is usable in finite
element programs.

In the community of computational missile impact simulation, the recent work of Adley et al. (2012) and Frank et al.
(2012) is worth noting. They adapted to high rate deformation a dynamic finite element code with microplane model M4 in
which the strain-dependent strength limits (called stress–strain boundaries) were scaled up sharply so as to fit the test data
on missile penetration. However, after this kind of purely empirical adjustment, the constitutive model used no longer fits
the multitude of the standard uni-, bi-, and tri-axial laboratory tests of concrete by which the microplane model was
calibrated. It also no longer fits (Ožbolt et al., 2011) high-rate tests of fracture specimens loaded dynamically in opening
mode I, in which the high-rate deformation occurs almost exclusively in tension. These tests are in perfect agreement with
the unadjusted microplane model M4 incorporating solely the quasi-static strain rate effects, which provide only a mild and
smooth strength increase as the strain rate increases. The point to note is that, in contrast to missile impact, the notched
specimens of Ožbolt and Reinhardt exhibit no material comminution. Adley et al.'s empirical adjustment thus loses
Fig. 1. Typical diagram of concrete tensile strength as a function of strain rate, roughly following the test data of Reinhardt and Weerheijm (1991).
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predictive capability except for situations very similar to those for which the microplane strength limits have
been adjusted.

The theory proposed here is partly inspired by analogy with turbulence. In high velocity turbulent flow, the energy
dissipation rate is greatly enhanced by the formation of micro-vortices (eddies) which dissipate energy by viscous shear
stress. By analogy, it is assumed that the energy dissipation at fast deformation of a confined solid gets greatly enhanced by
the release of kinetic energy of high shear strain rate of forming particles. Another inspiration for the present model is
Grady's model for explosion in a hollow sphere (Grady, 1982), in which the kinetic energy of volumetric strain is considered
as the driving force of comminution. Grady calculated and experimentally justified that, in rapid volumetric expansion, the
average particle size is

s ¼ 48Γ
ρ_ε2V

 !1=3

ð1Þ

where Γ is the interface fracture energy, ρ is the mass density and _εV is the expansive volumetric strain rate. In later works
(Grady, 1990; Grady and Kipp, 1995; Grady, 1998, 2010) he demonstrated by experiments that this equation can be extended
to comminution under impact, but did not justify it theoretically. Here the extension of Grady's equation to impact is
theoretically justified by noting that comminution under impact must be driven by the release of the local kinetic energy of
shear strain rate. This basic idea is then used to develop a coherent constitutive model.

The presently proposed formulation is a continuum model that smears the sub-scale cracking. A number of continuum
models that homogenize the sub-scale cracking of concrete, sea ice and other brittle heterogeneous materials have been
proposed in the past (e.g. Bažant and Lin, 1988; Jirásek and Bažant, 1995). Gao and Klein (1998) and Klein and Gao (1998)
consider a random network of cohesive bonds on the microscale and obtain the continuum model via the Cauchy–Born rule, i.e.,
by equating the strain energy of the continuum to the potential energy of the micro-scale bonds. However, all these models
consider the fracturing to be caused by the release of strain energy. The present model is based on the fact that, at high rate
deformation, it is the release of local kinetic energy that matters. This idea was outlined in a brief paper (Bažant and Caner, 2013)
motivated by the recently proposed concept of shock fracturing of gas shale, and is here developed in detail.

This paper presents the theory. The following paper (Caner and Bažant, this issue) presents the numerical validation by
large-scale finite element simulations of missile impact and by the simulation of Hopkinson bar tests of strength. These
simulations use the microplane model M7 with comminution enhancement.

2. Local kinetic energy density of comminuting micro-particles at high shear rate

Consider first a simple idealized comminution process in which the material is comminuted to identical particles
(Fig. 2a–d). The particles must fill the space completely. At first, we consider the particles to be identical. The only possible
repetitive regular subdivisions of the material in the plane of maximum shearing are the squares, isosceles triangles, and
regular hexagons. Among them, the hexagonal prisms are the likeliest as they have the least interface area per unit volume.
More complex space-filling geometries, such as truncated octahedron, could be considered. But it turns out that the particle
shape is not terribly important. It has no effect on the form of the resulting equations and causes only relatively small
changes in their coefficients.

For graphical two-dimensional visualization, it is more instructive to begin discussion with a subdivision into squares (or
cubes), as depicted in Fig. 2a for the undeformed state. During deformation, orthogonal coordinate axes x and y, along with
the lines of the square subdivision (yet to occur), rotate by angle ω. Simultaneously, these lines get skewed relative to axes x
and y by angles εD representing pure shear (Fig. 2b).

At a certain moment, the strain rate becomes high enough for the kinetic energy of deforming material to suffice for
creating the fractures that rapidly comminute the material into separate identical square particles shown in Fig. 2c. As that
happens, the particles regain their original undeformed shape, i.e., become squares again, while the centers of the
comminuted particles still conform to the same macroscopic displacement field, which means that the dashed lines
Fig. 2. Comminution of material into prismatic square particles, showing the velocities in terms of displacements during time Δt (note that displacements
are supposed to be infinitesimal, in which case the overlaps at the square corners are second-order small and thus negligible).
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connecting these centers are identical in Fig. 2b and c (we ignore the necessary crushing of the particle corners since their
volume is second-order small).

As the particles return to their near-original shape, they release their kinetic energy ΔK while the opposite faces of
neighboring particles slip against each other, as marked by double arrows in Fig. 2c.

The global kinetic energy, which excludes the kinetic energy of shear strain rate of the particles, is in two dimensions,
defined as

K ¼∑
i
h3

ρ

2
ð _u2

0þ _v2
0Þi ð2Þ

(where _u0; _v0 are the velocity components of the centers i¼ 1;2;3;… of the particles or of the eddies, and h is the side of the
squares) remains unchanged as the particles separate.

For the subdivision of a plane into regular hexagons (Fig. 3a), we consider the particles in three dimensions to be
hexagonal prisms of a length equal to the corner-to-corner diameter h of the hexagon. The volume of one particle and the
interface area S of all the particles per unit volume of material are, respectively,

Vp ¼ cvh
3; cv ¼

3
ffiffiffi
3

p

8
60:6495 ð3Þ

S¼ cs
h
; cs ¼ 1þ 4ffiffiffi

3
p 63:3094 ð4Þ

where cs is the dimensionless constant. Note that since each two neighboring particles share the same interface, S¼ 1
2 Sp=Vp,

where Sp is the surface area of one hexagonal prism.
Let the Cartesian coordinates x, y, z be placed so that plane (x,y) be the plane of maximum shear strain rate among all

possible orientations. The field of displacements is considered to consist of pure shear strain εD and rotation ω. The
maximum shear strain rate, denoted as _εD, is chosen to represent pure shear, in which case _εD also represents the effective
deviatoric strain rate, i.e.

_εD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_εD ij _εD ij=2

q
ð5Þ

(repetition of tensorial subscripts implies summation). Here εDij is the deviatoric strain tensor in Cartesian coordinates, the
superior dots denote the time derivatives, and the shear angle rate is _γ ¼ 2_εD.

At first the hexagonal cells, not yet separated and of a size not yet known (Fig. 3b), undergo shear strain εD in conformity with
the material as a whole. However, a quasibrittle material such as concrete cannot undergo a large strain and so, at a certain
moment, the material will fracture into the hexagonal prisms. This sudden fracturing releases the strain in the hexagonal
particles and allows them to regain their original shape. As they do, they must rotate against each other by angle εD (Fig. 3c).

It is considered that, during this whole process, the particle centers move so as to follow the field of macroscopic pure
shear strain εD and simultaneous material rotation rate _ω (Fig. 3c) in plane (x,y). The effect of hydrostatic pressure will be
included later. Explosive volume expansion, which leads to a different type of comminution, is not considered.

Before comminution, the displacement velocities _u and _v in the directions of current (Eulerian) coordinates x and y
whose origin is placed into the particle center are, in the plane of maximum shear rate,

_u ¼ _u0� _ωyþ _εDy; _v ¼ _v0þ _ωxþ _εDx ð6Þ

After fracturing and separation of the particles these velocities change to

_uþ ¼ _u0� _ωy; _vþ ¼ _v0þ _ωx ð7Þ
Fig. 3. Comminution of material into prismatic hexagonal particles, showing the velocities in terms of displacements during time Δt (note that
displacements are supposed to be infinitesimal, in which case the gaps at the hexagon corners are second-order small and thus negligible).
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The drop in kinetic energy of each cell is

�VpΔK¼ h
Z
A

ρ

2
_u2þ _v2�ð _uþ Þ2�ð _vþ Þ2
� �

dA ð8Þ

�VpΔK¼ hρ
2

_ε2D

Z
A
x2þy2
� �

dAþhρ
Z
A

_v0 _εDxþ _u0 _εDyþ _εD _ω x2�y2
� �� �

dA ð9Þ

�VpΔK¼ hρ
2

_ε2D

Z
A
r2 dA¼ hρ

2
Ip _ε2D ð10Þ

or, per unit volume of material,

ΔK¼ �ckρh
2 _ε2D ð11Þ

where

Ip ¼
ffiffiffi
3

p

32
h460:05413h4; ck ¼

Ip
2hVp

60:04167 ð12Þ

here ΔK is the drop of kinetic energy of the particle per unit volume, ck is the dimensionless coefficient of kinetic energy, ρ is
the mass density, A is the area of the hexagon, r is the radial coordinate, Ip ¼ Ixþ Iy is the centroidal polar moment of inertia
of the hexagon (and Ix, Iy is the moments of inertia about axes x and y, the orientation of which does not matter).

Note that, if the global motion is characterized by the velocities of particle centroids, the second integral in Eq. (9)
vanishes. Actually this is exactly true only when Ix¼ Iy, which occurs for cubes, but only approximately for hexagons. Also
note that the material rotation velocity _ω has no effect on K. Indeed, it ought to be so, since rigid body rotations can cause no
fracturing. Thus it is proven that the global and local kinetic energy densities are, in two dimensions, separable.

3. Separability of local and global kinetic energy in three dimensions

In three dimensions, the axial vector of local rotation rate, _ω, does not have to be orthogonal to plane (x,y) of maximum
shear rate. It may be decomposed as

_ω ¼ _ωNþ _ωP ð13Þ
where _ωN ; _ωP are the axial vectors of the components normal to plane (x,y) of maximum shear and parallel to that plane.
Instead of Eq. (8), the density difference between the total kinetic energy and the kinetic energy of corresponding to velocity
vector v0 at particle center becomes

�VpΔK¼ ρ

2

Z
Vp

ðv0þ _ω � xþ _ϵ � xÞ2�ðv0þ _ω � xÞ2
h i

dV ð14Þ

�VpΔK¼ ρ

2

Z
Vp

ð_ϵ � xÞ2 dVþρ

Z
Vp

_ϵ � xð Þ � _ωN � xð Þ dVþρ

Z
Vp

_ϵ � xð Þ � _ωP � xð Þ dV ð15Þ

where the integral of v0 � ð_ϵ � xÞ has vanished by virtue of symmetry; _ϵ is the strain rate tensor, _ϵ � x is the strain rate vector
on plane (x,y); and x is the vector of coordinates x,y centered at particle center. The second integral in Eq. (15) corresponds to
rotation within plane (x,y) of maximum shear rate _εD, and so the first two integrals are equivalent to the previous two-
dimensional analysis in Eq. (10).

The third integral in Eq. (15) corresponds to rotation in a plane normal to the plane (x,y) of maximum shear rate _εD. This
integral is in general nonzero. But it seems impossible that a rotation in a plane normal to (x,y), i.e., a rotation about a vector
lying in plane (x,y), could contribute to comminution in plane (x,y). It could affect comminution only in a plane normal to (x,
y). Therefore, the kinetic energy corresponding to the last term in Eq. (15) can be ignored, and Eq. (11) should be applicable
to all situations.

4. Partial analogy with turbulence

It is interesting that the kinetic energy Kshear of a particle deforming by pure shear at rate _εD happens to be the same as
the kinetic energy Keddy of the same particle rotating as a rigid body at angular rate _ω ¼ _εD. Indeed, the squares of the
velocity magnitudes in the comminuting particle with shear strain rate _ωD and in a turbulence vortex (eddy) treated
approximately as a small rigid domain of area A with angular flow velocity _ω can be used, respectively, to calculate the local
kinetic energies:

Kshear ¼
Z
A

ρ

2
jvj2 dA¼

Z
A

ρ

2
ð_εDyÞ2þð_εDxÞ2
h i

dA ð16Þ

Keddy ¼
Z
A

ρ

2
jvj2 dA¼

Z
A

ρ

2
ð _ωyÞ2þð _ωxÞ2
h i

dA ð17Þ
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Now note that when _ω ¼ _εD,

Kshear ¼Keddy ð18Þ
even though the velocity vectors at the corresponding points do not have the same directions.

This observation reveals a partial analogy with turbulence (Tennekes and Lumley, 1972), which is what inspired the
present theory. In both comminution and turbulence, the micro-level kinetic energy (Eq. (16) or (17)) augments the kinetic
energy of the macro-level part of the turbulent flow of a fluid, or the macrolevel kinetic energy of the assembly of the
comminuting particles, which in both cases is equal to

∑
i

ρ

2
ð _u2

0þ _v2
0Þi ð19Þ

where _u0; _v0 denote the velocity components of the centers i¼ 1;2;3;… of the particles or of the eddies. The micro-level
kinetic energy gets dissipated by fluid viscosity in the eddies of turbulent flow, or the by the energy of interface fracture of
the comminuting particles. In both cases, minimization of the total energy of motion requires a micro-level energy
dissipation mechanism consisting of eddy formation or comminution.

When the local motion of a shear strain field continues after the break of the interface, interface slips (like those from (b)
to (c) in Fig. 3) must get repeated. But in contrast to the rotational motion in a turbulent eddy, the interface slips cannot
continue indefinitely because the shear angle cannot be infinite.

5. Approximate generalization to randomly distributed particle sizes

Limiting consideration to micro-particles of one size would be an oversimplification. It is well-known that, in all sorts of
dynamic comminution, the particle sizes vary randomly. The frequency distribution of particle sizes may approximately be
described by Schuhmann's power law (Schuhmann, 1940; Charles, 1957; Ouchterlony, 2005; Cunningham, 1987). This law
was found to give realistic results for, e.g., the particle sizes and the resisting force due to comminution of concrete slabs
during the collapse of the World Trade Center towers (Bažant et al., 2008). The Schuhmann law is described by a power-law
cumulative distribution function of particle size s:

F sð Þ ¼ sk�hk

Hk�hk
sA h;Hð Þ; F sð ÞA 0;1ð Þ� � ð20Þ

where k is a empirical constant (typically k� 0:5), h¼smin is the minimum micro-particle size, and H¼smax is the maximum
micro-particle size (usually H/h¼10–100). Other particle size distributions have also been used (Mott, 1947; Grady, 1990)
and the analysis that follows can be readily adapted to any one of them.

Within the size interval ðs; sþdsÞ, the number of micro-particles per unit volume is dFðsÞ=s3. The average particle size is
s ¼ RH

h s dFðsÞ or
s ¼ ch ð21Þ

where c ¼ k
kþ1

ðH=hÞkþ1�1

ðH=hÞk�1
ð22Þ

Since, for size s, the particle interface area per unit volume is cs=s, the combined interface area of all the micro-particles
or random sizes per unit volume is

S¼
Z H

s ¼ h

cs
s

dF sð Þ ¼ Cs

h
ð23Þ

where Cs ¼
csk
k�1

ðH=hÞk�1�1

ðH=hÞk�1
ð24Þ

Cs is a dimensionless constant. It may be checked (with the aid of L'Hospital rule) that the limit of Eq. (23) for H=h-1 is cs, as
it must.

Note that, in this calculation, we did not address the fact that particles of unequal sizes cannot all be hexagonal prisms.
This means that their closest packing may leave some empty interparticle spaces and would thus require a certain volume
dilation, and also that particles of diverse shapes will be created. For simplicity, we do not analyze this dilation and shape
diversity.

To calculate the kinetic energy loss, we introduce the simplifying hypothesis that it is possible to superpose the
contributions calculated for various uniform particle sizes as if the particles of each size were distributed regularly. The loss
of kinetic energy of the particles of all the sizes per unit volume (dimension J/m3 or N/m2) may then be obtained, according
to Eq. (11), as follows:

ΔK¼ �
Z H

s ¼ h
ckρs

2 _ε2D dFðsÞ ð25Þ
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The integration yields

ΔK¼ �Ckρh
2 _ε2D ð26Þ

where Ck ¼
k

kþ2
ðH=hÞkþ2�1

ðH=hÞk�1
ck ð27Þ

Cs is a dimensionless constant. For the limit case of particles of one size h, one may check that limH=h-1 Ck ¼ ck, as required.
To illustrate the effect of the choice of particle shape, assuming H/h¼100, one obtains for hexagonal and cubical particles
respectively Cs¼0.331, 0.300 and Ck¼92.6, 138.9. These differences are not large and the form of the equations remains
the same.

6. Release of local kinetic energy of strain rate as the driving force of dynamic fracturing

The total energy of the comminuted particles per unit volume is

F ¼KþSΓ ð28Þ
where Γ is the interface fracture energy of the comminuting particles (dimension J/m2 or N/m). To formulate the criterion of
dynamic fracturing, one must choose between two theoretically possible forms:

either
∂F
∂S

¼ 0 ð29Þ

or �ΔK ¼ SΓ ð30Þ
In the former case, by analogy to classical fracture mechanics, it is assumed that once the fracture is triggered in a part of
surface S, it will propagate. In the latter case, it is assumed that the entire surface forms simultaneously. The latter case
would apply if the continuum strain rate were so high that the duration of comminution would require the fracture to
propagate faster than the maximum possible crack propagation rate, which is the Raleigh wave speed. The results of analysis
for both cases are very similar and differ only in dimensionless empirical coefficients. In what follows we will consider that
the former case applies. Thus, according to Eq. (29), it is required that

� ∂ðΔKÞ
∂S

¼ � ∂ðΔKÞ=∂h
dS=dh

¼ Γ ð31Þ

This equation is similar to that used in Grady's (1982) analysis of tensile comminution due to high volumetric strain rate in
an explosion within the center of a hollow sphere (see also Freund, 1990, Eq. (8.7.3)). It is seen to be analogous to the energy
release criterion of fracture mechanics. In fact, it could have been derived directly from the condition of criticality: When the
comminution gets under way, the rate of release of kinetic energy (with respect to S) at the given kinematic constraint
(i.e., at given _εD) must be equal to the surface energy Γ.

Note that Eq. (31) may also be considered as a special case of Eqs. (5.3.2) and (5.3.20) in Freund (1990) when the strain
energy density is neglected. But these are valid only for moderately high strain rates in which the kinetic energy density
does not exceed the strain energy density in the material by an order of magnitude or more.

Eq. (30) imposes an overall energy balance condition which does not ensure incremental energy balance and thus does
not guarantee the interface fracture to begin. On the other hand, like in classical fracture mechanics, Eq. (31) means that as
soon as energy balance is satisfied incrementally, the fracture can occur, and must occur if the kinetic energy density is
increased further.

Substitution of Eqs. (26) and (23) into (31) and differentiation furnish the minimum particle size:

h¼ smin ¼
CaΓ

ρ_ε2D

 !1=3

ð32Þ

where Ca ¼
cs
ck

ðkþ2Þ
ðk�1Þ

ðk�1ÞðH=hÞk�kðH=hÞk�1þ1

kðH=hÞkþ2�ðkþ2ÞðH=hÞkþ2
ð33Þ

If H/h¼100, then Ca¼0.032 for hexagonal prisms and Ca¼0.019 for cubical prisms. Thus we see again that the precise
particle shape does not make a large difference. According to Eq. (21), the average particle size is then obtained as s ¼ ch.

The maximum particle size H is approximately known. It must be one order of magnitude smaller than da, i.e.,

H� 0:1da ð34Þ
because fragmentation into particles of the same order of magnitude as da is covered by the constitutive law based on static
material tests with post-peak softening. Therefore, H must be about 2–4 mm for normal concrete, and 0.05–2 mm for high
strength concrete. Thus, to calculate h, one must substitute Eq. (32) into (33) and then solve the resulting nonlinear algebraic
equation for h iteratively, e.g., by the Newton method. The ratio H/h then follows.
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Eq. (32) agrees with Grady's formula (1), which was justified empirically by observations of particle sizes in impact tests.
This provides one verification of the present theory.

Substitution of Eq. (32) into Eq. (26) further yields

�ΔK¼ ðC0Γ
2ρÞ1=3 _ε2=3D where C0 ¼ C3

kC
2
a ð35Þ

where C0 ¼ 822 for hexagonal prisms and C0 ¼ 1013 for cubical particles, assuming H/h¼100. Again the difference that
results from different particle shapes is not large.

7. Dimensionless number separating fractures driven by kinetic and strain energies

What is the critical strain rate beyond which the fracturing driven by the release of kinetic energy of strain rate, �ΔK,
dominates over the fracturing of classical type driven by the release of strain energy U? To answer it, we must also include U
in the energy balance. As is clear from Fig. 3, the domains of the particles to form are initially deformed by locally uniform
shear strain γ ¼ 2εD and after comminution fracture they become undeformed. So the strain energy release due to
comminution fracture is U ¼ τ2=2G where G is the elastic shear modulus and τ is the shear stress. According to Eq. (35), we
have

� ΔK
U ¼ Ba ð36Þ

Ba ¼
G

Cgτ2
ðΓ2ρ_ε2DÞ1=3 ð37Þ

where Cg ¼ C�1=3
0 =2¼ 1=ð2CkC

2=3
a Þ ¼ 0:2656 for H=h¼ 10 ð38Þ

where Cg is a dimensionless geometry factor depending on the particle shape and the type of frequency distribution of
particle sizes. For H/h¼10 and for the hexagonal particles distributed according the Schuhmann law, Cg¼0.2656. For other
shapes, distributions and ratios H/h, different values will be obtained but they will generally be of the order of 1. Ba is a
dimensionless number, an indicator of the onset of comminution, characterizing the importance of kinetic shear fracturing
in the comminution process. The comminution is

kinetic energy driven if Bab1
in transition if Ba � 1
absent or static if Ba51 ð39Þ

Since τ at comminution cannot be larger than the shear strength or yield stress τ0, the use of τ¼ τ0 in the condition Bab1
gives a sufficient condition for comminution to be driven by the kinetic energy alone.

In the flow of fluids, the dimensionless Reynolds number gives the threshold beyond which the local kinetic energy due
to eddies begins to control the resistance to flow. Likewise, Ba is a dimensionless number that defines the threshold beyond
which the local kinetic energy due to shear strain rate begins to control the resistance to deformation. This is another
feature of the turbulence analogy.

Expressing _εD from Eq. (32) and substituting it into (37), one gets an alternative expression for the dimensionless
indicator:

Ba ¼
C1=3
a

Cg

GΓ
τ20h

ð40Þ

8. Some numerical estimates and discussion

Let us now estimate the dimensionless number Ba for shear comminution of concrete. While, at the macroscale, the
fracture energy of concrete is about 100 J/m2, for sub-millimeter particles it is probably much smaller, perhaps Γ¼
10 J/m2¼10 kg/s2, because the fracture process zone is much narrower. Further we may consider τ0¼3 MPa¼3�
106 kg s�2 m�1, G¼10.59 GPa¼10.59 �109 kg s�2 m�1, and ρ¼2300 kg/m3. Assuming H/h¼10 and H¼9.43 mm (or
_εD ¼ 100 s�1), we have Ba¼5.85. Considering the strain rates _εD ¼ 104=s and 106/s, we get from Eq. (36):

� ΔK
U ¼ 126 and 2715 ð41Þ

respectively. So, at these rates, the deformation is almost totally dominated by the kinetic energy of strain rate. In a similar
way, one finds that

�ΔK=δU ¼ 1 when _ε ¼ 7:075=s: ð42Þ
Since the values of Γ and τ0 at sub-millimeter scale are highly uncertain, the foregoing estimates must, of course, be
regarded as very crude. It is better to calibrate the computational model by fitting impact test data.
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Let us now estimate the particle size. We assume the same values of Γ and ρ as before and (for _εD ¼ 104 s�1, H/h¼10 and
k¼0.5) we calculate Ca¼1.929. From Eq. (32) with (33), we get the minimum and mean particle sizes:

h¼ 0:4377 mm for _εD ¼ 104=s; h¼ 0:0943 mm for _εD ¼ 105=s ð43Þ

s ¼ 2:066 mm for _εD ¼ 104=s; s ¼ 0:4452 mm for _εD ¼ 105=s ð44Þ
Under high confining hydrostatic pressure p, say p¼ 10τ0, the effective fracture energy might increase significantly. This

would increase the foregoing estimates of threshold and particle size. But under high enough pressure the material would
behave plastically and would not comminute.

Another point to note is that the release of strain energy U does not lead to dependence of fracturing on the strain rate.
Rather, it leads to a dependence on the magnitude of applied stress or strain, which is already accounted for by the softening
part of the constitutive relation.

9. Implementation of kinetic rate effect

Energy conservation requires that K¼D¼ energy dissipated per unit volume (dimension J/m3). As the same time, since
the stress (dimension N/m2) is the energy per unit volume, DK¼ sA ¼ additional stress due to comminution. There are two
possible approaches to enforce this energy dissipation in a finite element program:
(1)
 Either as a distributed body force

f ¼ ∂K=∂x ðDK¼D¼ sAÞ ð45Þ
which gets translated into equivalent nodal forces (x¼ global coordinate vector formed from Cartesian coordinates
xi; i¼ 1;2;3Þ;
(2)
 Or as an additional stress, sA ¼D, to be implemented in the constitutive equation. We favor this approach as it seems
simpler for programming, and also is more versatile as it allows generalization to different types of comminution.
Since one may write sA ¼D¼ η_ε, the additional (apparent) viscous stress sA may be implemented as kinetic (or apparent)
viscosity η¼D=_ε ¼ �ΔK=_ε. But this equation would be acceptable only in a uniaxial model. In a triaxial constitutive model,
the additional viscous stress should be applied only to the stress components that represent shear, i.e., as additional
deviatoric stress components sij

A
, which must be added to the stresses obtained from the standard quasi-static

constitutive model.
To ensure tensorial invariance, powers of the tensorial components are inadmissible. Only a tensorial invariant can be

raised to a power. So we use again the effective deviatoric strain rate given by Eq. (5). Since the energy density has the same
dimension as the stress, it is convenient to introduce equivalent viscosity ηD such that the viscous stress–strain relation

sAij ¼ ηD _εD ij ð46Þ

where

ηD ¼ ðC0Γ
2ρÞ1=3 _ε �1=3

D ð47Þ
would give the same energy dissipation density as Eq. (35) for any possible deviatoric strain rate tensor _εD ij, in the
variational sense. Now, because the energy density is the same as the stress, sA12 must be equal to ΔK when all other
tensorial components vanish. Since ΔK is a tensorial invariant, it is thus necessary that

�ΔK¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sAijs

A
ij=2

q
ð48Þ

In view of Eq. (46), we may then writeffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sAijs

A
ij=2

q
¼ ηD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_εD ij _εD ij=2

q
¼ ηD _εD ð49Þ

where _εD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_εD ij _εD ij=2

p
. This is a tensorial invariant which simplifies to pure shear rate _εD when _εD 12 is the only nonzero

component.
This analysis shows that the energy sink due to the comminution process may be modeled by equivalent apparent

viscosity ηD. This is the simplest way to implement the comminution effect in finite element programs. It can be combined
with any constitutive law.

The enhancement of the dissipative viscous resistance to shearing is a similar feature as the enhancement of viscous
resistance caused by eddies in turbulent flow. This is another aspect of analogy with turbulence.

A stress increase proportional to _ε2=3 gives an enormous rate effect on the apparent material strength, but only at very
high strain rates. To illustrate this, consider that the strength or yield limit is scaled up by a rate-dependent factor, r, and
note that, according to the test data in the literature, the rate effect beyond that explained by viscoelasticity and static crack
growth rate is detectable only for rates _ε41=s. Knowing this fact suffices to estimate the rate effect magnitude. Assuming
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that the error of the data is not below 1%, we have 12=3r¼ 0:01, fromwhich r¼0.01. So, e.g., at the strain rate of 105/s one has
ð105Þ2=3r¼ 21:5. This is the ratio by which the stress must be increased, by means of apparent viscosity.

10. Generalization to kinetic energy of volume expansion and its apparent viscosity

In some situations, the rate of volumetric strain εV ¼ εkk=3 can be so high that the volumetric kinetic energy is
significantly contributing to the comminution (such a case was shown by Grady (1982, 1985) in his analysis of an explosion
within a hollow sphere). In that case, Eqs. (6) need to be generalized as

_u ¼ _u0� _ωyþ _εDyþ _εExx; _v ¼ _v0þ _ωxþ _εDxþ _εExy ð50Þ
in which

_εEx ¼
d
dt

εkk
3

D E	 

¼ _εV if _εV 40 and εV 40

0 otherwise

�
ð51Þ

and t is the time, _εEx represents the expansive strain rate which is such that no comminution occurs if either the volumetric
strain rate is compressive or if the volumetric strain is compressive (i.e., negative). Noting that Eq. (7) remains unchanged,
one finds that Eqs. (26) and (35) for the drop of kinetic energy per unit volume of material must now be generalized as
follows:

�ΔK¼ Ckρh
2ð_ε2Dþ _ε2ExÞ ð52Þ

�ΔK¼ ðC0Γ
2ρÞ1=3ð_ε2Dþ _ε2ExÞ1=3 ð53Þ

This means that, in the remaining equations, _ε2D must now be replaced by _ε2Dþ _ε2Ex. Hence, Eq. (32) must be generalized as

h¼ smin ¼
CaΓ

ρð_ε2Dþ _ε2ExÞ

 !1=3

ð54Þ

Eq. (46) must now be combined with the additional apparent tensile volumetric viscous stress, as follows:

sAij ¼ ηD _eij; sAV ¼ ηV _εEx ð55Þ

in which

ηV ¼ ðC0Γ
2ρÞ1=3 _ε�1=3

Ex ð56Þ
here ηV is the volumetric kinetic (or apparent) viscosity.

Numerical simulations nevertheless show that the generalization for _εEx has virtually no effect in impact problems.

11. Static-to-kinetic transition of rate effect and apparent viscosity

Eq. (47) cannot be applied to very small loading rates, for two reasons: (1) numerical, because the viscosity would
become infinite when _εD-0 and would thus cause the computer program to diverge if _εD happens to be small enough and
(2) physical, because the comminution by local kinetic energy does not exist according to Eq. (39) when Ba51. Thus, there
must be a transition from finite to zero viscosity, centered at Ba¼1.

To deduce this transition, we must replace function _ε�1=3
D by a function that is asymptotically finite or zero when _εD-0

but remains asymptotically unchanged for high _εD. To this end, we express _εD from Eq. (37) and substitute it into Eq. (47) to
express the viscosity in terms of Ba:

ηD ¼ Γ

τ0

C2=3
0 Gρ
CgBa

 !1=2

ð57Þ

This equation may now be replaced by the following:

ηD ¼ Γ

τ0

C2=3
0 Gρ
Cg

Bn�1
a

1þBn
a

 !1=2

ð58Þ

where n is an empirical constant controlling how sharp the transition is; nZ1 (calculations used n¼2).
The foregoing equation is the final expression for the kinetic viscosity, with corrected low-rate asymptotics. It is identical

to Eqs. (47) and (57) when Bab1 and gives a zero or negligible finite viscosity when Ba51, as required by (39).

12. Possible variability of Γ , work of friction and effect of pressure

When a high shear strain rate continues after the initial comminution by interface fracture, Γ plays the role of frictional
work, i.e., the work of frictional shear stress τ on unit displacement. If _εD after initial comminution decreases while still
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remaining in the comminution range according to Eq. (37), the energy balance requires the frictional slip to be concentrated
into interfaces spaced farther apart than particle size. Thus groups of particles moving as virtually rigid blocks must form
and Γ then represents the work of friction between these blocks. On the other hand, if the shear strain rate after the initial
comminution increases further, the particles already comminuted must be getting comminuted further (or fractured) to
smaller sizes.

Since friction decreases with increasing slip rate, the frictional work may be decreasing with increasing strain rate. This
effect could be approximately captured by setting

Γp _ε�q
D ðqZ0Þ ð59Þ

However, to verify such an effect and determine the value of q, further more detailed test data will be necessary. In data
fitting thus far, the possible effect of _ε on Γ has been neglected.

Note that exponent �1/3 in Eq. (47) has been derived for constant Γ. However, if Γ as a characteristic of post-fracture
frictional work decreases with the slip rate or shear strain rate according to the power law in Eq. (59), it would reduce the
exponent in Eq. (47) below �1/3. However, the particle size given by Eq. (32) would not be affected since it depends on the
fracture energy rather than the subsequent frictional slip.

When the high-rate shearing occurs under high hydrostatic pressure p, the effective value of Γ in the sense of fracture
energy as well as frictional work may increase as a function of p.

It may be noted that a different fracture energy and particle size effects have been observed in the case of dynamic
erosion of a solid surface by impinging hard particles (Tilly and Sage, 1970). However, this is a fundamentally different
problem to which the present theory does not apply.
13. Conclusions
1.
 The local kinetic energy of motion associated with high shear strain rates (4102=s) is sufficient to provide the surface
fracture energy necessary for comminution of materials such as concrete into fine particle.
2.
 At very high strain rates, kinetic energy of strain rate is orders of magnitude higher than the strain energy. Hence, the
classical fracture mechanics does not apply.
3.
 The dissipated energy depends on the particle size distribution, which is here assumed to follow the Schuhmann
power law.
4.
 The minimum or average particle size follows from the condition that the rate of release of kinetic energy of shear strain
rate must be equal to the rate of energy dissipation due to growing area of interparticle fractures. The minimum particle
size predicted for missile impact at 310 m/s is of the order of 0.15 mm.
5.
 The main characteristic of the comminution effect is a dimensionless number Ba (Eq. (37)) representing the ratio of local
kinetic energy of shear strain rate to the maximum possible strain energy that can be stored in the same volume of
material.
6.
 The present theory indicates that the density of kinetic energy available for comminution is proportional to the (2/3)
power of the shear strain rate, the particle size or crack spacing is proportional to the (�2/3) power of that rate, and the
energy dissipation by comminution is equivalent to a shear viscosity decreasing as the (�1/3) power of that rate. For a
strain rate increase from 1/s to 105/s, the result is a roughly 20-fold increase of apparent material strength due to
comminution.
7.
 After comminution, the role of interface fracture energy changes to the work of interface frictional slip per unit relative
displacement. If the interface friction depends on the slip rate, the exponent of strain rate giving the effective viscosity
can change.
8.
 As one experimental justification, the present theory agrees with Grady's empirical observation that, in impact events,
the average particle size is inversely proportional to the (2/3) power of the shear strain rate (Eq. (1)).
9.
 The theory can be extended in a similar way by including particle comminution due to kinetic energy of volumetric
strain rate, although, for missile impact, the volume expansion is not important.
10.
 The theory leads to a rate-dependent modification of constitutive equation calibrated only for static strain rate effects.
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Appendix A. The alternative of increasing strength or yield limit

Since the energy per unit volume (dimension J/m3, with J¼N m) has the same dimension as the stress (dimension N/m2),
an increase in the strain rate may alternatively be considered to cause an increase in the strength or yield limit in the
constitutive law. In the microplane model, the compressive deviatoric boundary curve for deviatoric stress sD, and the
normal boundary for tensile normal stress sN , respectively, may thus be scaled up by the kinetic factors:

rD ¼ ðCDΓ
2ρÞ1=3〈_εD〉2=3; rV ¼ ðCVΓ

2ρÞ1=3〈_εN〉2=3 ðA:1Þ

where εD is now the microplane deviatoric strain component, εN the microplane normal strain component, and CV ;CD

microplane stiffness constants.
Modeling of the enhanced resistance to high-velocity missile penetration by raising of the boundaries on the

microplanes was attempted by Adley et al. (2012) and Frank et al. (2012). They raised the boundaries purely empirically,
in a way that allowed them to fit their missile penetration data.

However, in the microplane model there are many boundaries and each has a different and complicated shape
controlling the triaxial behavior. Thus different boundaries and different parts of each boundary would have to be raised by
different ratios, which would reshape the boundaries. Unfortunately, it appears to be next to impossible to do that without
loosing the foundation of the microplane model in the static triaxial test data. This is a serious objection to this kind of
empirical approach.
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Corrigendum to Impact comminution of solids due to local
kinetic energy of high shear strain rate: I. Continuum
theory and turbulence analogy
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The authors regret that the following figure was not included. This figure should have been included on p. 6 as Fig. 4,
with the remaining figure numbers sequentially updated.

Furthermore, the authors regret a numerical error in Eq. (2) which affected values of several parameters, as follows:
Eq. (12) should read Ip ¼ 5

ffiffiffi
3

p
=128 h4≐ 0:06766 h4, ck ¼ Ip=2hVp≐ 0:05208. The correction in Ip requires the following

corrections of the numerical values of various dimensionless constants throughout the paper: In the paragraph following Eq.
(27), Ck = 115.7, 185.2. In Eqs. (30) and (31), replace ΔK by jΔKj. In the paragraph that follows Eq. (33), Ca = 0.026 and
Ca = 0.015. In the paragraph of Eq.(35), C0 = 1028 and C0 = 1351. In Eq. (38), Cg should be 0.2466. In the first paragraph of
Section 8, h = 8.75 mm. In Eq. (41), –ΔK=U ¼ 136 and in Eq. (42), ∈

: ¼ 6:325/s. In Eq. (43), change 0.4377 mm to 0.4063 mm
and 0.0943 mm to 0.0875 mm. In the paragraph of Eq. (43), Ca = 1.543. In Eq. (44), change 2.066 mm to 1.918 mm and
0.4452 mm to 0.4133 mm. In Fig. 3a, change distance label h to h/2. No change is needed in the data fits of part 2 because the
parameters were scaled to fit thickest slab test.
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Fig. 4. Velocity vector fields of (a) idealized eddy rotating as a rigid body at angular velocity _ω, and (b) pure shear. For deviatoric strain rate _εD ¼ _ω, both
fields have the same kinetic energy for the same area.
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The new theory presented in the preceding paper, which models the dynamic comminu-
tion of concrete due to very high shear strain rate, is now compared to recent test data on
the penetration of projectiles through concrete walls of different thicknesses, ranging
from 127 to 254 mm. These data are analyzed by an explicit finite element code using the
new microplane constitutive model M7 for concrete, which was previously shown to
provide the most realistic description of the quasi-static uni-, bi- and tri-axial test data
with complex loading path and unloading. Model M7 incorporates the quasi-static strain
rate effects due viscoelasticity and to the rate of cohesive crack debonding based on
activation energy of bond ruptures, which are expected to extend to very high rates. Here
model M7 is further enhanced by apparent viscosity capturing the energy dissipation
due to the strain-rate effect of comminution. The maximum shear strain rates in the
computations are of the order of 105 s�1. The simulations document that, within the
inevitable uncertainties, the measured exit velocities of the projectiles can be matched
quite satisfactorily and the observed shapes of the entry and exit craters can be
reproduced correctly.

& 2014 Published by Elsevier Ltd.
1. Introduction

The preceding Part 1 (Bažant and Caner, this issue) presented a new theory that allows the energy dissipation due to
dynamic comminution of material under impact to be modeled through the constitutive relation which can be readily
implemented in standard finite element programs. The comminution is assumed to be driven by the release of local kinetic
energy of high shear strain rate caused by impact, and the energy dissipation due to comminution and inter-particle slip is
modeled by additional apparent viscosity.

In the present part 2, the theory is being applied to the problem of penetration of missiles through concrete walls of
various thicknesses. Fitting of previously published impact test data is used to calibrate and validate the new theory.

Because of the complexity of triaxial softening damage in concrete, the microplane model is selected as the constitutive
law, to be enriched by the comminution rate effect. The microplane model has already been used with great success for the
simulations of various dynamic effects on hardened concrete structures, including the effects of explosions, impact and
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groundshock. In contrast to plastic and other tensorial constitutive models, various microplane models have been shown
capable of predicting the correct entry and exit crater shapes of penetrating missiles (Bažant et al., 2000a; Adley et al., 2012).

However, prediction of the exit velocities of perforating projectiles proved to be much more challenging. Recently a new
model based on the microplane model M4, called the high-rate brittle microplane model, has been developed at U.S. Army
Corps of Engineers (Adley et al., 2012). To fit the exit velocities, the microplane stress–strain boundaries (i.e., strain-
dependent yield limits) were scaled up drastically, both vertically and horizontally, as functions of the strain rate (Adley
et al., 2012). But the scaling ratios were empirical, with no theory behind them. Their empirical nature unfortunately
severed the connection to the numerous types of static uni-, bi-, and tri-axial tests by which M4 was calibrated. Besides, in
the sense of crack-band or nonlocal concept, the model in Adley et al. (2012) implied a major increase of fracture energy,
while the previous studies showed the fracture energy to be only weakly dependent on the strain rate. This study will show
that an extended microplane model, labeled M7R, which incorporates the theory of material comminution expounded in
Part I, can fit the exit velocities satisfactorily without loosing the capability to fit all the static tests.
2. Review of microplane model and its version M7

The internal friction in materials is usually modeled as a relation between the first stress invariant and the second
deviator invariant, without any reference to the direction of slip. This is not realistic. The plastic or frictional slip occurs in
fact only on planes of a certain specific orientation. Likewise, almost all of the other inelastic deformations in concrete
microstructure, such as tensile cracking and compressive axial splitting, occur on planes of well defined orientations. These
orientations can be captured by the idea of Taylor (1938) who proposed to formulate the constitutive law in terms of
the vectors of stress and strain acting on planes of various orientations in the material. This idea was first developed for
plasticity of polycrystalline metals under the name of slip theory of plasticity (Batdorf and Budianski, 1949) and has by now
led to powerful plasticity models called the Taylor models (Butler and McDowell, 1998; Rice, 1971). In these models, the
stress vectors on the slip planes are the projections of the continuum stress tensor, which is called the static constraint, and
the plastic slips on all the slip planes are simply superposed.

In the early 1980s, it was realized (Bažant, 1984; Bažant and Oh, 1985) that Taylor models are unstable in the case of
strain-softening damage due to diffuse microcracking. To ensure model stability, the static constraint had to be changed to
the kinematic constraint, in which the strain vector is the projection of the strain tensor onto a generic plane in the
microstructure, called the microplane. Also the elastic deformation had to be included on the microplane level. The static
equivalence of the stress tensor with stress vectors on microplanes of all possible spatial orientations was enforced by the
principle of virtual work, which gives the continuum stress tensor

sij ¼
3
2π

Z
Ω

sNNijþsLLijþsMMij
� �

dΩ ð1Þ

This is an integral over a unit hemisphere Ω, in which sij¼stress tensor, sN ; sL; sM ¼ normal and two shear components of
the microplane stress vector, and Nij; Lij;Mij ¼ geometrical coefficients defined later. This integral is evaluated approximately
according to an optimum Gaussian integration formula as a weighted sum over all the discrete microplanes whose normals
are chosen to correspond to the integration points of this formula.

Compared to the classical tensorial constitutive models based on tensorial invariants, the microplane concept has a number
of advantages: (1) It is conceptually simpler, since the strain vectors on the microplanes can be intuitively related to crack
opening and slip. (2) The orientation of cracking and slip can be captured. (3) The so-called vertex effect is automatic, while
being beyond the capability of the tensorial constitutive models. (4) Apparent deviations from normality in the sense of
tensorial plasticity models are represented, thanks to the fact that the microplane model is equivalent to a large set of
simultaneously active yield surfaces intersecting at the same point of the stress space, for each of which the normality rule can
be satisfied (this is particularly important for dynamic loading, with highly nonproportional loading paths). (5) The kinematic
constraint of the microplanes of different orientation automatically simulates the cross effects such as the shear dilatancy and
pressure sensitivity. (6) Combinations of loading and unloading on different microplanes provide a complex path dependence
and automatically reproduce the Bauschinger effect and the hysteresis under cyclic loading. (7) The dependence of the current
yield or strength limits on the strain components (rather than on scalar hardening–softening parameters) is easy to take into
account. (8) In cyclic loading, fatigue is automatically simulated by accumulation of residual stresses on the microplanes after
each load cycle. (9) Finally, though not important for concrete, anisotropy can be easily captured.

Early on, the microplane model was computationally too demanding for full structures. But thanks to the rise of
computer power, the microplane model is now being used in systems with tens of millions finite elements. Many
progressively improved versions of the microplane model, now labeled M1, M2,…,M7, have been developed for concrete,
and so have other variants for fiber-reinforced concrete, fiber–polymer composites, sandstone, shale, clay, rigid foam, shape
memory alloy and some soft tissues. Model M4 (Bažant et al., 2000b; Caner and Bažant, 2000) was used with success in
large-scale simulation of various explosions and groundshock, and with partial success in missile impact and penetration of
concrete walls. The new model M7 (Caner and Bažant, 2013a,b), used and refined in this work, brings about further
significant improvements. It eliminates unrealistic lateral strains in postpeak tensile softening, gives damage dependent
unloading and works even for cyclic loading with softening.
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Let us now briefly review the basics of microplane formulation. According to the kinematic constraint, the normal
component of the strain vector on a generic microplane of orientation defined by its unit normal ni is

εN ¼ ninjεij ¼Nijεij ð2Þ

where subscripts i; j¼ 1;2;3 refer to Cartesian coordinates xi (Fig. 1). The in-plane shear strain vector on each microplane is

represented by its two in-plane orthogonal components in the directions of unit in-plane coordinate vectors m! and l
!

which are generated randomly on each microplane. These components are (Bažant et al., 2000b; Bažant and Oh, 1985)

εM ¼ 1
2

nimjþnjmi
� �

; εij ¼Mijεij; εL ¼
1
2

niljþnjli
� �

εij ¼ Lijεij ð3Þ

To be able to model the pressure-sensitive compressive behavior of concrete, it is necessary to split the microplane normal
strains and stresses into their volumetric and deviatoric parts

εN ¼ εV þεD; sN ¼ sV þsD ð4Þ

where εV ¼ εkk=3 and εD ¼ ðNij�δij=3Þεij; sV and sD are computed from εV and εD by the microplane constitutive law.
In contrast to previous microplane models, this split is in M7 introduced only for inelastic compressive behavior, and not for
the elastic part of response nor inelastic tensile behavior.

The inelastic softening behavior is in microplane model best characterized by means of separate strength limits, or stress–
strain boundaries, on the microplane stress components. Within the boundaries, the behavior is considered to be elastic, and it
should be noted that in spite of that the macroscopic response represents the pre-peak nonlinearity because different
microplanes enter the strain softening behavior at different moments of loading. The inelastic behavior, defined on the
microplanes in terms of sN in tension and in terms of sV and sD in compression, can simply be specified as functions of the
corresponding εN , εV and εD, while the shear stress components sM and sL are limited by boundaries depending on sN and εV .
Fig. 1. (a) One Gauss point for each microplane and a typical normal at a microplane, (b) the concrete mesostructure with failure planes between
aggregates modeled as microplanes, (c) the kinematic constraint giving rise to the microplane normal and shear strain components.



F.C. Caner, Z.P. Bažant / J. Mech. Phys. Solids 64 (2014) 236–248 239
Accordingly, the tensile strength limit for normal microplane stresses, which governs tensile fracturing, can be defined as
(see Fig. 2a and Eq. (23) in Caner and Bažant, 2013a)

sþ
N ¼FNðεN ; sV Þ ð5Þ

The normal boundary, which governs the compressive failure, is given by

s�
N ¼ sV þsD ¼FV ðεV ; εI ; εIIIÞþFDðεD; εV Þ ð6Þ

see Eqs. (13)–(14) and (16)–(18) in Caner and Bažant (2013a), and Fig. 2b and c, respectively; εI and εIII are the maximum and
minimum principal strains.

The microplane frictional yield surface is expressed as (see Fig. 2d and Eqs. (26)–(32) in Caner and Bažant, 2013a)

sτ ¼F T ðετ; εV ; sNÞ; ετ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2L þε2M

q
; sτ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2L þs2M

q
ð7Þ

Based on extensive calibrations by test data for many concretes, the stress–strain boundaries are in M7 characterized by
five free parameters ki (i¼1, 2,…,5), which can be easily adjusted according to basic data from uniaxial and triaxial
compression tests and uniaxial tensile tests. Besides, the definitions of the boundaries include about twenty fixed
parameters, which can be considered the same for all concretes. They have been identified by computer optimization of
the fits of numerous data of different types. For details, see Caner and Bažant (2013a,b).

Based on the given elastic modulus E of concrete and given Poisson ratio ν, the kinematic constraint without volumetric–
deviatoric split leads to the following values of the microplane normal and shear stiffness constants (Eq. (20a), (20b) in
Bažant and Prat, 1988)

EN ¼ E
1�2ν

; ET ¼ EN
1�4ν
1þν

ð8Þ

(also EN ¼ K=3 where K¼bulk modulus). Obviously since both EN and ET must be non-negative, only Poisson's ratios in the
range νA ½�1;0:25� can be reproduced. This range of ν is sufficient for concrete, for which ν� 0:18. But it would not suffice
Fig. 2. (a) Microplane normal boundary, (b) microplane deviatoric boundary, (c) microplane volumetric boundary and (d) microplane frictional boundary.
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for a general material, for which νA ½�1; 0:5�. In that case, to get the full range of ν, the microplane model M7 must be
coupled in series with an isotropic shear-deformable elastic element of an infinite bulk modulus K′¼1 and a finite shear
modulus G′40 (Bažant and Oh, 1985) (see Fig. 2 in Caner and Bažant, 2013a; Caner et al., 2013).

The thermodynamic requirement of non-negative density of energy dissipation is discussed in detail in Caner and Bažant
(2013a).

3. Calibration of model M7 by WES-5000 test data

Numerous earth penetration simulations in the literature have used the Eulerian coordinates, which are the coordinates
of the current state and do not allow keeping the memory of the initial virgin state of the material. This approach is suitable
for plastic materials. However, for brittle or quasibrittle materials, and particularly for the microplane model of concrete,
memory of the initial virgin state is essential. Therefore, the updated Lagrangian approach, in which the material points are
characterized by their coordinates in the initial state, must be used. Calculations show that the predicted geometry of the
exit crater, as well as the deceleration of projectile prior to exit, depend strongly on the softening damage behavior of the
material, whose characterization depends on the initial virgin state.

Given the complexity of concrete behavior, the constitutive law has been verified against a large set of experimental data
covering virtually all the distinct types of experiments that characterize concrete, whose number is about 20 (Caner and
Bažant, 2013b). A complicating feature of verification is that the test data used to verify Model M7 were obtained by
numerous researchers in different laboratories, using different concretes. For calibration of model M7 for WES-5000
concrete, not only classical laboratory test data such as uniaxial and triaxial compression data, but also the test data
obtained under unconventional loading paths (Cargile, 1999) have been employed, as shown in Fig. 3.

The same free model parameters, namely E¼25 GPa, k1 ¼ 11� 10�5, k2 ¼ 110, k3 ¼ 30, k4 ¼ 100 and k5 ¼ 1� 10�4, have
been used for all the present data fits. Although in two cases the simulations show significant differences from the test data,
the fit of a great majority of the simulations is good. Model M7 has also been verified by comparisons with the tests of
compression–tension load cycles, the tests of mixed-mode crack propagation (see Figs. 4, 5, 6 and 7 in Caner and Bažant,
2013b), and the tests of explosions on plain concrete slabs.

The fits are performed by taking into account the meaning of the coefficients in terms of various particular aspects of the
mechanical behavior of concrete. This kind of fitting procedure is more tedious than the automatic procedures such as the
Levenberg–Marquardt optimization algorithm or the genetic algorithm but the resulting optimum values of the parameter
preserve the robustness of the model in simulating general stress states. Complex automatic fitting procedures often yield
parameter values that correspond to very close fits but almost always such parameter values render the model unstable in
simulations of multiaxial states of stress. This is because it is not entirely possible to convey the meaning of each model
parameter to the automatic fitting procedure.

4. Data from missile penetration tests

Slabs made of normal strength concrete, called the WES-5000 concrete, were perforated by projectiles at the
Geotechnical and Structures Laboratory of the U.S. Army Engineer Research and Development Center (ERDC), Vicksburg
(Frank et al., 2012). The slabs were circular, of thicknesses of 127, 216 and 254 mm, and were cast in steel culvert pipes of
diameter of 1.52 m, two or three slabs for each thickness. The exit velocities were averaged. The projectiles had an ogive
nose, weighed 2.3 kg and hit the slab with the entry velocity of 310 m/s and at an impact angle of 901 (with deviations of
o11). The measured exit velocities of the projectiles were 225 m/s, 115 m/s and 45 m/s for the three slab thicknesses,
respectively (Frank et al., 2012; Cargile, 1999). The geometries of the entry and exit craters were determined after the tests.
Slabs of three different thicknesses were penetrated. As seen in finite element simulations, the strain rates in the thinnest
slabs remained very high throughout the entire duration of the penetration. In the thickest slabs, the strain rates were very
high initially but became only moderately high later on.

To obtain material data, standard cylindrical specimens of the same WES-5000 concrete were tested under both
conventional and unconventional triaxial load paths (Caner and Bažant, 2000, 2013a). Frank et al. (2012). Various material
models were calibrated with these quasistatic test data, and subsequently used to calculate the exit velocities as well as the
entry and exit crater shapes in all three slabs. Despite using a variety of models, it turned out to be very challenging to match
the test results (Frank et al., 2012).

5. Quasi-static rate effect in Model M7

As is clear from the preceding Part I (Bažant and Caner, this issue), there are two kinds of deformation rate effects—
quasistatic and comminutive. The quasistatic rate effects are expected on theoretical grounds to extend to extreme rates and
so they must be part of the material model even for such rates. Besides, even in projectile impact and perforation, the zones
farther away from the missile are not deforming at extreme rates and exhibit only the quasistatic rate effects which play a
role in wave attenuation and diffraction, and the same is true when the projectile forms the exit crater at greatly reduced
velocity.
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Fig. 3. Benchmark set of test data obtained with one and the same concrete, the WES-5000 concrete, used to evaluate the model and optimize material
parameters.
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Another way to generate rate effects in fracture modeling is through dynamic crack propagation and crack branching
(e.g. Doyoyo, 2002). This approach has been pursued for metals and ceramics (see comments on the “Mescall” models in
Part I). But it has not been elaborated for concrete and has not been developed in the form of a macro-continuum
constitutive equation for finite element programs. In a general sense, though, the present comminution model and the
dynamic crack branching are similar in that both simulate creation of small particles. The present model can in fact be
regarded as an alternative to creation of a Mescall zone.
5.1. Effect of cohesive crack separation rate

One quasistatic rate effect, already introduced into microplane model M4 (Bažant et al., 2000a), is due to the rate
dependence of cohesive crack opening w. It must follow the activation energy theory of bond ruptures. In this formulation,
the rate dependence of the opening w of a cohesive crack (also called ‘fictitious’ crack) is described as (see Fig. 1a in Bažant
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and Li, 1997 and Fig. 1 in Li and Bažant, 1997)

_w ¼ k0 sinh
T0

T
s� f 0ðwÞ
krNbðwÞ

 !
e�ðQ=kÞð1=T�1=T0Þ ð9Þ

where _w ¼ dw=dt, t¼time; s¼cohesive (crack-bridging) stress; k0; kr ; T
0;Q ; k¼ constants (k¼Boltzmann constant;

Q¼activation energy of interatomic bond ruptures, T¼absolute temperature; T0¼given reference temperature. and
Nb(w)¼number of surviving bonds spanning the cohesive crack, per unit area. Function f 0ðwÞ describes the softening law
of the cohesive crack at an opening rate that is at the lower limit of the range of rates for which Eq. (9) is to be applied or has
been calibrated (normally the rate of loading in static material tests in the laboratory). The adiabatic heating of concrete in
an impact event has probably a negligible effect on _w, and in that case one may set T � T0. Eq. (9) can be imagined to
correspond to the rheologic model in which a rate-independent cohesive crack element is coupled in parallel with a
nonlinear damper at each point of the cohesive crack (see Fig. 1b in Li and Bažant, 1997; Bažant et al., 2000a). The sinh-
function in Eq. (9) ensues from the activation energy theory (rate-process theory, e.g. Krausz and Krausz, 1988) for bond
ruptures.

The ratio s=NbðwÞ represents the transmitted stress per bond, which is what matters for the activation energy theory.
Obviously, Nb must decrease with increasing crack opening w and must drop to 0 when w becomes so large that s¼ f(w)¼0.
It has been assumed that

NbðwÞ ¼ Cbf
0ðwÞ ð10Þ

where Cb is some proportionality constant.
The macroscopic strain softening may be imagined to be the result of the openings of many parallel cohesive cracks.

Denoting by scr their average spacing, one may write

_ε ¼ _w
scr

þ _s
E
� _w

scr
ð11Þ

where ε¼average macroscopic normal strain in the direction perpendicular to the parallel cracks, E¼Young's modulus of
uncracked material; _s=E represents the elastic strain rate, which is normally negligible by comparison if the crack is
opening. It is by virtue of this observation that the approximation in Eq. (11) is justified.

Substituting _w ¼ scr _ε and Eq. (10) into Eq. (9) and solving the equation for s, one obtains s¼ FðεÞ where

F εð Þ ¼F εð Þ 1þC2 asinh
_ε

C1

� �� �
ð12Þ

with

C1 ¼ C0e�ðQ=RÞð1=T�1=T0Þ; C2 ¼ CrT=T0; _εZ0 ð13Þ

Here C0 ¼ k0=scr , Cr ¼ krCb and f 0ðwÞ ¼F ðεÞ; C0 and Cr are constants to be determined from tests. When the temperature is
about the same as the temperature in the laboratory tests used for calibration, which is about 25 1C (T0¼298 K), then C1¼C0
and C2¼Cr, and C1 and C2 become temperature independent, i.e., constants.

Since asinh x¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ1

p
Þ, the asymptotic approximation for x2b1 is asinh x� lnð2xÞ. In Eq. (12), this occurs if the

loading rate is so large that _ε2bC1. Then Eq. (12) takes the form

F εð Þ �F εð Þ 1þC2 ln
2_ε
C1

� �� �
ð14Þ

The logarithmic function is normally used for the rate effect on the yield limit in metal plasticity (e.g., in wavecode EPIC).
Function FðεÞmay be interpreted as the stress–strain boundary on the microplane corresponding to strain rate _ε, and F ðεÞ

has the meaning of the static stress–strain boundary that corresponds to a vanishing strain rate (a boundary that
approximately applies to the small loading rates of static material tests). The transformation from the static boundary F ðεÞ
to the rate-dependent (dynamic) boundary represents, according to Eq. (12), a vertical scaling of the boundary curve (see
Fig. 1c in Bažant et al., 2000a).

It is logical to assume that the normal and deviatoric boundaries adhere to Eq. (12). Thus, the following relations can be
written on the microplane level:

FN ¼FN½1þcR2Rð_ξÞ� ð15Þ

FD ¼FD½1þcR2Rð_ξÞ� ð16Þ

Fτ ¼F τ½1þcR2Rð_ξÞ� ð17Þ
where, however, asinh ð_ε=C1Þ is replaced by function Rð_ξÞ of global strain rate measure _ξ, which satisfies the tensorial
invariance restrictions. The following simple definition is used:

R _ξ
� �¼ asinh _ξ=cR1

� �� ln 2_ξ=cR1
� �

with _ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1
2 _ε ij _ε ij

q
ð18Þ
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where the logarithmic approximation of R is admissible only if _ξ
2
bcR1; cR1, cR2 are material rate constants, analogous to C1,

which have been calibrated by test data. They can be considered as fixed parameters, which need not be adjusted by the user and
are applicable to all concretes; _ε ij are strain rate components with subscripts i; j ð ¼ 1;2;3Þ referring to Cartesian components,
and repetition of subscripts implies summation; and _ξ is a non-negative invariant of _εij (note that the square root of the second
invariant of the strain rate tensor would be inappropriate because the cracking strain involves volume change).

5.2. Viscoelastic rate effect

The viscoelasticity (or creep) of concrete is properly taken into account at the microplane level. The creep is fully
characterized by the compliance function Jðt; t′Þ, representing the strain at time t caused by a unit uniaxial stress applied at
time t′, and by the creep Poisson ratio ν, which can be approximately taken as constant ðν¼ 0:18Þ. The constitutive law,
based on the principle of superposition, consists of a matrix integral equation over the stress tensor history. For the analysis
of impact and penetration, the aging of concrete may be neglected. In that case Jðt; t′Þ � Jðt�t′Þ ¼ function of only the time
lag t�t′. Computationally it is more effective to approximate the integral-type constitutive law with a Kelvin chain or
Maxwell chain. This leads to a system of first-order matrix differential equations in time for the partial strains or stresses of
the chain, whose values from the preceding time step need to be stored.

Since long-time creep is not of interest here, the entire Maxwell chain is not needed. Therefore (in similarity to the
approach of Ožbolt and Bažant, 1992), the compliance function may be approximated for the duration of loading (e.g., the
impact event) by a single spring-dashpot Maxwell rheologic model (see Fig. 1d in Bažant et al., 2000a). For uniaxial stress,
this model is characterized by the stress strain relation:

_ε ¼ _s
E
þ s

η
ð19Þ

where E¼ elastic modulus and η¼ viscosity.
Assuming that, during each time step Δt, the strain rate _ε is constant, the solution of Eq. (19) within the time step

beginning at time ti is

sðtÞ ¼ η_εþðsi�η_εÞ e�Eðt� tiÞ=η ð20Þ
Setting t ¼ tiþΔt and _ε �Δε=Δt, this may be rearranged to the following quasi-elastic incremental stress–strain relation

Δs¼ E″Δε�Δs″ ð21Þ
with the notations

E″¼ 1�e� ζ

ζ
E; Δs″¼ 1�e� ζ

� �
s; ζ¼Δt=τ1 ð22Þ

where s is the value at the beginning of the time step Δt, and τ1 ¼ η=E¼ relaxation time of the Maxwell model. Eq. (22)
define the exponential algorithm for linear viscoelasticity (Bažant, Chairman, 1988). Unlike the central difference algorithm,
this algorithm is unconditionally stable no matter how large the ratio ζ is. Note that, in computer calculations, an overflow
may occur in Eq. (22) when ζ is very small. To prevent it, the first terms of the Taylor series expansions of E″ and Δs″must be
used for very small ζ.

5.3. Discussion of quasi-static rate effects

Numerous test data on the apparent unconfined compressive strength under uniaxial compression of various concretes
show that, with increasing strain rate, the apparent strength increases sharply (see Fig. 1 in Cotsovos and Pavlović, 2008).
These data can be predicted well up to a strain rate of about 1 s�1 by model M7 with quasi-static rate effect, and also by
other models that incorporate the activation energy based rate effect. But at higher strain rates, a proper comparison of
model predictions with experimental results would require the strain rate distributions across the specimen. However, it is
next to impossible to record these distributions in experiments at very high rates of loading. The numerical model
predictions of what is left of the specimen body can also be compared to the remains of the specimens tested. For example,
the so-called lattice discrete particle models (e.g. Cusatis et al., 2003, 2011a,b) can predict the mesoscale fragmentation
behavior of the specimens during high strain rate tests, though not yet the comminution on a finer scale. Continuum models
such as model M7 can be used to simulate approximately the effects of both the mesoscale fragmentation and finer scale
comminution, for example, by deleting the failed elements and lumping the deleted element masses to rigid particles at
the nodes. The geometric shape that consists of the surviving elements at the end of the simulation can be compared to the
surviving specimen parts from the experiments.

The confined compression behavior at high strain rates of concrete is of interest for perforation of concrete slabs by
projectiles as well as explosions. Forquin et al. (2008) reported Hopkinson pressure bar tests of concrete “MB50” cast in a
steel tube. In these tests, shock waves are generated to create the desired strain rate in the concrete core of the specimens.
To calibrate model M7, only the Young modulus has been adjusted to E¼70 GPa, while the other model parameters have
been considered with their reference values reported in Caner and Bažant (2013b). The values of quasistatic strain-rate
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parameters were determined as CR1 ¼ 4� 10�6 and CR2 ¼ 0:022. Fig. 4a depicts the hoop strain test data measured by strain
gauge G3 and their predictions by model M7. The predictions by model M7 are completely satisfactory.

Next, using model M7 calibrated for the “MB50” concrete used in these tests, the axial stress–strain response of that
concrete to high strain rates is extracted, as shown in Fig. 4b. The responses for the strain rates 141 s�1 and 221 s�1 are
visually indistinguishable, meaning the continuous curve in that figure is probably the maximum response that can be
obtained for such concretes cast in steel tubes using the activation energy based rate effect theory. The dashed curve in this
figure corresponds to quasi-static laboratory strain rates. These results indicate that, when the inertial effects are minimized,
a relatively small strain rate effect exists in the response of concrete under confinement even when the strain rates are
significantly larger than the quasi-static rates.

6. Comminution rate effect in model M7 and simulations of missile penetration

The sharp increase of the strength amplification factor for strain rates above 10 s�1 (e.g. see Fig. 1 in Cotsovos and
Pavlović, 2008 or Fig. 1 in Bažant and Caner, this issue) documents that good prediction of the exit velocities of projectiles is
hardly possible using only quasi-static strain rate effects. This is documented by Fig. 3 showing the calculation results for
microplane model M7 calibrated for the WES-5000 concrete. To resolve the strain rates and keep the discretization error
low, small enough tetrahedral elements (of size 7.5 mm) have been employed in the finite element analyses. Both the
compression and tension performance of these elements employing the M7 constitutive model have been verified.

A series of finite element calculations of projectile perforation have been performed using model M7 with only the quasi-
static strain rate effects. The results are shown as the dashed curve in Fig. 5. The calculated exit velocities far exceed the
experimental values. Thus, the quasi-static rate effects are clearly insufficient to explain the observed exit velocities of these
projectiles.

It should be mentioned that these velocities could roughly be obtained by calculations with an enhanced friction
coefficient. However, assuming a higher friction coefficient for high slip rates is questionable since other experimental
Fig. 4. (a) Comparison of hoop strain test data at strain rates of 80 s�1 and 221 s�1 of MB50 concrete cast in steel tubes (symbols) and predictions by the
model M7 (lines); (b) axial stress–strain behavior of MB50 concrete at quasistatic strain rates (dashed line) and at a strain rate of 221 s�1 (continuous line).
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evidence shows the friction coefficient to decrease with an increasing slip rate. Also, a blunter nose profile different from the
one used in the tests could help to reduce the penetration velocity.

It was also examined whether the effect of the frictional boundary, which can greatly increase with the confining
pressure, could suffice to explain the drop of exit velocities for thicker walls. However, the calculated confining pressure was
not high enough. Actually, in absence of large enough pressure on the missile sides, the dynamic sliding leads to a reduction
of friction. Thus, although the rate effect is here applied also at the microplane frictional boundary, it is ineffective in
reducing the missile speed and cannot explain the observed exit velocities.

In Frank et al. (2012), the entry and exit crater geometries, as well as the exit velocities of the projectiles, were matched
by imposing on microplane model M4 a major empirical expansion of the static microplane stress–strain boundaries (or
strain-dependent yield limits) determined so as to fit the penetration data. The expansion was both vertical and horizontal.
Although the vertical expansion of these microplane yield limits might be explained by the comminution effect (coupled
with the quasi-static rate effects), a horizontal expansion of these boundaries can hardly be justified theoretically. In fact, a
horizontal expansion of the boundaries implies an increase of ductility, but the existing experimental evidence indicates
that, as the strain rate increases, concrete becomes more brittle. Still more importantly, the fracture energy is known not to
change much with the strain rate (Jansen et al., 1995; Yon et al., 1992).

Another significant parameter of the perforation of concrete slabs is the shape of the projectile tip. Intuitively, a blunt
projectile would be less effective than a sharp one in perforating slabs. The projectile tip has been specified in Frank et al.
(2012) as an ogive nose with a caliber radius head of 3.0 and a length to diameter ratio of 7. The diameter of the projectile
was 50.8 mm. For the definition of the caliber radius head, the formula given in Simms and Berger (2010) can be used. More
details of the dimensions of the projectile are given in Cargile (1999).

The impossibility of predicting the correct exit velocities of the projectiles with the same quasi-static rate-dependent
microplane constitutive law and the same element sizes revealed that there must be a different type of rate effect that
dissipates far more energy than the quasi-static rate effect. In the preceding companion paper (Bažant and Caner, this issue),
it is postulated that this rate effect arises from the comminution of material into very fine particles at extremely high strain
rates. This comminution rate effect has been implemented as a nonlinear viscous element (or dashpot) which is coupled in
parallel with the microplane model and generates the shear viscosity

ηD ¼ Γ

τ0

C2=3
0 Gρ
Cg

Ba

1þB2
a

 !1=2

ð23Þ

leading to the comminution induced shear stress tensor given by

τij ¼ ηD _eij ð24Þ

where _eij ¼ _ε ij�δij _εkk and ηD ¼ shear viscosity; Ba is the dimensionless number characterizing the ratio of kinetic energy of
shear strain rate to the maximum possible strain energy, defined in Part I along with C0 and Gg.

Fig. 5 shows, by dashed curves with circles, the exit velocities of projectiles predicted by three different versions of model M7:
(1)
 basic M7 for quasi-static multiaxial behavior of concrete;

(2)
 M7 enhanced by the quasi-static strain rate effects (which include the crack opening rate and viscoelasticity); and

(3)
 M7 with the comminution rate effect and the quasi-static rate effects.
The exit velocity predictions which include the effect of comminution are clearly superior.
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Model M7 including all of these rate effects has been coded into VUMAT subroutine of ABAQUS. The finite element
analysis of the perforation of concrete walls was performed in the sense of crack band model. In these perforation
simulations, the slabs are discretized uniformly using 4-node constant strain tetrahedral elements of size approximately
7.5 mm. The effect of switching to higher-order elements has been found negligible, in both crater formation and exit
velocities, except for an increase in the computational cost of each simulation.

The boundary effects, such as wave reflection at the boundary of the mesh, have been removed in some of the
simulations by attaching a single layer of infinite (or wave transmitting) finite elements at all exterior boundaries. But the
removal of these boundary effects has resulted in negligible changes in both crater formation and exit velocities. By contrast,
in explosion simulations, the boundary effects are known to play a crucial role in the degree of damage inflicted upon a
concrete slab.

The crater geometries in three dimensions and a half of the projectile are shown in Fig. 6a–c for slab the thicknesses of
127 mm, 216 mm and 254 mm respectively. The thick black line represents the measured profile of the craters (see Fig. 3 in
Frank et al., 2012). In the simulations, the elements whose maximum principal strain reached 0.005 or more have been
eroded so that the computer simulation could proceed (otherwise the maximum time increments allowed by numerical
stability would become too short and the computer simulation would abort). This threshold of element erosion corresponds
Fig. 6. Comparison of measured crater shapes (thick black curve) and predictions by model M7 using both quasi-static strain rate effect and effect of
comminution of concrete in slabs of thickness (a) 127 mm, (b) 216 mm, (c) 254 mm and the legend for max. principal strains.
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to material failure in the direction of the maximum principal strain under quasi-static loading conditions. Failure is assumed
even though some of these eroded elements might still be carrying some compressive stress perpendicular to the maximum
tensile stress direction.

7. Uncertainties and errors due to possible effects of moisture content, age, curing, etc.

The overestimation of the exit velocity of the thin slabs might not be an error of the present theory. It might be caused by
various extraneous factors. For example, since the thinner slabs dry faster, the thin slab must have had a lower specific
moisture content than the thicker one if the curing type and durations were about the same. Hopkinson bar tests reported in
Cadoni et al. (2001) showed that a lower moisture content of concrete can lead to a significant decrease of strength under
high-rate loading. This increase might explain why the measured exit velocity for the thin (and thus drier slab) is lower than
the present prediction shown in Fig. 5. However, the data are so limited that no meaningful calculations are possible at this
time. Especially, it is not clear whether the slab were tested right after moist curing, or whether they were exposed to drying
before the test, and whether the period of drying exposure was the same for each slab. The environmental humidity and the
permeability of concrete are also not known.

There are further factors that could have skewed the result. From Cargile (1999) it is not clear whether the specimens had
the same age at the time of the tests and whether they experienced the same environmental and curing history. For
example, if the thinner slab was appreciably older than the thicker ones, the chemical process of hydration could have
caused the strength and fracture energy of the thin slabs to be significantly higher than it was in the thicker slabs.
Furthermore, according to Cargile (1999), the slabs were clearly not cast from the same batch of concrete, and thus random
differences between different batches of the same concrete might have caused strength differences as high as 8%.

So it is at present impossible to conclude whether the overestimation of the exit velocity of the thin plate, seen in Fig. 5,
is an error of the present theory, or an error of the data themselves. Further experiments are needed.

8. Conclusions
1.
 If only the quasi-static rate effects due to crack opening rate and to viscoelasticity are taken into account, the observed
exit velocities in the perforation of concrete slabs by projectiles cannot be matched by computer simulations.
2.
 Missile penetration can produce strain rates on the order of 105 s�1. Such strain rates must be causing comminution of
concrete resulting in dissipation of enormous energy.
3.
 Comminution of concrete at such extremely high strain rates can explain the additional dissipation needed to match the
exit velocities of perforating projectiles.
4.
 The simulation results agree with the theoretical prediction that the comminution is equivalent to additional shear
stresses of concrete proportional to the 2/3-power of deviatoric strain rate, which is in turn equivalent to a deviatoric
(shear) viscosity proportional to the �1/3-power of the deviatoric strain rate.
5.
 Including in the calculations a comminution due to rate of volume expansion has almost no effect on the exit velocities of
the projectiles. Hence, the comminution must be explained in terms of the shear strain rate.
6.
 Including a strain-rate dependent friction between the projectile and the surrounding concrete cannot help to explain
the additional dissipation needed to match the exit velocities.
7.
 The underestimation of the exit velocity of the thinnest slab might be explicable by taking into account the Hopkinson
bar tests indicating that a drier concrete has a lower strength, and thus less resistance to missile penetration. However,
the data are too scant for meaningful calculations. The underestimation could easily be explained by possible defects in
the design and control of the experiments and by missing data on water content, age, curing, etc.
8.
 The microplane model M7 coupled with both the comminution rate effect and the quasi-static strain rate effects can
correctly predict the geometries of the both the entry and exit craters and gives overall a satisfactory match of the
observed exit velocities of the projectiles.
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