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Abstract

Although the 2010 Draft of fib Model Code is overall an excellent document, it has some
weaknesses which could, and should, be corrected. One is the material model for creep
and shrinkage prediction, which not only is theoretically obsolete but also is indefensible
in view of the wake-up call provided by recently collected long-term deflections of 56
bridges. The second is a size effect formulation for shear strength whose justification is
tantamount to a myth rather than reason. The third consists of the probability distribution
of structural strength for failures occurring at macro-crack initiation. The distribution tail
that matters, in the probability range of 10, is directly unobservable, just like a black
hole. But indirect evidence from the size effect indicates that the distribution transits
from Gaussian to Weibulian as the structure size increases. This transition may have a
major effect on the safety factor. Moreover, dubious uses of the lognormal distribution
and another black hole in the covert safety factors implied in the design formulas render
a meaningful calculation of failure probability impossible. Some remedies are offered.

*This paper is an authorized republication of the paper with the same title and the same authors, presented as
the Topic 3 Keynote Lecture at the fib Symposium in Prague in June 2011 and published in the proceedings
volume entitled "Concrete Engineering for Excellence and Efficiency"

(ISBN 978-87158-26-7), pp. 731--746.
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1. Wake-up call from excessive long-term deflections of 56 bridges

In two recent studies [1, 2], the data on the collapse in 1996 of the Koror-Babeldaob
(KB) Bridge in Palau, released in 2008, were analyzed. Built in 1977, this prestressed
segmentally erected box girder had the world-record span of 241 m. Within 18 years, it
deflected by 1.61 m, compared to the design camber, and the average prestress loss in
the tendons (bonded bars) was measured as 49% (Fig. 1). Remedial prestressing
undertaken in 1996 caused, with a 3-month delay, a sudden collapse (with fatalities).
This spectacular collapse was what triggered attention to the earlier huge creep
deflections and to their similarities with other bridges.

A resolution of the 3" Structural Engineers’ World Congress in 2007 (proposed by
Bazant) labeled an engineer’s consent to the sealing of technical data from legal
litigation of structural collapses and damages as a violation of engineering ethics [1].
Two months later (in 2008), the technical data from the collapse investigation and
litigation were released to Northwestern University (by Gary Klein of Wiss, Janney and
Elstner, Highland Park, Illinois); also [3, 4, 5, 6, 7]. This made possible a three-
dimensional (3D) finite-element step-by-step creep analysis, taking into account the
effects of cracking, segmental erection, sequential prestressing, concrete aging, age
differences, shear lags in slabs and walls, non-uniform shrinkage, nonuniform drying
creep properties, temperature and gradual stress relaxation in prestressing steel.

The results have shown that the excessive deflections and prestress loss can be explained
and closely matched if the theoretically based model B3 [8, 9] (which became a 1995
RILEM Recommendation [8]) is used to characterize the creep and shrinkage properties,
provided that this model is recalibrated by the 30-year laboratory creep tests of Brooks
[10]; see the Set 2 curves in Fig. 1. Models other than RILEM-B3, which include the
current ACI-209, CEB-fib, GL and JSCE models for creep and shrinkage prediction [11,
12, 13, 14, 15, 16, 17, 18], have a form that does not allow recalibration by laboratory
data. The same finite element program for 3D creep analysis was also run for these
models (Fig. 1) as well as for model RILEM-B3 as originally calibrated by a worldwide
laboratory database (see Set | curves in Fig. 1). The 18-year mid-span deflections
computed from the CEB-fib, ACI-209, and GL models and the non-recalibrated model
RILEM-B3 (Set 1) were, respectively, 34%, 31%, 43% and 57% of the measured
deflection, and the computed 18-year prestress losses were 48%, 44%, 54% and 80% of
the mean measured loss.

Through the courtesy of Yasumitsu Watanabe, chief engineer of Shimizu Co., Tokyo,
detailed data have subsequently been received on four of the excessively deflecting
segmental bridges of that company. Their analysis [1, 2] led to the same conclusions,
which were as follows:
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Figure 1. a,b) Creep sag of 1.61 m at mid-span of KB Bridge in Palau in 1996; b) ACI
authorized reprint of photo from the cover of ACI SP-194 (2000) taken by Adam Neville
before retrofit. c¢.d) Deflections calculated by 3D finite elements using models CEB-/fib,
ACI-209, GL, JSCE and RILEM-B3 in linear (¢) and logarithmic (d) time scales,
compared to measurements (data points). d.e) Similar comparisons for prestress loss.
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1) The main cause of error lies in the creep and shrinkage model. All of the
existing creep and shrinkage prediction models are unsatisfactory. Nonetheless,
model RILEM-B3 gives significantly better predictions than the others and, if
adjusted to fit the recently released 30-year laboratory data of Brooks [10], fits
the measurements in Palau closely [1, 2].

2) Hence, the creep specifications of fib [13, 14] (as well as ACI-209 [11, 12])
need to be revised.

3) Secondary contributing causes are the use of obsolete beam-type creep analysis
programs, neglect of differences in shrinkage and drying creep rates in slabs of
different thicknesses and different thermal exposures, disregard of nonlinear
response due to cracking, gross underestimation of prestress losses, poor
representation of segmental erection, of sequential prestressing and of concrete
age differences and, as a minor contribution, also the cyclic creep due to traffic
loads [2].

Are the excessive deflections rare? They are not. A subsequent search of various papers,
company reports and society reports under the auspices of the newly founded RILEM
Committee TC-MDC led to a wake-up call—see Fig. 2 documenting the deflection
histories of 56 large-span bridge spans [19, 20, 21, 22, 23], most of them excessive (all
are segmental box girders except for one arch, and the horizontal dashed lines show the
maximum acceptable deflection, 1/800 of the span). Hard to obtain though such
examples are, hundreds more probably exist.

Of course, segmental bridges that have not deflected excessively (such as the Pine
Valley Creek Bridge in California built in 1975) exist, too, but appear to be a minority.
Even if a poor creep model is used, the deflections can be low if one adopts various
precautionary measures listed at the end of [1, 2]. Some of them, though, are costly or
span-limiting and detract from esthetic slenderness.

The logarithmic time plots in Fig. 2 also give no hint of an approach to an asymptotic
bound, a feature incorrectly implied by all the society recommendations except model
RILEM-B3 (and its predecessors since 1978). They document that the long-term creep is
a logarithmic curve (as observed on the basis of laboratory data in [24].

Why have the recommendations on creep been misleading, for decades? Aside from
disregard of the theoretical basis and lax interpretation of the laboratory tests, the
problem has also been the inevitable statistical bias of the world-wide laboratory
database [25, 26]. In the latest and largest database, assembled at Northwestern in 2011,
only 8% of creep test curves exceed 6 years, and only 5% 12 years. Also, the data
readings are heavily biased for short times and ages. Even if the statistical bias is filtered
by proper weighting [26], the multi-decade trend is not quite clear.
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[n this light, inverse interpretation of the bridge deflection histories in Fig. 2 appears to
be essential. Ideally, one should conduct statistical inverse 3D finite element creep
analysis of these bridges. But it has appeared impossible to obtain data that would
suffice for finite element analysis of these 56 bridges, except for 6 of them.

Nonetheless, examination of the accurate solutions of the bridge in Palau and a few
others showed that, for times t > tm (where tm = tc + 1000 days, t¢ = span closing
time), the complex effects of nonuniform drying, segmental erection, sequential
prestressing, concrete age differences and changes of structural system nearly die out. By
comparisons with the accurate solutions for the KB Bridge it was thus shown that the
subsequent deflection w(7) can be extrapolated from the measured 1000-day deflection
wiooo With a surprisingly good accuracy by means of the formula:

W= Wiao0 [J{f, fﬂ) - J(fc, f‘,)] / [J{f,," la) N J(IC, f,_,)] (] )

derived in 2010 by Bazant and verified in [27]; #, = average age of concrete at
permanent load application; #, = ¢ + 1000 days, 7, = time at span closing. Deflection
wiggo at 1000 days after span closing cannot be predicted without detailed three-
dimensional finite element creep analysis.

Although it turned out to be impossible to obtain the concrete strength and composition
data for the 56 bridges (except 6) in Fig. 2, the average concrete properties for 36 of
them (Fig. 3) could be estimated and statistical analysis conducted [27]. As a result, it
was concluded that the long-time creep parameters ¢; and ¢4 determined from concrete
composition by the empirical formulas of model RILEM-B3 should be multiplied by
correction factor » = 1.6. With this factor, the mean prediction of model RILEM-B3 for
the terminal slopes becomes correct (Fig. 3) and the coefficient of variation of errors in
the terminal slope gets greatly reduced [27].

For the creep and shrinkage model of fib (as well as ACI-209), similar corrections
cannot be implemented because many of its aspects are theoretically incorrect. Aside
from the incorrect form of Eq. 5.1-69, which implies an asymptotic bound and gives a
time curve with a shape disagreeing with individual long-time creep tests (a fact that gets
obfuscated when comparisons are made with the entire database), there are in Sec.
5.1.9.4 of the 2010 fib Model Code Draft further weak points which need to be
corrected.

E.g., the effect of drying on creep (Eq. 5.1-64) should not be represented by
multiplicative factor gy on the entire creep strain [28, 29]. Like model RILEM-B3, the
drying creep should rather be a term additive to the basic creep, multiplicatively scaled
according to the RH and shifted horizontally on top of the basic creep curve in log-time
by a distance proportional to the square of thickness 4 =24 Ju [28, 9].
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Another problem is that the compliance function, J(1,t"), of CEB-fib (as well as ACI-209)
does not satisfy the condition of non-divergence of creep, o> J(t,1")/ otor'> 0 28],

which causes that the principle of superposition can yield non-monotonic creep recovery
curves (i.e., curves with recovery reversal). This is thermodynamically impossible
according to Kelvin chain model [30].

Also, the creep should not be defined by the creep coefficient ¢ (Egs. 5.1-60 to 5.1-63),
for two reasons: First, it tempts engineers to use the standard elastic modulus E, whose
definition and measurement is incompatible with the way the initial deformation
(compliance) was measured. This typically causes an error that can be precluded by
specifying the compliance function from which the creep coefficient can be calculated as
@ = E(to)J(t,1p) — 1. Second, the use of the conventional short-time modulus (rather than
the asymptotic modulus in model RILEM-B3) forces the exponent in Eq. 5.1-69 to be
too high, namely 0.3 (for short-time creep it should be about 0.1).

The alleged asymptotic bound of fib creep formula is approached within 98% only after
70 years. The bound was much lower for the early models of Whitney, Glanville, Ross,
Dischinger, Ulickii and Arutyunyan in the 1940s and 50s [28]. and was approached
closely in about 3 years. Accumulation of data over the years led to a gradual increase of
the bound (a historical phenomenon that may be regarded as “creep inflation™). The
engineers should finally abandon wishful thinking and admit that there is no evidence of
a bound.

The simplest remedy for fib would be to replace the creep formulation with model
RILEM-B3 [8, 9]. A still better remedy would be the improved model B3.1 under
development in the Northwestern Infrastructure Technology Institute and in RILEM TC-
MDC.

A problem related to creep is that the steel relaxation in prestressing tendons is generally
defined only for a constant strain in steel. Analysis of the KB Bridge in Palau showed
that the strain in steel can change by as much as 30% during lifetime, which has a
significant effect on the stress relaxation in steel as well as prestress losses. An
incremental viscoplastic model for prestressing steel, which is easy to use in time steps
of finite element creep analysis, has been developed [31] and should be introduced into
the code.
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2. Myth and reason in size effect

The size effect has been a contentious subject ever since the pioneering large beam tests
of Kani in the 1960s [32], and the design codes have greatly lagged behind the theory.
The 2010 fib Model Code Draft now proposes in Egs. 7.3-18, 21, and 25 the beam shear
model stemming from the work of Collins et al. in Toronto [33, 34, 35]. Although this
model is a progress compared to the previous empirical one in the 1990 CEB Model
Code [13], it is a dubious choice since there exists a better model, with a deeper and
broader theoretical justification. This model, developed at Northwestern (Eq. 4 in [36,
37]), was unanimously endorsed by ACI Committee 446, Fracture Mechanics (Eq. 2 in
[38]).

In comparison to the ACI-445F database of 398 tests of shear failure of RC beams (Fig.
4a, [36]), both models look about equally good (or equally bad), but this is deceptive.
The quality of model cannot be judged because of a limited size range of the database,
and because of a huge scatter band width when tests from different labs, made with
different concretes, different steel ratios p and different shear spans a/h, are combined in
one database. If extrapolated to real structure sizes larger than those in the database, the
difference between the two models becomes significant.

One cannot validate a code equation solely by comparisons with a database that covers
only a part of the size range of interest and has various kinds of statistical bias. A sound
theoretical basis is required, too. But from the theoretical point of view, the procedure of
derivation of the proposed fib Egs. 7.3-18, 21, 25 is more a myth than logic. Briefly, note
the following (and for a deeper critique, see pages 1892-1894 of [36]):

1) The average ultimate shear stress of the cross section is assumed to decrease with
the beam depth (or size) & as (1 + ch)" where ¢ = constant. This kind of size
effect means that the large size asymptote is proportional to /', which is the
Leonardo (da Vinci [39]) size effect law (contested by Galileo Galiei [40]). But
this asymptote, which is also incorrectly exhibited by fib Eq. 7.3-40 for punching
shear, is thermodynamically impossible. The strongest possible size effect on
nominal strength is proportional to /2,

2) The model in fib Eqs. 7.3-18, 21, 25 was derived [33, 34] under the tacit
hypothesis that the diagonal shear crack would open along its entire length
simultaneously, as for a limit load in plasticity. But this is impossible in a
quasibrittle material (the crack front actually propagates, and finite element
simulations document that).

3) An additional tacit hypothesis in the derivation [33, 34] was that the cohesive
stress transmitted across the diagonal shear crack would soften as (1 + kw)’
where w is the crack opening displacement and k = constant. This hypothesis,
which is what led to (1 + ck}‘[, has not been justified. It conflicts, in fact, with the
cohesive softening law generally used in concrete fracture community, which is a
bilinear law with a steep initial decline and a long tail [41]. If the line of
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4)

reasoning in [33. 34] were accepted, this realistic cohesive softening law would
lead to a very different size effect.

If, instead of (1 + kw)', the cohesive stress across the diagonal shear cracks were
assumed to soften as (1 + kw)"? (which would be less unrealistic because the
softening tail would be relatively longer), the same (dubious) method of
derivation [33, 34] of fib Egs. 7.3-18, 21, 25 would indicate that the average
ultimate shear stress of the cross section decreases with the beam depth / as (1 +
ch)"?, which is the (Bazant) Size Effect Law (SEL) [42], first proposed for beam
shear in 1984 [43] and used in the recommendation unanimously adopted by ACI
Committee 446, Fracture Mechanics.

5) The model in fib Egs. 7.3-18, 21, 25 was derived [33] by incorporating the crack

softening law (1 + kw)" in the earlier “Modified Compression Field Theory’
(MCFT). This is, however, a stress-based (non-energetic) plasticity-type theory.
The undeclared hypothesis in this derivation, which is almost true for small beam
sizes (as in the laboratory), is that the concrete cracking remains distributed, non-
localized, that the failure is almost simultaneous, non-propagating, and that the
material strength is, at maximum load, almost mobilized along the entire failure
surface. But this derivation is incorrect for large beam sizes beyond the
laboratory scale, in which the cracking localizes, the failure propagates. This
means that while, in one part of the failure surface and at maximum load, the
peak stress point has already been passed and the stress has already softened
below the material strength limit, in another part of the failure surface the
material strength limit has not yet been reached at maximum load (Fig. 4). In
other words, the material strength along the failure surface in large structures
cannot get mobilized simultaneously (Fig. 4), but in small structures can. This
aspect is best handled by considering the energy release rate, as in fracture
mechanics [41] and in the derivation of SEL. However, the derivation of fib Egs.
7.3-18, 21, 25 involves no energy-based consideration, as well as no fracture-
related characteristic length, while the presence of a material characteristic length
is in the mechanics community generally accepted as the ultimate cause of all
non-statistical size effects.

6) The model in fib Eqs. 7.3-18, 21, 25 [33] may be applied to the diagonal crack

initiation which, however, occurs long before the ultimate load is reached.

7) The implied assumption that the shear transmission across the developing

diagonal crack controls the shear force capacity of the beam is an old, and false,
myth. Detailed finite element analyses with an experimentally calibrated finite
element fracture program [37] showed that the diagonal shear crack (Fig. 4)
transmits 40% of the total shear force when the beam depth h is 0.3m, 17% when
it is 2.0 m, and only 9% when it is 6.0 m. What controls the maximum load is the
propagation of compression-shear crushing across the ligament above the
diagonal crack tip (Fig. 4). And what explains the size effect is that, at maximum
load, the compressive stress distribution across this ligament is in small beams
nearly uniform, equal to concrete compression strength fem,, whereas in large
beams it is highly localized (Fig. 4). While one portion of the ligament in large




beams has not yet reached the concrete strength, another portion has already
entered the post-peak regime and has softened to small stress (Fig. 8c,d [36]).
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Fig. 4 ab) Size effect curve for beam shear strength v, based draft fib Egs. 7.3-18, 21,
25 (long dashes), and the same curve shifted up by 43 % (in log-scale) to represent the
mean fit (short dashes), a) compared to (biased and unfiltered) ACI-445F database, and
b) to Toronto size effect tests made for one concrete, one beam shape (bold diamonds).
c,d) trends of v, dependence on longitudinal reinforcement ratio p,, and relative shear
span a/h (where d=h), experimentally revealed by the centroids of database strips that
were filtered so as to make other influencing variables the same in all the intervals (f;,, =
mean cylindrical strength in psi (6895 Pa)).
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8) The aggregate interlock stresses sketched in fib Fig. 7.3-4 may characterize the
situation at diagonal crack initiation and, if the beam is small, partly also the
situation at maximum load. But this traditional sketch, featured in old
textbooks, is in the case of maximum load in large beams misleading because
the stress along the diagonal crack does not get mobilized simultaneously along
the entire crack length. Fig. 3e,f shows localized tensile and shear stress
distribution along the diagonal crack and localized compressive stress
distribution across the ligament above the tip of the diagonal crack, computed
by a finite element program with the microplane model and crack band model
for nonlocal damage [37].

9) The SEL [42] for structures reaching the maximum load only after the
formation of a large crack has been validated for all kinds of quasibrittle failure
of concrete structures, including anchors, beam torsion, slab punching, pipes
and, in reduced-scale tests and in a slightly modified form, slender columns,
and serves as standard fracture test basis. It has also been validated and widely
accepted for all other quasibrittle materials, including sea ice, fiber composites,
coarse-grained or toughened ceramics, wood, inhomogeneous rocks, stiff soils,
bones, rigid foams, dry snow slabs, carton, etc. Why should then the size effect
for shear of concrete beams be different?

10) The model in fib Eqgs. 7.3-18, 21, 25 (as well as ACI) ignores the effects of
longitudinal reinforcement ratio p and of relative shear span @/, which are
quite significant; see Fig. 3 c,d (and also Fig. 4c.d and Eq. 4 in [37]). The
existing worldwide database of 398 tests (Fig. 3a) is statistically biased in that

i| the means of p and of a/h in subsequent size intervals vary with the beam size
(or depth) A. Vice versa, the mean of size 4 in subsequent intervals varies with p
and a/h (Fig. 4c,d). To extract the trends, the database must be filtered. A
computer program has been developed to filter the worldwide database by
progressively deleting marginal points from the database such that the means of
h and of a/d be very nearly the same in all the intervals, as shown by the values
in Fig. 4c (and likewise in Fig. 4d) [44]. The data points deleted from the
margins by the filtering program are shown in Fig. 4c as the tiny dots, and the
data retained as the circles. Fig. 4¢ shows the centroids of the data remaining in
each interval of p by the bold diamonds (and likewise Fig. 4d for the intervals
of a/d. Fig. 4c documents that the beam shear strength v. depends strongly on
reinforcement ratio p (e.g., for p > 3.9 the v, value is 2.9 times larger than it is
for p < 0.63 if h and a/d are kept constant). Fig. 4d documents similarly that the
dependence of v, on a/d is significant, too. Both these effects are included in the
beam shear equation in [38], calibrated by nonlinear regression, but are not
revealed by the way of argument in MCFT. They should not be ignored in the
future fib Model Code (as well as ACI Code).

11) Finally, it is not correct for fib (as well as ACI) to assume that minimum
stirrups, or any stirrups, eliminate the size effect [45]. They merely mitigate it,
pushing it into much larger beam sizes; see [46] and Fig. 5. Although the
database with 183 data in Fig. 5 is too scattered to show a clear trend (mainly
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because it combines many different concretes), the size effect trend is clearly
revealed by computations with the crack band model [46] and is experimentally
evidenced by the data of Bhal [47] for one and the same concrete, shown by
bold diamonds in Fig. 5. In the presence of stirrups, the size effect can be
ignored only for beam depths up to about 1 m, but for the depth of 6 m, typical,
e.g., of the outriggers of modern super-tall buildings, the size effect reduces the
shear capacity by roughly 40%, and for the depth of KB Bridge girder (14.2m)
by roughly 50% [46]. As shown in Fig. 5, the failure probability is 10 for
beam depth 0.3 m, as required, but increases to the unacceptable value of 107
for beam depth 6 m (the strength distribution is here assumed to be lognormal,
rather than Gauss-Weibull, because the database compares many different
concretes, which means that this is the strength probability when no tests for the
given concrete have been made).

The simplest remedy to the size effect formulation in [14] would be to adopt the size
effect equations adopted by ACI Committee 446, Fracture Mechanics [38], although
they could be refined further.

There are other claims about the size effect, which are myth or fib (cf., e.g., [48]). They
can be left aside.

3 Black holes in safety specifications
3.1 Black hole in probability distributions tails

In the mostly excellent chapters 4.5 and 4.6 on the safety formats [14], a glaring
weakness is that all the probability density functions (pdf) of strength are tacitly assumed
to be Gaussian (or normal). This is correct for ductile (or plastic) failures (because the
Central Limit Theorem applies). But it is incorrect for brittle or quasi-brittle failures
occurring at macro-fracture initiation from a small representative volume element (RVE)
of material, which is what occurs in unreinforced structures (arch dams, foundation
plinths, retaining walls, etc.), though not in most reinforced ones. For brittle failures, the
pdf cannot be anything but Weibullian because the weakest link model for a chain with
an infinite number of links [49] applies [50, 51]. It is well established that, for small
sizes, the cracking remains distributed, which leads to a ductile (or quasi-plastic) failure,
whereas for large sizes the cracking localizes, which leads to brittle failure. So it is
logical to expect, and has been proven in various ways [50, 51, 52], that the pdf must
gradually change from Gaussian to Weibullian as the structure size increases. And that is
where the black hole resides.

It is generally agreed [53, 54, 55] that engineering structures must be designed for failure
probability P; <10, and so the tail of the pdf of strength needs to be known within the
range 10°—10 (which is what matters for the convolution integral with the pdf of
load). Now, for the Weibull pdf, the distance from the mean to the tail point of 10 is
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almost twice as large, in terms of standard deviations, as it is for the Gaussian pdf (Fig.
4), and this has a big effect on the required (partial) safety factor. But such a far out-tail
is like a black hole—it is not directly observable by histogram testing (since >10°
structure test repetitions would be needed!). Yet, like a black hole, the tail can be
observed indirectly — through the size effect (of type 1 [56]), which is dominated by the
tail [51].

This scaling behavior has recently been researched and experimentally demonstrated in
theoretical literature [50, 51, 52], but it will take some effort to build it into the system of
partial safety factors for concrete structures. Until this is done, it is an illusion to think
that the failure probability could be calculated for large concrete structures failing at
macro-crack initiation.

Another problem with a black hole in the tail arises from the use of lognormal
distribution in Eq. 4.5-9b [14] for the updated design value x, of structural resistance X
.The lognormal distribution is appropriate to characterize the statistical variability arising
when different concretes are considered [44] (Fig. 5). This variability is huge and
overrides the statistical variability of one concrete per se. However, to characterize the
randomness of resistance of a structure made from one and the same concrete, or the
material strength of one and the same concrete, the lognormal distribution is incorrect,
physically inconceivable.

In ductile failure, the resistance X is a sum of weighted random contributions from many
simultaneously failing material elements along the failure surface, with weights that can
be determined, e.g., by a finite element code. Hence, according to the Central Limit
Theorem, the structure strength distribution must be Gaussian — except, of course, the
tail, including the far-left tail reaching into negative values, which is always beyond the
range of validity of the Gaussian pdf (note that even the sum of » positive independent
identically distributed random variables, which can never be negative, converges to the
Gaussian distribution as p—x).

The only way a lognormal distribution for one given material (i.e., one concrete) could
physically arise is if the failure were a product, rather than a sum, of the random strength
contributions of the material elements along the failure surface [52]. But such a product,
which is implied by the lognormal distribution, is of course physically inconceivable, for
both structure strength and material strength. Thus, provided that one given concrete is
considered, the lognormal distribution in fib Eq. 4.5-9a should be replaced by the
Gaussian pdf if the failure is ductile, by the Gauss-Weibull graft [52, 51] (which
corresponds to a finite weakest-link model) if it is quasibrittle, and by the Weibull pdf
(which corresponds to an infinite weakest-link model) if it is perfectly brittle.
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Fig. 5 Size effect on shear strength of RC beams with stirrups, compared to the
database of 183 tests [46] for many different concretes, and lognormal strength
distributions assumed to be, for all the sizes d (d=h), the same as in the small size
interval with many data. The bold diamonds represent the tests of Bhal on one and the
same concrete a) The increasing probability cutoff indicates the decrease of safety
margin with increasing size. b) Comparison with typical maximum design load
distributions, and failure probabilities for various sizes obtained by convolution with
strength distribution according to Freudenthal reliability integral.
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Note also that since the lognormal distribution has the opposite skewness than the
Weibull distribution, it represents, for the variability of strength of one given concrete,
the worst possible guess [52] for someone who is bothered by the infinite Gaussian tail
reaching into negative values. The difference in the safety factor corresponding to the
tail at Pf =10-6 is huge (Fig. 6).

Same mean, same = 5.2%
Lognormal
g Gaussian cdf
E - cdf
‘s ~ Tolerable™. P, =1-exp[~{a/s,)"]
8 ’a""’”"’b - Weibull cdf
& =10%/ ;
_// z/
e / Mean
oL 5/- 4! o
— Load

Fig. 6 Gaussian, Weibull, and Lognormal cumulative probability density functions with
the same mean, equal to 1, and the same typical coefficient of variation. Note the huge
differences among the distances cg ¢y and ¢; from the mean to the tail point with
probability 10 (a point that matters for safe design).

The problem of a black hole in the tail extends to the use of reliability index £ in fib
subclause 3.2.5. That index, too, is predicated on the Gaussian distribution and thus
cannot be applied if the structural failure is not ductile, lacking a long plastic plateau on
the load-deflection diagram. This limitation should be kept in mind.

3.2 Black holes in design formulas set at the margin of data

Another aspect that confounds the calculation of failure probability on the basis of
design formulas is the presence of the so-called covert safety factors [57]. In the fib
Model Code Draft (as well as in ACI code), for example, the design equation (fib Eq.
7.3-8) for beam shear has not been set so as to represent the mean trend of the data, i.e.,
the regression curve. Rather, it has been set at about 43% below the regression curve.
Because this fact is kept invisible in the code, the code formula is often taken as the
mean prediction, which obviously leads to wrong estimates of failure probability.
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Again, this is a sort of a black hole, though an easier one. It would suffice for the
designer to plot the fib Eq. 7.3-8 against the database, carry out the nonlinear regression,
and determine the probability cut-off for the offset of the design equation from the
regression curve in the interval of interest. However, this is not what the designers are
expected to do. The code should make it easy: Declare in the code the probability cutoff
of the recommended design equation, the coefficient of variation, and the type of
distribution. Otherwise all the failure probability estimates are meaningless.

This black hole, as well as that in tails, can, in principle, be avoided if the failure
probability is calculated by a stochastic nonlocal (fracture-based) finite element code
into which the Gauss-Weibull transition of pdf is incorporated. But this is a complex
task, still in the research realm, and a practical way to deal with these black holes in the
pdf tails does not yet exist.

3.3  False size effect hidden in excessive partial safety factor imposed on self-
weight

For permanent actions, which include the self-weight, Section 4.5.2 of the fib Model
Code Draft specifies the load factors of 1.05 — 1.1 in Table 4.5-4, 1.35 in section 4.5-5
for the case of “non-particular” actions, not involving geotechnical actions, and either
1.35 or 0.85 — 1.35 in Table 4.5-6 for altemative combination. Although the application
is not completely clear from this Draft, it is clear, upon rigorous appraisal, that 1.1, and
especially 1.35, are irrational. The same could be said of the ACI Standard 318, which
specifies for dead load, including the self-weight, the factor of 1.4 when acting alone and
1.2 when in combination.

In a small bridge, the self-weight may represent only a few percent of the total load. But
in a large bridge, more than 95% of the total load can be the self-weight of concrete.
Errors larger than about 3% in the weight of concrete and reinforcement are
inconceivable (except as carelessness or sabotage). Thus the factors of 1.1 and 1.35
represent a penalty on large structures, which represents a hidden size effect [58]. This
size effect is invisible to the designer, like a black hole.

However, the self-weight factor is not a rational way to introduce the size effect. The
shape of the size effect curve implied by these factors is incorrect [58]. Besides,
prestressed structures, or structures made with high strength concrete, are lighter than the
unprestressed ones or those made with normal strength concretes, and thus the size effect
hidden in excessive self-weight factor is weaker, yet in reality the size effect is stronger
because such structures are more brittle. For large cable-stayed bridges. this hidden size
effect also works the wrong way.
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4.  Closing comment

Although a perfect design code is unattainable, and too much perfection would make the
code too complex to use, some corrections outlined here are simple and easy to
implement. They would improve the fib Model Code Draft substantially.
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