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1. INTRODUCTION 

The state of the art in uncertainty analysis and risk 
estimation has improved significantly in the recent years 
and it is appropriate to evaluate its applicability to the 
current engineering design. The uncertainty associated 
with the major design variables has been quantified or 
established. Various methods with different levels of 
sophistications or complexities are now available to track 
the progression of uncertainties from the input element 
level to the system level. For example, the capacity or 
resistance of an engineering system is expected to be a 
function of many uncertain variables with different 
statistical characteristics (such as the distributions, 
parameters, correlation characteristics, etc.). The demand 
or load effect on the system also contains numerous 
sources of uncertainty. The reliability methods, with 
various levels of sophistication, are now available to 
estimate the underlying risk, at least the notional risk. 
Simulation-based methods are also available for this 
purpose. 

The risk is generally estimated at the element level, 
as opposed to the system level, and is evaluated with 
respect to the performance, limit state or critical state 
function. Sometimes, it is difficult to define the limit 

states for dynamic problems, including the propagation 
of cracks. For element level reliability evaluation, all the 
variables in a limit or critical state function are first 
transformed to uncorrelated variables, the non-normal 
variables are transformed to equivalent normal variables 
at the checking or design points, and then the associated 
risk is estimated. Some of these steps also introduce 
additional sources of uncertainty. Whenever possible, all 
the major desigll guidelines have been modified or are 
now in the process of being modified to satisfy an 
acceptable risk level at the element level, although it is 
well known that the estimated risk cannot be considered 
as the absolute risk. Since the loads and the uncertainty 
in them are beyond the control of engineers, the loads 
and the load factors are now considered to be the same 
for almost all designs, and the resistance factors are being 
modified or adjusted to satisfy the reliability 
requirements. The next generation design codes are now 
being developed to satisfy the performance based design 
(PBD) guidelines. In this approach, for example for the 
seismic risk estimation, instead of considering seismic 
load using a return period concept, the risk constraint is 
enforced on more appropriate performance requirements 
so that the risk could be different under different 
performance requirements. 
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In many cases, it is observed that the estimated risk 
may not be similar to the risk obtained from the observed 
data. A super-structure consisting of steel or concrete 
elements designed for an annual risk of say 10--<> or 10-7 

cannot be integrated with sub-structure (foundation or 
geotechnical elements) of the same system where the 
similar risk is expected to be in the order of, say, JO" to 
10-4 • The observation clearly indicates that the 
geotechnical aspects will be the weakest link, which may 
not always be correct. It is a complex and d:fficult subject. 
It needs further attention from the profession. 

Some of the ways to improve the uncertainty analysis 
procedures are presented in this paper. They concern the 
following: (I) how to treat observational data with 
specific objectives, (2) how to treat observational data 
obtain.ed from different sources with different objectives, 
and (3) how to treat time dependent observational data 
obtained from many sources with different objectives. 
These techniques were developed by the authors and are 
expected to showcase improved uncertainty analysis 
procedures that can be used in the future. 

2. DIFFERENT UNCERTAINTY ANALYSES PROCEDURES 

In the foll(')wing sections, the uncertainty analyses of 
concrete structures with design implications are briefly 
presented. 

2.1 Penetration Deptb in Concrete Structures-Data 
Obtained witb Specific Objectives 

Nuclear power plants must be protected against flying 
objects, commonly known as the missiles. Local effects 
of solid or nondeformable missiles on concrete structures 
are of interest. Tfe solid missiles may cause perforation, 
penetration, and scabbing or spallation, or both, 
depending on many factors such as the strength of the 
concrete structures, impact energy and the impact area 
of the missile, time history of impact, etc. The impact 
mechanism is very c9mplicated and is not completely 
understood mathematically. An empirical or approximate 
solution is necessary, preferably based on the available 
test results. For the lack of space, only estimation of the 
penetration depth is presented here. 

The National Defense Research Council (NDRC) 
(Kennedy, 1976) equations can be used to estimate 
penetration depth in concrete structures. They are: 

x 4KNW V 

x 
when - ) 2.0 (2) 

dm 

where x is the total penetration depth in inches, d
m 

is the 
missile diameter in inches, W is the missile weight in 

pounds, K = 180/ fl, Ie is the ultimate concrete 

strength in pounds per square inch, V is the striking 
velocity of the missile in feet per second, N is the missile 
shape factor which takes the values 0.72 for flat nosed 
bodies, 0.84 for blunt nosed bodies, 1.00 for spherical 
end bullets, and 1.14 for a very sharp nose. 

Equations I and 2 are based on a theory of penetration 
and can be considered as semi-empirical. A 
nondeformable cylindrical missile penetrating a massive 
reinforced concrete target woul<\ be the ideal condition 
for the NDRC equations. Essentially, the formulation 
neglects the rear boundary effects. The compressive 
strength of concrete, the size of the aggregate, and the 
amount of reinforcement are not included in the 
formulation. The NDRC equations were developed using 
information on penetration depth for small diameter, light 
weight, and high· impact velocity projectiles. 

After an extensive literature survey, Haldar and 
Hamieh (1984) identified a total of 625 cases of pure 
penetration where all the parameters in Eqs. I and 2 were 
reported. Out of these 625 cases, 35 are for solid missiles 
and 590 are for bullets. Also, 161 and 464 cases will 
satisfy the requirements for Eqs. I and 2, respectively. 
The adequacy of the NDRC equations can be studied 
with the help of the test data in two ways, as discussed 
next. 

2.1.1 Statistical NDRC Equations 

Assuming the functional forms of the different parameters 
in the NDRC equations are correct, the following 
regression equation can be used to improve the NDRC 
equations: 

E(AIB = b) = C, + C, b (3) 

where A is represented by x/d, Xo is the observed 
penetration depth, d is the diameter of the missile, B is 
the right hand side ofEq. I whenx/d .. :s2.0 orthe second 
term in the right hand side of Eq. 2 when x/d .. } 2.0, C, 

.{lIId C, are unknown regressions coefficients need to be 
estimated from the available test data. For Eq. I, tile 

[ "]'" d. = ~(I,OOOd.) when ~:S2.0 
d. 

(I) values of C, and C, are expected to be 0 and 1.0, 
., respectively. For Eq. 2, they are expected to be 1.0 and 
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1.0, respectively. When the regression analysis was 
carried out, they were found to be 0.189 and 0.80, 
respectively for Eq. I and 1.17 and 1.03, respectively 
for Eq. 2 with the corresponding coefficient of 
determination (R2 values) (Haldar and Mahadevan, 2000) 
of 0.7 and 0.9, respectively. The corresponding residual 
mean square errors i.e., the residual variation left 
unexplained by the regression model, are 0.049 and 0.893, 
respectively. The regression coefficients are different than 
expected indicating that they may be deficient in 
predicting the penetration depth. 

2.1.2 Proposed Penetration Equations 

The functional forms of the NORC equations might not 
be ideal. The left-hand sides of these equations are 
dimensionless but the right-hand side is not; some 
parameters may receive undue importance and some may 
not receive enough. A dimensionless impact factor 
parameter I can be introduced as: 

W N V 2 

1=---
g d! i (4) 

where g is the acceleration due to gravity and all other 
parameters were defined earlier. To be consistent with 
units, Eq. 4 can be rewritten as: 

I=~ NWV2 

32.2 d~i 
(5) 

The primary objective at this stage is to find a 
functional relationship between the penetration depth and 
the impact factor. When the ratio x,/d is plotted against I 
in the form of a scatter diagram, piecewise linear curves 
were observed for three ranges of I values. When the 
linear regression analyses were carried out for the three 
different ranges, the following relationships are observed: 

....:... = - 0.0308 + 0.22511; 0.3 ~ I ~ 4.0 
dm 

....:... = 0.6740 + 0.0567 I; 4.0 < 1 ~ 21.0 , and 
dm 

....:...= 1.1875 + 0.0299/; 21.0 (I ~ 455.0 
dm 

(6) 

(7) 

(8) 

Out of625 cases, 9, 94, and 522 cases belong to Eqs. 
6,7, and 8, respectively. The R2 values ofthese equations 
are 0.95, 0.70, and 0.90, respectively. 

The predictability of the NORC, statistical NORC, 
and impact factor-based new equations can be checked 
by comparing the predicted penetration depths and the 
corresponding observed penetration depths. Three factors 
Fl' F2, and F, are introduced such that 

X NDRC (Eqs.l, 2) 
r;=--"'=-'-~--'-

Xo oh.n:n'ed 

F = xStali.,,,cal NIJRC ( Eq. 3 ) 
2 

Xo uh.fen'ed 

xProp',,,d(Eqs.6,7,8) 
F, = -.:..:==-'-''-----'-

XOohserved 

(9) 

(10) 

(II) 

For bullets, the mean values of Fl' F2, and F, are 
found to be 1.00, \.016, and \.047, respectively, and the 
corresponding coefficients of variation (CoVs) are 0.436, 
0.441, and 0.462. For large missiles, the mean values of 
the three factors are 1.733, 1.99, and 1.039, respectively, 
and the corresponding CoVs are 1.140, 1.350, and 0.677. 
The mean value of F, is closer to 1.0 for both bullets and 
large missiles, particular of interest to the nuclear 
industry. The corresponding Co V values are also smaller. 

This exercise clearly indicates that by treating the 
parameters differently but essentially using the same 
statistical techniques, the predictability of the equations 
can be improved significantly. 

2.2 Size Effect in Concrete Shear Strength Evaluation 
- From the Experimental Database 

BaZant and Yu (2005, 2007) observed that the fracture of 
concrete, an archetypical quasi-brittle material, typically 
exhibits a rather large fracture process zone (FPZ), 
typically 0.5 m long. This causes that small structures 
(having cross sections less than a fully developed FPZ) 
fail in a quasi-ductile manner with a plastic yield plateau 
and exhibit almost no size effect, while very large 
structures (having cross sections much larger than the 
FPZ length) fail in concrete rather than steel behave in 
an almost perfectly brittle manner. The scatter band in 
the ACI-445F database with 398 data points has a 
downward trend as d, the effective depth of a beam, 
increases. Similar observations were made by BaZant and 
Kim (1984) and Bazant and Sun (1987). The database 
shows a decrease of scatter band width as the size 
increases, but is obtained from specimens with different 
geometries in which parameters other than size are varied 
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significantly. Thus, the entire database cannot be used 
for statistical evaluation. 

Bazant and Yu (2007) commented that sound 
arguments for a realistic design formula capturing the 
size effect on shear strength of beams must be based on 
fracture mechanics, verified by properly designed 
experiments, and statistically calibrated by a broad 
database. They added that, because of different objectives 
of various original experiments, it is not surprising that 
the existing ACI database has major gaps and a strong 
subjective statistical bias caused by crowding of the test 
data in the small-size range, scant data in the large size 
range, and no data at all for the largest sizes of practical 
interest (depths >2 m). Consequently, simple bivariate 
statistical regression of all the points of the ACI-445F 
database yields a misleading trend (BaZant and Yu, 2005). 
Eliminating the bias is important for a realistic update of 
the code provisions for the design of concrete beams. 

The size effect can be defined as the size dependence 
of the nominal strength of structure when geometrical 
similarity is maintained and all the parameters other than 
the size are kept constant. In the case of beam shear, the 
size may be measured by the beam depth d, the nominal 
strength of structure may be taken as the average concrete 
shear strength in the cross section, v,., and the parameters 
that must be kept constant comprise all the concrete 
properties including the maximum aggregate size da' the 
longitudinal reinforcement ratio p .. , and the shear span 
ratio aid (here a is the distance of the load from the 
support). So the question is how to minimize the statistical 
bias in regard to the size effect. From the size effect 
viewpoint, this database has a bias of two kinds: 

Kind I - Crowding of the data in the small size range 
-86% of the 398 data points pertain to three-point­
loaded beams of depths less than 0.5 m, and 99% to 
depths less than 1.1 m, while only I % of data pertain to 
depths from 1.2 to 2 m. 

Kind 2 - Strongly dissimilar means and distributions 
among different size intervals of the subsidiary 
influencing parameters, particularly p .. , aid, and da' 

To reach any meaningful statistical conclusion on 
the size effect, both kinds of bias must be filtered out. 
Instead of the standard multivariate least-square nonlinear 
regression analysis in which all the parameters are 
optimized simultaneously, another approach can be tried 
which makes the statistical trend conspicuous without 
any mathematics. 

The range of beam depths d of the existing test data 
can be subdivided into 5 size intervals [vertical strips in 
Fig. I(a-c)]. They range from 0.075 to 0.15 m (3 in to 6 
in), 0.15 to 0.3 m (6 in to 12 in), 0.3 to 0.6 m (12 in to 24 
in), 0.6 to 1.2 m (24 in to 48 in), and 1.2 to 2.4 m (48 to 
96 in). In the ACI database, these intervals contain 26, 
251,80,38, and 3 data points, respectively. To filter out 
the effect of influencing parameters other than'd, each 
interval of d must include only the data within a certain 
restricted range of p .. -values such that the average would 
be almost the same for each interval of d. Similarly, the 
range of aid and da in each interval must be restricted so 
that their averages would also be about the same for each 
interval of d. The filtering of data must be done in an 
objective manne: without any human preference. Wi~h 
the help of a computer optimization algorithm, the data 
points in each interval are deleted until uniformity of 
each subsidiary influencing parameter is optimally 
approached. Fig. I (a-c) shows the restricted (filtered) data 
points by bigger circles, and those filtered out by the 
tiny circles. 

As seen in Fig. I, there are only three test data in the 
size interval spanning 1.2 to 2.4 m. They have the 
longitudinal steel ratio of p .. of 0.14%, 0.28% and 0.74%. 
The extremely low p .. ofthe first two makes it impossible 
to find similar data in other intervals of d. For example, 
the minimum p .. is 0.91% within the first interVal of d, 
and 0.46% within the third interval. Therefore, one must 
consider the size range from 0.075 to 1.2 m. Formulating 
a statistical optimization algorithm for database filtering, 
one finds 7, 68, 17, and 36 data points within the 
admissible ranges for each interval of d (ideally, of course, 
the number of data in each interval should be the same, 
and the fact that it is not shows that complete elimination 
of statistical bias is impossible; nevertheless, for 
obtaining reliable means, 7 data certainly suffice). 

After filtering, the mean values of p .. for the restricted 
ranges are 1.51 %, 1.5%, 1.5%, and 1.5%, the mean values 
of aid are 3.45, 3.33, 3.33 and 3.23, respectively, and the 
mean values of dare 16.8, 17.0, 16.8 and 16.5 mm. This 
provides data s~ples with minimum bias in terms of p .. , 
aid and da' An important point to note is that, for different 
averages P .. , aid and da' the trend of the interval centroids 
is the same, and closely matches the size effect law. This 
demonstrates objectivity of the data filtering approach. 

Kinds I and 2 of bias afflict not only the mean trend 
of the full database, but also its scatter. The scatter may 
be measured by an unbiased Co V of the errors of the 
optimum fit curve compared to the individual data points. 
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Figure 1: ACI-445F Database Subdivided into Intervals of Equal Size Ratio; (a-<:) FuU Database (the data retained are shown by larger 
circles and those filtered out in various cases by tiny circles); (d-I) Filtered Restricted Data Giving the Indicated Combinations 
of Uniform Mean Values of Subsidiary Parameters, Their Centroids and Regression Curves 

This error must be considered for safe design and the 
following method can be used. 

A simple bivariate nonlinear regression of our filtered 
restricted database, in which the kind 2 bias is already 
suppressed, can be used for this purpose. To suppress 
the kind I bias, one needs to give the same weight to the 
data in each size interval i, regardless of the number m, 
of the points that fall into that interval. This may be 
achieved by assigning to the data in each interval i the 

"normalized weight Wi = (I/mi ) I Lk(I/mk). Nonlinear 

regression of the weighted data yields the CoY of22.3% 
and 23.6% for the average Pwof 1.5%, and 2.5%, 
respectively, as shown in Fig. 2. 

The effect of data weighting can further be clarified 
by Fig. 2(a, b). As one can see, almost undistinguishable 
curves (dashed ones) are obtained by the weighted 
nonlinear bivariate statistical regression of the filtered 

database. An unweighted regression of the same data 
points is shown by the dash-dot curves. The dash-dot 
curve is again hardly distinguishable from the regression 
curve of the centroids in Fig. 2(a), but is very different 
in Fig. 2(b). One reason for this difference is that the 
vertical ranges of the restricted data in the individual size 
intervals, marked by vertical bars, are in Fig. 2(a) nearly 
symmetric with respect to the centroid curve, but not in 
Fig. 2(b). Another reason is that the restricted database 
in Fig. 2(a) is roughly homoscedastic, while that in Fig. 
2(b) is not. 

2.3 Time Dependent Observational Data Obtained 
from Many Sources-Creep and Shrinkage 

Creep and shrinkage have been a pervasive cause of 
damage and excessive deflections in structures, and long­
time creep buckling has caused a few collapses. Although 
there exist certain fundamental theoretical requirements 
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Figure 2: Regression Curves Corresponding to Weighted Fitting (Dashed Curves), Unweighted Fitting (Dash-dot Curves) and Fitting 
on Centroids (Solid Curves) for Filtered Database of (a) Average Steel Ratio = \.5%; and (b) Average Steel Ratio = 2.5%. 

(Ba'ant, 2000) which are essential for choosing the right 
model, necessitate rejecting some models even before 
their comparison to test data, most engineers place 
emphasis on statistical comparisons with the existing 
experimental database. Recently, a significantly enlarged 
database, named NU-ITI database (Ba·ant and Li, 2008) 
consisting of 621 creep tests and 490 shrinkage tests, 
has been assembled in the Infrastructure Technology 
Institute of Northwestern University by adding recent 
Japanese and Czech data. 

Altering the statistical methods can often lead to very 
different conclusions. One such instance, where 
introduction of various nonstandard statistical indicators 
have recently sown much confusion, is the use of creep 
and shrinkage databases to evaluate various prediction 
models (Ba·ant and Li, 2007). A model that was rated as 
superior according to one statistical indicator was rated 
as inferior according to another. There are, of course, 
many debatable points, but they concern only details such 
as the sampling, weighting, relevance and admissibility 
of data, rather than the statistical indicator per se. 

Among concrete researchers, a popular way to verify 
and calibrate a model has been to plot the measured values 
Y, (k ='1, 2, ... n) from an experimental database against 
the corresponding model predictions Y" or to plot the 
errors (or residuals) t, = Y, ~ Y

k 
versus time. If the models 

were perfect and the tests were scatter-free, the former 
plot would give a straight line of slope 1, and the latter a 
horizontal line of ordinate O. If one makes such plots for 
some of the available models using the NU-ITI database, 

one finds very little difference among the models, even 
those which are known to give very different long-time 
predictions (Ba'ant and Li, 2007). The same is true for 
another popular comparison where the ratio r

k 
= y/Y, is 

plotted versus time, for which, if the model were perfect 
and the tests scatter-free, one would get a horizontal plot 
r

k 
= 1. Such comparisons are ineffectual for the following 

four reasons: 

(I) The statistical trends are not reflected in such plots. 

(2) The statistics are dominated by the data for short 
times t ~ t " low ages t' at loading and small specimen 
sizes D, while predictions for long times are of main 
interest for practice. This is due to highly nonuniform 
data distributions. 

(3) Because of their longer test durations and high creep 
and shrinkage, the statistics are also dominated by 
the data for old low-strength concretes not in use 
any more. But long-duration tests of modem high 
strength concretes, which creep little, are still rare. 

(4) The variability of concrete composition and other 
parameters in the database causes enormous scatter 
masking the scatter of creep and shrinkage evolution. 

If the time, age and specimen size are transformed 
to variables that make the trends uniform and the data 
set almost homoscedastic, i.e., have an approximately 
uniform conditional variance about the regression line 
(Ang and Tang, 1984), and if these variables are 
subdivided into intervals of equal importance, the number 
of tests and the number of data points within each interval 

86 International Journal of Engineering Under Uncertainty: Hazards, Assessment and Mitigation, 1(1-2) 2009 



Recent Advances in S1atistical Analysis of Concrete and Concrete Structures with Implications for Design 

should ideally be about the same. However, this is far 
from true for every existing database. From the 
histograms of the available data, BaZant and Li (2007) 
observed that the distribution in the database is highly 
nonuniform. This bias must be counteracted by proper 
weighing of the data. One may first subdivide the load 
duration t - t " age at loading t " effective specimen 
thickness D (Bazant and Baweja, 2000) and 
environmental humidity H into intervals of roughly equal 
importance, which ought to have approximately the same 
weight in the statistical evaluation. This is achieved by 
subdividing log(t - t ') and log(t - to) into equal intervals 
in the logarithmic scale, which means that the intervals 
of t - t ' and t - to form a geometric progression (t is the 
time, representing the current age of concrete, to is the 
age at the start of drying, and t - to is the duration of 
shrinkage test; all the times are given in days). 

There are four independent variables which need to 
be subdivided into intervals of equal statistical weight: 
I - t', t', D, and H for creep, and t - to' to' D, and H for 
shrinkage. Ideally, all these subdivisions should be 
introduced simultaneously, which creates four­
dimensional boxes (or hypercubes). Since boxes oflesser 
dimensions have a lesser chance of containing insufficient 
number of data points (0, I or 2), two-dimensional boxes 

of log(t - t ') and H for creep, and log(t - to) and Ji5 for 

shrinkage appear to be preferable over three- or four­
dimensional boxes. One-dimensional boxes, or intervals, 
of load or drying durations are even more advantageous 
in this respect, since the existing database has many points 
in every such interval. Differences in weights might also 
be considered for data sets obtained on different concretes 
and in different laboratories. Another debatable point is 
whether the boxes for long creep or shrinkage durations 
should not actually receive a greater weight than those 
for short durations. Maybe they should, since accuracy 
oflong-time prediction is of the greatest interest. Again, 
we choose not to introduce such additional weights 
because the appropriate differences in their values would 
be hard to assess and would anyway be much less than 
an order of magnitude, being dwarfed by differences in 
weights w, compensating for differences in the number 
of data points in different boxes. 

The anti-high-strength bias also needs to be reduced 
at this stage. The tests of old types of concretes with 
high water-cement ratios, lacking modern admixtures, 
dominate the database. Of little relevance though such 
concretes are today, these tests cannot be ignored because 
they supply most of the information on very long creep 

and shrinkage durations. 

Besides, these tests are not completely irrelevant for 
our purpose because the time curves for low and high 
strength concretes are known to have similar shapes. This 
is not surprising since, in both, the sole cause of creep is 
the calcium silicate hydrate, or C-S-H. The difference 
resides merely in the scaling of creep and shrinkage 
magnitudes. This scaling depends strongly on the water­
cement ratio and admixtures, in a way that is not yet 
predictable mathematically. Therefore, the data for old 
kinds of concrete must be used, but their bias must be 
counteracted. Since the overall magnitude of creep and 
shrinkage strains is roughly proportional to the elastic 
compliance, and since this compliance is roughly 

proportio'nal to Y,[i' where 10' is the cylindrical 

compressive strength, the bias can be reduced by 

replacing all y data by Y~ l' / Ii i.e., by scaling all the 

measured compliances and shrinkage strains y in inverse 

proportion to,J1!; here;;o = 5000 psi (34.5 MPa), a 

constant factor introduced to retain convenient 
dimensions. 

Based on the subdivision into boxes of equal weight, 
the standard error S of the prediction model (representing 
the standard error of regression) is defined as follows 
(Ang and Tang 1984, Haldar and Mahadevan, 2000): 

where rn, and w, are the number of data points in box 
number i and the statistical weight assigned to the points 

in this box; N = N :t w, = :t rn, is the number of all the 
,,:,1 1==1 

data points in the database; Y" is the measured creep or 
shrinkage data; Ylj is the corresponding model predictions, 
and Yij - r;j = Eji is the error of the prediction, and p = 

number offree parameters in the model. Let the intervals 
or boxes of data be labeled by one index, i = I. 2, ... n, 
running consecutively through all the data sets in the 
database. To counteract the human bias, every box of 
every data set must have the same weight. This is achieved 
by considering the statistical weights w, of the individual 
data points in each box to be inversely proportional to 
the number rn, of data points in that box. Normalizing 

the weights so that :t Wi = \, one obtains: 
i=1 
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I 
WI =---=, 

m,w (13) 

To compare various models, one must use 
dimensionless statistical indicators of scatter. In 
regression statistics, CoY of regression errors 0, which 
characterizes the ratio of the scatter band width to the 
mean, is commonly used, and it can be defined as: 

o=!.. 
y' (14) 

where y represents the weighted mean of all the measured 

values Yij in the database. 

While 0 characterizes the ratio of the scatter band width 
to the data mean, the coefficient of determination, R2, a 
ratio of the variability accounted for by the regression 
model and the total variability in the response variable 
indicates the adequacy of the regression relationship. It 
can be defined as: 

where Sl is the residual variation left unexplained by the 
regression model and is the total variability in the 
response variable or the overall weighted standard 
deviation of all the data. BaZant and Li (2007) analyzed 
five predictive models. They are: (I) B3 (BaZant and 
Baweja, 2000), (2) ACI (1972), (3) CEB (Muller and 
Hilsdrof, 1990), (4) GL (Gardner and Lockman, 2001), 
and (5) GZ (Gardner and Zhao, 1993). Table I presents 
comparisons of the CoY and correlation coefficients of 
these prediction models, based on using different types 
of data boxes -one-, two- and three-dimensional. In all 
these comparisons, model B3 is found to be the best, 
except for one case where it is one of two equal best. GL 
model comes out as the second best. Considerably worse 
but the third best overall is seen to be the CEB model. 
Since the current ACI-209 model, labeled ACI, is the 
oldest, introduced in 1972 on the basis of 1960's research, 
it is not surprising that it comes out as the worst. 

Table 1 
Standard CoV of Errors of Various Prediction Models 

(a) Compliance ("/0) 
B3 ACI CEB GL GZ 

200 cubes 28.3 38.8 30.6 28.5 39.5 
5 intervals, log (1-1') 26.2 41.9 29.7 28.5 43.8 
4 intervals, log I' 27.4 37.1 29.9 28.8 48.2 

7 intervals, .Ji5 23.3 36.9 27.3 23.3 33.2 

10 intervals, H 24.4 44.2 29.0 30.7 44.6 

(b) Relalive compliance ("/0) 

200 cubes 24.4 59.0 29.3 27.3 35.7 
5 intervals, log (I-I') 26.4 66.0 33.0 29.8 32.9 
4 intervals, log I' 26.9 74.3 33.3 30.5 33.0 

7 intervals, .Ji5 20.1 55.9 24.4 21.9 22.6 

10 intervals, H 21.0 52.6 28.0 25.4 28.6 

(c) Shrinkage (%) 

112 cubes 37.4 44.4 48.1 43.3 50.0 
4 intervals, log (I-I.,) 29.4 40.8 48.0 37.7 49.3 
4 intervals, log 10 42.8 48.6 56.0 53.9 64.2 

7 intervals, .Ji5 27.2 37.3 49.2 29.1 38.9 
10 intervals, H 38.4 52.0 46.9 54.4 46.6 

(d) Relative shrinkage ("/0) 

1l2·cubes 41.8 51.8 47.9 48.3 58.1 
4 intervals, log (1-10) 34.5 49.5 46.0 43.3 54.7 
4 intervals, log I, 44.9 52.8 57.6 54.0 64.7 

7 intervals, .Ji5 33.7 46.4 45.0 39.9 52.9 
10 intervals, H 41.6 55.6 43.0 41.9 45.6 
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3. CONCLUSIONS 

Statistical techniques are routinely used to develop design 
guidelines. In many cases, competing models are 
suggested. When the predictability of these models is 
compared with the available experimental database, they 
may all appear to be the same in the overall sense. 
However, if they are not considered appropriately, they 
may produce unacceptable results with severe design 
implications. Three specific cases related to the concrete 
structures are presented here to doc ument how the 
predictability of design equations can be improved 
significantly. 
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