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Osuecnive oF Stupy

When the stress exceeds about one half of the strength, [, creep of concrete
exhibits strong nonlinear dependence on stress and the linear principle of
superposition ceases to apply. A number of investigations have been devoted
to this subject (1-4,7,9,12,14,16-35), and various approximate uniaxial constitutive
laws have been proposed. However, they have been cast in a form that is
not valid without further generalizations for various extreme special cases,
including: (a) Linear (low-stress) creep with aging and with memory properties,
applicable over a broad range of load durations; (b) uniaxial and multiaxial
short-time stress-strain behavior and failure conditions; (c) long-time strength,
i.e., decrease of strength with load duration when stress is very high (over
0.8 f7), and also increase of strength as a result of low sustained compression;
and (d) cyclic creep, i.e., acceleration of creep of concrete due to cyclic loading
in the low as well as high stress range. By developing a formulation that is
‘‘supported’” on all these extreme special cases in addition to the data for the
uniaxial nonlinear creep, achievement of realistic representation of the material,
possibly even for multiaxial stress, would be more likely. This is particularly
important as adequate test data on nonlinear creep under multiaxial stress seem
to be lacking.

Presented herein is a constitutive law including the foregoing four extreme
special cases. Formulation of this law is accomplished by combining the
endochronic theory for short-time deformations and failure of concrete (11),
which satisfies extreme special cases (b), (c), and (d), with the Maxwell chain
formulation (9,10,13), which satisfies extreme special case (a). Such a combination
has already been suggested (11) but has not been developed in detail and verified.
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' The non[_inearity of creep in the high stress range has its physical source
in progressive microcracking, which occurs primarily in the interface between
aggregate and cement mortar matrix. The nonlinearity of short-time deformations
of concrete has its source also in microcracking; therefore, the formulation
for nonlinearity at short-time deformations should logically be the special case
of that for long-time deformations.

EnpocHronic Law ror ConcreTe

In p.revious papers (5,6,11) the following constitutive relation for nonlinear
short-time deformations as well as nonlinear creep has been proposed:

2G,, de;; = ds; + S dr,,  s;= 2 By won worsima ams ww v W E ¥ g (la)

. dt .
3K, (e —d\ ~de¥') =dol + ol —, o'= oV (1b)
T =
u w=1
in ‘-)vhlch Sy €y = de'viators of stress tensor o and (linearized) strain tensor
€; In cartesian coordinates x,(i = 1, 2, 3); 0¥ = 0, /3 = volumetric stress
V i o * - - ’
eV = e,‘,‘/‘3 = volumetric strain; s; and ¢¥ = associated hidden stresses
corresponding to the pth unit of a Maxwell chain model (p = 1, 2, ... n);
G, and K, = shear modulus and bulk modulus associated with the wth unit
G=%, G,.. K =X, K, being the actual shear modulus and bulk modulus);
both G, and K_u depe?d on the age, t, of concrete; €V" = inelastic stress-indepen-
dent _volumetnc strain, such as thermal dilatation; dA = inelastic dilatancy;
t. = time; 1, = re!axatlon fime of the wth unit; and z,, = so-called “intrinsic’’
time for the pth unit whose increments dz, depend both on actual time increments
dt and on strain increments de, (11). For the special case of short-time
dcformauons, the Maxwell chain model may be reduced to a single Maxwell
umt,_ and the subscript, p, may be dropped. For this case, the stress-strain
law in l?qs. 1 has been identified from extensive test data (11) and the following
expression for intrinsic time z has been derived:

d{ 2 dt \? /2 d."
a-[(5) e E) ] w2
z . " OE fei amams amana (2a)

dn = F(e,o)dt, dE=

in which Z, = constant; £ = distortion measure; f(n) = strain-hardening function;
F(e.g) = strain-softening function; and €, g = strain and stress tensors. Both
f(n) and F(e,g) are expressed in Ref. 11. An expression for dA as a function

of d¢ has also been given (11). For conception of endochronic theory (for
metals) (33).

Extension o Nonunear Creep

To.model the long-term nonlinear creep, the distortion measure, £, must be
redefme(! so as to exclude the linearly viscoelastic parts of strains, denoted
as de ii» since otherwise ¢ would increase (and would thereby cause nonlinearity)
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even at low-stress creep, which is known to be linear in stress and unrelated
to microcracking. This may be accomplished by setting (11):

1 172 sy, dt
dg, = (_{ def, def ;o def = dey — dely; dej, = -ET" ..... (3a)
d
dn,= F(e,0)dt,, di,= LY T T IT T (3b)
f(n,)

in which subscript p must now be appended to &, m, and {. Furthermore, it
has been shown that, for modeling creep over a broad range of load durations,
different intrinsic times z, must be introduced for the individual Maxwell units,
defined (11) as

dg, \F (i)
dz, = [( ") +(+) ] w=012,...n) ... ... ... ... .. 4)
Z T

o N

in which 7, = relaxation times, which are properly chosen as 7, = 7, 10--!
(9,13) and can be identified from the test data on linear creep at low stress
alone (10); and Z, = constants which may be called relaxation strains.

The Maxwell chain formulation for nonlinear long-time creep of concrete,
as just outlined, has been suggested in Ref. 11 but has not yet been compared
with test data. This is the present study’s aim.

Examining the test data that are available in the literature on nonlinear creep
of concrete at high stress, it appears that all pertain to uniaxial loading, and
no serious information is available on multiaxial creep at high stress. Therefore,
attention must be restricted to the analysis of uniaxial creep data.

In view of the absence of adequate experimental information on nonlinear
volume changes and lateral creep strains under high uniaxial stress, some
reasonable assumption must be made on dilatancy X and creep Poisson ratio
v. Most available data pertain to compressive stress less than 0.75 f;
(f. = uniaxial strength), and few go up to 0.9 f_. In this range the inelastic
dilatancy (volume change) is negligible and is assumed here as zero. The apparent
Poisson ratio remains in this range approximately constant, v, = 0.2 (although
on approach to f both A and v_, sharply increase). Therefore, assume that
under uniaxial load €,, = €,, = —0.2¢,,; this gives eV = (1 — 2 x 0.2) ¢,,/3
=02¢,. ¢, ~08¢,, e = e, = —04¢,, and [(1/2) de;de;]'? =
[(0.8% + 0.42 + 0.47) €2,/2]"/2 = 0.693 |e,,|. These values were substituted
into the expressions for F(g,o) and f(n) from the earlier version of endochronic
theory, namely Egs. 12-17 of Ref. 6 (since the refined expressions of Ref.
1t were not available when this work was carried out). Dropping the unnecessary

subscripts, 11, for the uniaxial stresses and strains (e¢,, = €, o, = 0), this
substitution provided:
b, a, dt
dn, = by pommsaiseseel] LB, d§“=|d€—-deL|, del, =—— ... .. (5)
b, - o, E, T,

in which E, = Young’s elastic modulus associated with the pth unit of Maxwell
chain, and (11)
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1+B, n,

with b, = 0.693v (v = 0.2), b, = ./0.4, b, = 0.6932 b,, B, = 30.
The stress-strain law for uniaxial deformation is, according to Eq. 1, given
by

in which €° = stress-independent inelastic strain (e.g., thermal dilatation); and
dz, is expressed by Egs. 4, 5, and 6. The values of material parameters, b,
by, b,, B,, and Z,, are fixed on the basis of previous data fitting for the
special case of short-time multiaxial deformations (11), and the values of material
parameters, E_, are fixed by fitting test data on the long-term linear creep
at low uniaxial stress. Relaxation times 7, cannot be identified from test data
but must be suitably chosen (9,10,13). A suitable choice is T, =T, 10070 e,
the relaxation times are spaced in log-time scale uniformly by decades. The
only parameters available for fitting test data on nonlinear creep at high uniaxial
stress are the parameters Z, (i =2, 3, ... n). They have been identified from
test data with the help of a computer. The creep curves (curves of elastic
plus creep strain per unit stress) for different ages at loading in the linear
low-stress range have been analyzed separately in advance, using the subroutine
MAXWLI from Ref. 10. This subroutine yields the coefficients of a cubic
polynomial, C, + C,, (og t) + C,, (log t)? + C,, (log t)*, expressing each
of the moduli E (p=12, .. n).

After establishing the values of E, it was possible to search for the values
of Z‘1 (n = 2, ... n). For this purpose a FORTRAN IV program has been
written. This program integrates the stress-strain relations given by Eqgs. 4-7
numerically in a step-by-step algorithm using specified values of Z,, . The numerical
algorithm is described in the subsequent section. The program has been developed
by a simple generalization of subroutine CRCURV listed in Ref. 10 and was
mathematically formulated in Eqs. 15-19 of Ref. 13. It has then been tried
to express the values Z, as functions of discrete variable p by some simple
formula with only a few coefficients. Various formulas were chosen, their
coefficients were varied, and the computed corresponding creep curves at high
stresses were automatically plotted (using CALCOMP plotter) for a number
of chosen sets of coefficients, until the best possible fit of test data was found.
The trial-and-error procedure appeared to be sufficient because the unknown
coefficients were few. This was then repeated for various other formulas, and
finally the best overall fit was selected. In this manner it was found that among
simple expressions, including linear, quadratic, cubic, rational, power-type, and
exponential functions, the formula

1
Zo STy BN s ema e e R Es s ERE D s ®

with Z, = 268 x 10-° gave on the average the best agreement with all test
data considered herein. This value of Z, is much higher than that obtained
in Refs. 6 or 11. This is because only one Maxwell unit was used and the
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strains in the short-time data analyzed in Refs. 6 or Il actually included a
short-time creep strain. The fact that Zu increases with w (Eq. 8) means that
the dependence of the intrinsic time upon the strain weakens at later stages
of creep, which is not surprising. The formula

2 d 27)1/2
dz = I:(d{"‘) + (4, _t) ] GEE L2 e ) zws vwvms s 60 # 9
* Z “r

" "
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which is slightly more general than Eq. 2, has also been considered, ¥, being
restricted to functions that become unity for small stress and strain, eg., ¥,
=1+ c,{,. However, no improvement of data fits could be discerned.

Comparison with Test Data

The fits of a few most pertinent test data available in the literature (22,29,30.31)
are shown by solid lines in Figs. 1-3. Obviously, agreement is satisfactory
both for the stress level effect (Figs. 1-3) and the age effect (Fig. 3). It is
seen that the theory also predicts the decrease of strength with the duration
of load (Fig. 2). This phenomenon, called long-time strength, is observed only
for loads exceeding about 0.85 of the strength. For smaller sustained stress,
the opposite is true; i.e., when concrete is loaded for a long time in the working
stress range and then the load is suddenly increased to failure, the strength
is higher than that for short-time loading (8,15). A consistent and complete
data set for this effect seems unavailable; however, Fig, 2 demonstrates that
the present theory is capable of modeling this phenomenon.

An important check for any theory of nonlinear creep is the test data for
the stress relaxation at high stress and for the creep recovery after unloading
from a previous sustained high stress. Such test data have been given, e.g.,
by Mamillan (Figs. 4, 5) and Roll (Fig. 6) (22,29). The linear theory of creep
is known to substantially overestimate the recovery after high stress creep (and
to underestimate stress relaxation at high strain). From Figs. 5 and 6 it is seen
that this deficiency is improved by the present theory. However, the improvement
is not sufficient; i.e., the recovery is still overestimated (and the relaxation
is underestimated); see the solid lines in Figs. 5 and 6. The reason possibly
is that simultaneous drying, taking place during all of these tests, increases
creep more strongly than recovery. To fit these data, the effect of simultaneous
drying would have to be taken into account. This could be done by combining
the present theory with that from Ref. 12. This step, however, lies beyond
the scope of this study and, consequently, close fits of the data on creep recovery
and stress relaxation of drying concrete cannot be expected herein.

Arconrrrim ofF NumericaL Time-Step INTEGRATION

For calculation of a structure’s response, time ¢t may be divided by discrete
times ¢t (r = 1, 2, 3, ... N) in time-steps At = t, — t,_,. To be able to reach
long-term response, the time step must be increased with creep duration, for
which a constant division in log t-scale is most convenient (8,9). Then, however,
special algorithms of the type described in Refs. 10 and 13 are needed in order
to avoid numerical instability when At becomes larger than 7,, the smallest
relaxation time considered.

The time-step formulas may be obtained by writing the exact integral of
differential equations in Eq. 7, obtained under the assumption that the derivatives
de, /dz, and def,/dz, are constant within the interval (t,_,,t,) and vary
discontinuously at times ¢, , and t,. The integration yields o, ()= Ae % (in
which A = constant) and application of the initial condition at t = t,_, provides

g, =0, ety KB 0B, —Aed) (w=1,...n) . .. .. .... (10)
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inwhich «, =(1=e®W)/Az. . ..., (1n

Here subscript r refers to time t, and subscript r — 1/2 refers to the average
value in the time-step, e.g., E, | =1/2(E, +E, )and Az, =z, — 2z, .
Eq. 10 represents a recurrent formula for hidden stresses. Furthermore, substitut-
ing Eq. 10 into the relation Ao, = Z, Ao u,+ ONE obtains

Ao, = E"(Ae, — A€") . . o i (12)

T e (13)
p=1

E"Ae" = E (F=w25ja, #ELEE . nows cmas swoms sy (14)

n=1

The standard step-by-step formulas are of the same form, but instead of
1 — e %% they have Az, and instead of k, they have 1. Obviously, for very
small Az, this is equivalent, but not so for large Az, For Az, much larger
than one (which can happen when the time-step equals, say, 100 days and
T, = 0.001 day) the inelastic strain, Ael = (cr“/E“) Az,, would then become
extremely large even if the stress in the pth Maxwell unit has almost dissipated
(o, =~ 0). This would cause numerical instability (which was mathematically
demonstrated for a similar case in Ref. 8). On the other hand, 1 — e %% is
bounded regardless of the value of Az s and so numerical instability cannnot
occur for larger Az, (for a proof in a similar case see again Ref. 8). Physically,
the necessity of basing the formulas on the assumption of imposed (linear)
history of e within each time step may be explained by the fact that in a Maxwell
solid subjected to imposed constant strain (relaxation), stress is always bounded,
while strain at imposed constant stress grows without bounds. (By the same
argument, for the Kelvin chain model, stress rather than strain would have
to be assumed to vary linearly with the time step.)

In the endochronic theory for creep, numerical instability at large At would
also be caused by the term Ael in the expression for A¢, based on Eq. 5,
because this term has the form of creep strain of Maxwell solid at constant
stress and is unbounded. By the same argument as before, remedy may be
achieved by calculating Ae! not for constant o, but for o, varying in corre-
spondence to a prescribed linear variation of € with t. Integrating the linearly
viscoelastic relation de — de® = do,/E, + o, dt/E, 7, at constant de/dt and
constant de®/dt and imposing the initial condition at t,_,, gives o k)
=g, ,exp[(t,_, - t)/,1 + E =, Ae/At which, after substitution into de!,
=0, dt/(E, 7 ) and integration from t,_, to t,, provides

o T
Ael, = — (1 — e™8/7) + (A€ — Ae")[l = E‘i—(l = e“'f*u)] ..... (15)
Hr-1/2
Note that the second term is second-order small when At — 0 and Ae — 0
and the first term gives Ae), ~ o,  At/(E,7,) when At is small.
The computation in each step At = ¢, — f,_, may now proceed as follows:

I. The increments, Ae Ao, are estimated, e.g., assuming that they have
the same values as those in the previous step At. This is done for the purpose
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of evaluating mean values in the rth step, o
=€, , + Ae/2.

2. The linear viscoelastic part of strain increment Ae' is evaluated from Eq.
15, and the A¢, values are then obtained from |Ae — Ae'|.

3. The A, and A{, are evaluated from a central difference approximation
of Egs. 5 and 6, in whiche, =¢, ., o, = Oy iy T = My, F LD An
and the intrinsic time increments, Az, are calculated from a finite difference
form of Eq. 4.

4. The pseudo-inelastic strain increment, Ae”, and the pseudo-instantaneous
elastic modulus, E7, for the rth step are computed from Egs. 12 and 14.

5. In case of prescribed strain increment, Ag, is then calculated from the
quasi-elastic relation in Eq. 12. (When A, is prescribed, Ae, is calculated from
Eq. 12, and when neither Ao, nor Ae, is specified, Eq. 12 is used as a fictitious
elastic stress-strain law to solve the structure according to the theory of elasticity.)

6. The stresses, o, in individual Maxwell units at the end of interval are
then determined from Eq. 10.

7. Steps 1-3 are iterated several times using the values of Ae, and Ao, from
the previous iteration. If the values of z, from the last two iterations differ
by more than 0.1%, smaller time step At should be chosen.

Hr-(1/2) =0, + Auu/z and €t/

"
re

Limiranions oF Present FormuLATION

In addition to microcracking, the nonlinear dependence of concrete creep
on stress has a second physical source in moisture movement due to drying
or wetting. This effect takes place not only at high stress but also in the working
stress range (below 0.5 f), in which the creep is linear if there is no simultaneous
drying or wetting. Formulation of this nonlinear effect for the working stress
range has already been accomplished (12). To model the nonlinear creep of
drying concrete in the high stress range, the formulation from Ref. 12 could
be combined with the present one, which is restricted to concrete in which
moisture movement occurs. However, this objective is beyond the scope of
this study. As an approximation, the present formulation can be used even
for drying concrete members, provided that they are so massive that drying
is sufficiently slow for nonlinearity due to drying to be insignificant.

Finally, a third type of nonlinearity arises in creep recovery, which is manifested
by deviations from the principle of superposition at low stress and without
drying whenever strain (not stress) is reversed. This effect is also not covered
by the present model.

The most severe limitation of the present formulation is due to the lack of
data on nonlinear creep at multiaxial stress. What has in effect been done
is to assume that the effects of multiaxial stress on creep and on short-time
deformations are similar. No doubt, this is a simplication and further extensions
will be needed when appropriate data become available.

ConcLusions

I. The endochronic theory for nonlinear creep of concrete gives a correct
formulation in the basic extreme special cases, such as: (a) Rate-type creep
law for linear creep of aging concrete modeled by Maxwell chain; (b) multiaxial
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stress-strain behavior and failure conditions for short-time deformations; (¢)
decrease of strength with load duration; and (d) inelastic strain accumulation
under cyclic load.

2. The theory presented is capable of accurately describing uniaxial compres-
sion creep tests for various ages at loading and for various stress levels.

3. The predicted decrease of uniaxial compression strength with load duration
agrees with test data.

4. In case of drying concrete, the present theory does not describe nonlinear
creep recovery and nonlinear stress relaxation sufficiently well, but still it is
distinctly better than the linear theory based on the principle of superposition.

5. Structural creep problems can be analyzed in time steps by the algorithm
presented.
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Arpenpix Il.—NotaTion

The following symbols are used in this paper:

E,E, = Young's modulus and hidden modulus for o ;
€;>€i,»€;, = straindeviator, its linear viscoelastic part, and uth hidden strain
deviator;
G,G, = shear modulus, and hidden shear modulus for o ,;
K, K, = bulk modulus, and hidden bulk modulus for o, ;
§y»8y4, = stress deviator, and wth hidden stress deviator;
t = time;
Z, = relaxation strain parameter for wth hidden strain (Egs. 2, 8);
2,2, = intrinsic time, and intrinsic time for pth hidden strain;
€,€, = uniaxial strain, and pth hidden uniaxial strain;
£,{,.m.,m, = time-independent intrinsic times and intrinsic time measures; -
£,€, = distortion measure, and distortion measure for pth hidden strain;
and
7, = relaxation times of Maxwell chain model;
Subscripts
i,j = cartesian coordinates x,i=1,2,3;
r = rth time step; and
p = variables associated with Ty
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ABSTRACT: Endochronic theory, previously proposed and verified for multiaxial
time-independent experimental data, is extended to nonlinear long-time creep at high
stress and is compared with available uniaxial creep data. The extension is based on a
Maxwell chain model, each unit of which is characterized by its own intrinsic time, an
independent variable whose increments depend both on time and strain increments.
The dependence on the latter involves the previously determined hardening and
softening functions. Aging is included and the previously established Maxwell chain
model for low-stress creep with aging is obtained as a special case. The theory also
describes the decrease of strength with load duration when the compression is high,
gives an increase when the compression is low, and yields the additional inelastic strain
accumulation due to cyclic load. An effective and numerically stable algorithm for
timestep integration of structural response, permitting the time steps to be increased
with the load duration, is presented.
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