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INTRODUCTION

In an earthquake, the columns and beams of a concrete building suffer large
cyclic deflections. The nonlinear load-deflection characteristics govern the
hysteretic damping of the earthquake motion, and their correct prediction is
needed for antiseismic design. The problem is complicated by the fact that
the deformations are large and cyclic, the concrete undergoes cracking and
crack closing, and is subjected to triaxial stress because of the large forces
that the dilatancy accompanying large shear strains induces in the stirrups.

Until recently, the constituent properties of the material have not been known
sufficiently well and, for this reason, the behavior observed in the tests of
concrete beams (1,6,7,8,18,21,25,28) has been the only available basis for design
considerations. However, it is rather questionable to extrapolate such information
to beams and load histories that differ from those tested. To obtain a prediction
method, the response of reinforced concrete members must be calculated on
the basis of constituent properties. Using the finite element method and the
step-by-step loading technique, many investigators attacked this problem for
concrete structures in general (2,9,13,14,15,16,17.23,27.29,30) and for seismic
response of beams in particular (3,10,12,16,18,26). Various types of stress-strain
relations for concrete and steel, and various models for steel-concrete bond,
for cracking, for cracked concrete, and for the hysteresis loops in steel (with
the Bauschinger effect) have been examined (7.9,11,18). However, no method
giving predictions in close agreement with measurements on beams has yet
been presented, especially for the second and subsequent load cycles. The main
reason seems to be the difficulty of accurately describing the behavior of concrete.

The aim of this study is to apply a new recently developed constitutive relation
for concrete, called endochronic theory (4,5). This theory has been shown to
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describe very well the response of plain concrete under cyclic loads and also
under multiaxial stress; It can, therefore, be expected to be effective in the
present problem.

The thick-beam bending theory with transverse shear will be adopted. Inclusion
of shear can be important in large strain situations, even if the deflection due
to shear is negligible, because inelastic shear strain produces volume dilatancy
which, in turn, induces significant forces in the stirrups. Transverse normal
strains will be introduced as separate variables, so as to allow consideration
of the very important effects of the transverse normal stresses in concrete
due to the confinement by stirrups. The effects of axial force in the beam
will also be considered. Inclusion of transverse strains as variables represents
an enhancement of the existing bending theories in which only curvature and
transverse shear of beamare considered. For the purpose of numerical calculation,
the cross section will be subdivided into layers, and each layer will be allowed
to crack at different inclination, as determined from the normal stresses and
the shear stresses in each layer. The crack closing, reopening, the formation
of a secondary crack system, and the yielding, strain-hardening, and the
Bauschinger effect in steel reinforcement, will be also modeled. A nonlinear
stress-slip relation for bond deterioration should generally be included, but this
is not done here as without it a satisfactory agreement with test data is obtained
for the experiments considered. Apparently, anchorage of bars in these experi-
ments was sufficient to prevent bond slip in the critical cross sections. However,
analysis of other data may require consideration of bond deterioration, which
is believed to have substantial effect in some cases.

Review oF EnpocHronic THEoRY For PLain CONCRETE

The time independent form of the endochronic constitutive law for short
time deformations of concrete (5) is
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stress component of stress tensm gp0=(1/3)o,= volumctric stress; subscripts
i. j refer to Cartesian coordinates x,(i = 1, 2, 3); K, G = bulk and shear
modulus; e}, = inelastic deviator strain; A = inelastic dilatancy; Z, = constant;
{ = damage measure which is defined by
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Variable A represents inelastic dilatancy, defined by
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in which I,. I,, and I, are the first, second, and third invariants of the tensor
that follows in parentheses and J, is the second invariant of the deviator.
The following material parameters have been obtained by fitting numerous test
data (5):

Z,=0.0015; B,=30; B,=3500; a,=0.7; a,=0.6(f)"";
a, = 1400; a,=500(f)73; a,=475(f1)72; as=08(f.)"2
a, = 0.055(f')% a,=20; agz=0.000125; a,=0.0015;
0 =0001; c,=1.0; ¢, =100(f)"; c,=0.0005; v =0.18;
E, = (0.565 psi + 0.0001 ) 57,000V, (psi)~"/> (1 psi = 6.89 kN/m”) . . . (7

It is remarkable that, as a very good approximation, the preceding values apply
for most normal-weight concretes (5). The value of the cylindrical compressive
strength, f/. is the only parameter to be specified for the given concrete. The
formulation in Egs. 1-7 is fully continuous in that no inequalities are needed
to distinguish between loading and unloading and various ranges of strain. For
a simple explanation how the theory works for unloading. the reader may consult
Fig. 1(b) of Ref. 5. The endochronic theory is particularly effective in modeling
the cyclic response, the inelastic dilatancy due to large shear strains, the
strain-softening properties, and hydrostatic pressure effect on triaxial behavior.
It has been demonstrated (5) that the theory matches well the experimental
uniaxial, biaxial, and triaxial stress-strain diagrams, including strain softening,
and failure envelopes, torsion-compression tests, lateral stresses, volume change,
unloading and reloading diagrams, and cyclic loading up to 10° cycles.

For numerical analysis it is more convenient to recast Egs. 1 in a matrix
form, which reads A + Ag” = DAe, or

Ao, + Ao, "Dy Dy By 0 8 07 Ae,,
Aa,, + Ad?, D,, D, 0 0 0 Ae,,
Aoy + Aoty | _ D, 0 0 0 Ae,, ©
Ag, + Ao, symmetrical Dy, 0 0 Ae ,
Ao,, + Ao, D, 0 Aey,
Aoy, + Aoy, L Dﬁﬁ_ Ae,,

in which Agj; = 2GAej; + 3KAAD, &, being Kronecker delta; and D,, =
D, =D,;; = K+ 4G/3, D, = D, =D,, = K- 2G/3, D,, = Dy, =
D, = 2G.
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Cracking anD Crack CLosing in ReinForceD CONCRETE

These effects have been considered according to the present state-of-the-art
(27,30). If the maximum principal stress, o, exceeds a certain value (tensile
strength f]), cracks are assumed to develop in the planes normal to the o
direction. To express this mathematically, an inelastic increment of o equal
—f, must be introduced, so as to obtain zero normal stress on the crack planes,
and the incremental stiffness matrix, D, must be replaced by a new matrix,
D'. Before cracking, matrix D according to Eq. 8 is isotropic and, therefore,
it applies for any coordinate axes, including those referred to principal stress
directions. Assuming that there is only one crack system in which the cracks
are open, matrix D is changed by cracking to the following incremental stiffness
matrix:

[0 0 0 o o o]
D2l2 DHD"I
D,, - D,, - - 0 0 0
Dl] Dll
D3,
D' = By=——= 0 0 0 o wwow A9)
DlI
symmetric aD, 0 0
aDg, 0
- D6ﬁ_

in which a = the shear transfer factor (27). Because matrix D’ is orthotropic,
it must be transformed from principal stress directions to the structural coordinate
directions, x,. This is accomplished as

|l S5 4 ¢ o T |V S TR, T o v (10)

in which superscript T refers to a transpose and R = a (6 x 6) rotation matrix
formed of the components of the fourth rank rotation tensor [a,a,], a; being
the direction cosines of the principal stress directions:
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becomes both less than the strain at which the crack has opened and less than
zero (compression) (see Fig. 1). The formation of a secondary crack system

‘@
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FIG. 1.—Stress-Strain Diagram for Concrete with Crack Opening and Crack Closing
(1 ksi = 6.89 MN/m?)
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FIG. 2.—Stress-Strain Diagram for Reinforcing Steel (7,24) (1 ksi = 6.89 MN/m?)
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The shear transfer factor, «, describes the effect of aggregate interlock on
rough surfaces of opened crack. Although this factor decreases with the opening
of the crack and increases with the relative displacement parallel to the crack,
an approximate constant value, a = 0.5, seems to be sufficient for most practical
purposes (27) and has been used in numerical calculations.

An open crack is assumed to close when the strain normal to the crack

FIG. 3.—Deformation and Discretization of Beam

occurs again when the maximum principal stress exceeds tensile strength f/.
If the first crack is still open, the secondary crack must be normal to the
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first crack, unless aggregate interlock transmits appreciable shear stress; however,
if the first crack has closed, then the secondary crack does not-have to be
normal to the first crack (9,11). If both cracks are open, then the incremental
stiffness matrix is zero, D’ = 0.

IneLasTic Benavior oF RenForcing STEEL

For cyclic large strains, the reinforcing steel cannot be adequately represented
by an elastic-plastic model (24) and the strain hardening and the Bauschinger
effect must be taken into account (1,7). Various formulas have been developed
for the strain-hardening curves (1,7,8). For steel that has not experienced
strain-hardening on the first loading, the dotted segments in Fig. 2(a) in the
subsequent strain cycles may be approximated by (1)

lo,| =64.5 - 52.7(0.838) 90 Ksi . . .. ... (12)

in which 1 ksi = 6.895 MN/m?; and €, 1s defined in Fig. 2(a). For steel that
experiences strain-hardening in the first cycle, the solid line segment in Fig.
2(b) is approximated (in ksi) by (7,8)

H2e; = e€)k2 € —£. (o,
o, =0, : : + el s s amz 8y 3 (13)
L 60, —eg)H2 ke Ny

u

The straight (dash-dot) unloading lines have slope E, = 5o, /¢, and the dashed
line segments for subsequent cycles in Fig. 2(b) are approximated (in ksi) by
(7)

2.05¢, 0.129¢
o, =ca, (1l —-exp| - — | + =l sme v smivms vnovms (14)
- € €

sh

in which €, = (e, /1.38) In (e,p/e ); (o,, €) = yield point; €, = strain at
ultimate stress at first loading; €, €, is defmed in Fig. 2(b): (o, €,) = reversal
points in Fig. 2(b); and €,, = strain between successive points of zero stress
immediately preceding a given cycle.

InTernAL Force-DispLacement ReLaTions For Beam

Consider a beam whose axis is x and cross-sectional coordinates are y and
z (Fig. 3). The cross sections are assumed to remain plane, but not normal
to the deflected axis of the beam, so that shear strains e _ and € due to
bending may be taken into account. They are considered tobe constant throughout
cachcross section. Both curvature and transverse shear are assumed to contribute
to deflections. (Notation: e, = vy /2, vy, = shear angle.)

As a generalization of previous beam formulations, the transverse normal
strains, € and e, will be also taken into account, being assumed to be constant
throughout the cross section. This is very important for the analysis of reinforced
concrete beams at large deflections, because the large lateral strains due to
high longitudinal compression are opposed by stirrups, and the force in the
stirrups introduces into concrete a lateral confining stress, which considerably
strengthens concrete for longitudinal compression. Consideration of €, and e,
would have been, of course, meaningless without a stress-strain law that
realistically describes lateral strains and volume changes due to deviator strains
and the hydrostatic pressure sensitivity.
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The bending is supposed to occur in the direction of axis z. The cross section
of the beam is subdivided in the z direction into layers i = 1, 2, ... n of
cross-sectional areas A, and centroidal coordinates z; (Fig. 3). The levels of
longitudinal steel reinforcement layers are denoted as z,, j = 1, 2, .... Although
bond slip is undoubtedly of importance in cases of weak anchorage of rein-
forcement, here perfect bond is assumed to exist, and so the strains in steel
and concrete are equal. The longitudinal normal strain increment at any point
of the cross section is

| (15)

in which e, = normal strain e __ at the chosen beam axis, x; k = curvature
of beam; and € = €,,, subscripts x, y, z being used interchangeably with
1, 2, 3. Substituting Eq. 15 into the stress-strain relation in the form of Eq.
8, and settinge =€, = o, = o, =0, one obtains expressions for do . do,
do_., and do, m terms of deo, dk de,,, de_, and de . If these expressions

are further substltuted into the approximate equ1[|brlum relatlom

AM =3z, A A0, ; AN5= Ado,: AN;=3 A Ao, ;

ANE =R A Ko AVE= T Ao coime oo vmams u ama (16)

it follows that
B REAGS AL ;. cnostolmass 28 oo 5 S5 65055 & %% 5% 5505 3 (17)

Here, M© = bending moment in concrete about axis y (Fig. 3); N¢, N:, N
= normal forces in concrete in x, y, and z directions; V¢ = shear force in
concrete in direction z; subscript i refers to layers i = 1, 2, ... n; A, A,
= areas of concrete in layer i per unit length of beam in planes xz and xy;
and

e k A.z,Ae”,
N¢ €, AAg"
b g g B Ligg M APPSR X A R 8 e saims o (18)
N¢ c.. Y NN
V= €. AAql,
_A:“-? D7, Az, DY, Az Dy z;Dy; 0 ]
~A,z;D, BB ADE AI.D;’s 0
R =S |- 2D A,DY A,D, A,Di 0 (19)
Pl b AR A DB A D 0
L0 0 0 0 A, D |
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in which Dy, is given by Eq. 10 (with account of cracking) and D}, = D,
in case that no crack exists, R_ = stiffness matrix due to concrete alone. The
force increments due to layers (j = 1, 2, ...) of reinforcement are Af* = R*Ad,
in which f* = matrix analogous to f© and

[-A,E,z2 A.E,z, 0 o 0]
_A!JE\,(-‘.! A.\JiEA‘ 0 0 0
2
R>:Z 0 0 —AE, 0 0 .... Q0
- a
1
0 0 0 — A E, 0
a
. -0 0 0 0 0|

inwhich subscript st refers to stirrups while s refers to longitudinal reinforcement:
a = stirrup spacing; 2A , = cross-sectional area of stirrups; and E,E, =
tangent modulus of longitudinal steel and of stirrups, which is calculated using
Eqgs. 12-14.

The total forces in the cross section are obtained by summing the contributions
of concrete and steel, Eqs. 17 and 20. This yields

Af=RAd—-Af"; R=R+R* . . . . .. ... . ... (21)

in which f = matrix analogous to f¢, Eq. 18, but without superscript ¢. Eq.
21 represents the force-displacement relations for a cross section of the beam.

For convergence of the iterative step-by-step computation of beam response,
specification of displacement increments, rather than force increments, is
desirable, as far as possible. For this reason, it is convenient to switch between
the left and right-hand sides the terms with Ak and AM in the five equations
that result when the matrix equation, Eq. 21, is rewritten in the component
form. This provides

-1 R, R, R, R,.| [{AM [ R, Ak—Af ]
00 Ry, Ry Ry Ry Ae, AN, — R; Ak — Af}
0 R, R, R.. K. Aey, ¥ = AN~ Ry Ak = Aff] <« (22)
0 R Ry, By R Ae, AN~ R Ak~ &

| 0 R, Ry R, R \ac, | AV = R, Ak - AfY

in which R,, = components of matrix R from Eq. 21.

Computation oF Moment-Curvature ReLaTions

Test data on cyclic behavior of reinforced concrete beams have been reported
in terms of moment-curvature relations, moment-rotation relations, or load-
deflection relations. Because of the coupling between shear strain and inelastic
dilatancy, shear force V needs to be considered also. The controlled variable
in the tests is the load on the beam, which determines both M and V. and
the measured variable is the deflection, which specifies curvature k. However,
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as long as creep is not considered, it is also possible to consider that the specified
increments are Ak and AV, rather than AMand AV, and that A M is the response,
as is indicated in Eq. 22. This gives faster convergence of the iterations in
each loading step. Further variables that are specified by the loading method
are AN AN _,and AN ;usually AN = AN_= 0,i.e., the complete right-hand
side Column vector in Eq 22 is given dt each Ioadmg step.

To achieve better convergence, curvature increments were used as the input
and bending moments were calculated as the response, as explained before
Egq. 22. This cannot be, however, implemented to the full extent in cases where
the deflection was measured instead of the curvature. Yet, in such cases, it
was possible (and rather beneficial for convergence) to specify as input the
curvature increments at least at the maximum moment cross section (the beam
being statically determinate). By iterative solution of Eq. 21 and the equilibrium
relation between maximum moment and corresponding shear force, the curvature,
shear force, and shear angle at that cross section was found at each step.
The bending moment and shear force at every other cross section could then
be determined merely from equilibrium relations. These were then used as input
values for the calculation of curvature and shear angle from Eq. 21 at every
other section. Then, using curvatures and shear angles at all cross sections,
the deflection was calculated by numerical integration and was compared at
each loading step with the recorded deflections in tests; loading was reversed
to unloading whenever the extreme reported deflection for the cycle was reached
or exceeded.

For vectors f and d, both the values at the beginning of the step (subscript
r) and the increments during the step (r, r + 1) from the previous iteration
must be stored. In addition, the same must be stored for all values o, and
o, and for the stresses in longitudinal steel and the stirrups. (The normal
strains and their increments in any layer are always evaluated from e, = ¢,
— zk.) The computational algorithm in each loading step (r, r + 1) may proceed
as follows:

L. For all layers, assume that Af, Ad, Ao, , and Ao, are the same as in
the previous iteration, or, in case of first iteration, same as in the previous
step.

2. Evaluate £, ,,, =f,+ (1/2)Af, etc., for the midstep and, using central
difference approxnmatlons evaluate AE. An. M,. /o). AL Aef, AN, Aoy D

= [Dy],.q,, for all layers.

3. Taking into account the cracks (if any), possibly existing at the beginning
of the step, evaluate D/ ., (Eq. 9 and D7, , (Eq. 10).

4. Evaluating strains in steel with the help of k and €. and noting the number
of cycles, calculate the tangent moduli for longitudinal steel layer and horizontal
and vertical stirrups (Egs. 12-14).

5. Calealate AT (Eq. 18}, R iz (EG: 19 RE sy 1EG 20); Ry 505 (Ed:
21). and the matrix of Eq. 22.

6. Solve AM. Ae,. Ae,. Ae_,, Ae_ from Eq. 22.

7. Evaluate the final stresses T [= 0 A, ¢., and the principal
stresses for all layers at the end of step. Check the COﬂdltIOl’lS of cracking
and crack closing for each layer and record whether cracks are open or closed.
If cracks have not existed at the beginning of the step and have formed during

ij?
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the step, record the inclinations, «,, of the cracks.

8. Compare the values AM, Ae,. Ae , Ae . Ae  with those from the previous
iteration. If any of the differences is more than a specified percentage, return
to stage | and iterate the whole procedure; otherwise proceed to the next step
(r + 1, r + 2). Note that when more than four iterations would be required.

‘\X kips x in.

10°%/ in.

CURVATURE

———— Park, Kent, Sampson,
1972 (experimental )

endochronic theory

FIG. 4. —Fit of Moment-Curvature Test for Concrete Beam (18) (1 kip = 4.45 kN;
1in. = 25.4 mm)

MOMENT
kipx in

ROTATION
DEGREES

————_Brown, Jirsa 1971
endochronic theory

FIG. 5.—Fit of Moment-Rotation Test for Concrete Beam (7) (1 kip = 4.45 kN; 1
in. = 25.4 mm)

it is more efficient to decrease the load increment.

If cracks form during the current step, the increments of principal stress,
oy, across the crack plane will be zero in subsequent steps. However, in the
current step the increment of o§ does not lead to exactly zero value of o
at r + 1, unless cracks form exactly at stage r + 1 and not between stages
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rand r + 1. Neglection of this fact represents a numerical error. (The error
could be removed if various sizes of the current step were tried until the final
value of o was made as small as desired.)

NumericaL Prepictions ano Comparison witH TesTs

Test results are available in the form of moment-curvature, moment-rotation
or load-deflection curves. In case of the tests by Park, et al. (18) the moment
and curvature have been reported for the midsection of a simply supported
beam. The results of the numerical predictions are shown by solid lines in
Fig. 4. In case of the tests by Brown and Jirsa (7), Fig. 5, moment-rotation
curves are given for a cantilever beam fixed at one end. Noting that cross
sections that are more than distance d away from the fixed end remain elastic,

W, | COLUMN
| SEcTon

195in, € L“ru:] P
L]

1B in.
dinmire lst Cycle

LOAD B, kips

LOAD P, kips

A4th Cycle

TEST SPECIMEN

F= 403 kips

LOAD P, kips

———=Takeda, Sozen, MNielsen,
e 1970 (experimental)

endachronic theory

FIG. 6.—Fit of Load-Deflection Test for Concrete Beam (28) (1 kip = 4.45 kN; 1
in. = 25.4 mm)

the rotation at the other end has been obtained by calculating the curvature
for the cross sections at distances 0, d/2, and d from the fixed end, where
d is the effective depth of the beam, and then using the trapezoidal rule to
integrate between O and d and considering a linear variation of curvature over
the rest of the beam. Transverse shears have been also included (Fig. 3); they
have no effect on end rotation but influence indirectly the curvatures by means
of the constitutive law. Similar numerical integration has been performed for
the tests by Takeda, Sozen, and Nielsen (28), Fig. 6, and the deflection has
been obtained by integrating curvatures and shear angles. Cross sections have
been subdivided in nine layers of equal depth (Fig. 3). The cross section area
of longitudinal bars was subtracted from the area of concrete. However, the
cross section area of stirrups has not been subtracted.

The agreement of the theoretical predictions with the test data in Figs. 4-6
is seen to be very close.
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ConcLusions

I. The most remarkable result is the fact that the endochronic theory has
correctly predicted the response of reinforced concrete members under cyclic
loading, without needing to adjust any values of the material parameters
determined previously from tests of plain concrete (5). Thus, the endochronic
theory represents not merely a descriptive model, but a prediction method.
This is of great value for extrapolations from available test data and reduces
the need for obtaining experimental data for each particular structure.

2. When the theory of bending, based on the assumption of planar cross
sections, is applied to inelastic behavior, the transverse shear strains must be
included even if the shear deflection is negligible because the inelastic shear
strains (associated with microcracking) give rise to volumetric dilatancy which
induces significant forces in the stirrups, as well as longitudinal bars.

3. In the existing theories of bending, only two variables, i.e., the curvature
and the transverse shear angle, are used. However, this is insufficient in the
case of inelastic behavior of reinforced concrete beams, and the bending theory
must be enhanced by adding a third variable, the transverse normal strain (or
the transverse normal stress). In three-dimensional analysis, this means adding
transverse normal strains in two transverse directions, which yields a total of
four variables for each cross section.

4. Inelastic dilatancy and hydrostatic pressure sensitivity of concrete are
essential phenomenons which the constitutive equation for plain concrete must
exhibit in order to obtain the effect of stirrups on the inelastic response. Stirrups
oppose the dilatancy and the forces induced in them introduce a confining
hydrostatic pressure in concrete. This increases the strength and ductility of
concrete and suppresses the appearance of strain-softening. The response of
stirrups must be considered as elastoplastic. The same conclusion would also
apply to spiral reinforcement.

5. The present theory allows the cross-sectional area of stirrups required
for ductile inelastic response to be calculated. Previously, this had to be done
empirically. '

6. The present method is applicable to arbitrary histories of bending moment,
axial force, and shear force.

7. As far as the role of concrete under compression is concerned, the
mathematical model is fully continuous in that, by contrast with previous models,
no inequalities are needed to distinguish between loading and unloading and
various ranges of strain. The continuity property makes extrapolations more
reliable.
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AppEnDIX |.—FurTHER InFORMATION ON ExPEriMENTAL DATA

Fig. 4.—Concrete: f. = 6,950 psi (47.9 N/mm?), f, assumed as = 500 psi
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(3.45 N/mm?); Top steel: o = 47,500 psi (327 N/mm?), o, = 68,500 psi
(472 N/mm?), €, = 0.0336 for bottom steel; o, = 49,200 psi (339 N/mm?),
o, = 69,700 psi (481 N/mm?), €, = 0.0323. The beam is simply supported
at ends: moment and curvature is measured at midsection.

Fig. 5.—Concrete: f. = 4,800 psi to 6,200 psi [f, = 5,000 psi (34.42 N/mm?)
and f; = 450 psi (3.1 N/mm?) is used for the fit]. Steel: o = 46 ksi (316.66
N/mm?), e, = 0.008 to 0.014 (taken as 0.01 for the fit), o, = 79 ksi (543.84
N/mm?). e, = 0.2.

Fig. 6.—Concrete: f| = 4,830 psi (33.25 N/mm?); f, = 420 psi (2.89 N/mm?)
Steel: o, = 51,000 psi (351 N/mm?), €, = 0.015, o, = 40,000 psi (275.36
N/mm?); axial load = 4,030 1b (17,925 N). )
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Appenoix lIl.—Notamion
The following symbols are used in this paper:

A,A A = cross-sectional area of concrete element along x, v, and z
directions:
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cross-sectional area of stirrups;

spacing of shear stirrups in beam;

material constants in Eq. 7;

material constants in Eq. 5;

tangent modulus of reinforcing steel;

tangent modulus of stirrups;

deviator of strain tensor € and its inelastic increments;
strength of concrete in compression and tension;

elastic shear modulus and bulk modulus;

first, second, and third invariants of tensor that follows in
parentheses;

second invariant of deviator of tensor that follows in parenthe-
ses;

curvature of beam;

bending moment at section of beam (Fig. 3);

normal forces at section along x, v, and z directions;

load on beam causing bending moment;

deviator of stress tensor o ;;

shear force at section of beam;

constant = relaxation strain (Eq. 1);

distance to centroid of ith layer from axis of beam (Fig. 3);
distance to longitudinal steel layer j, from axis of beam;
shear transfer factor (Eq. 9);

constants = strain hardening parameters (Eq. 7);

Kronecker delta;

normal strain along axis of beam;

strain tensor (linearized);

strain, strain-hardening, ultimate strain and yield strain in
reinforcing steel;

various strains in steel defined by Eqgs. 12-14 and Figs. 2(a)
and 2(b);

damage measure (Eq. 2);

internal deformation measure in Egs. 2 and 3;

inelastic dilatancy and its maximum possible value (Eq. 5);
distorsion measure (Eq. 3);

reinforcement ratio;

stress tensor; and

stress, ultimate stress, and yield stress in steel.

layer of concrete in beam cross section;
longitudinal steel locations in beam;
loading step ending at time f ; and
average in step (f,_,, t ).

concrete; and
steel.
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ABSTRACT: The endochronic theory for inelasticity and failure, previously
established, is used to predict the response of reinforced concrete beams in cyclic
bending at large strains. Cross sections are assumed to remain plain and are subdivided
in slices. Existing bending theories must be enhanced by inclusion of transverse normai
strain as a third variable, in addition to curvature and transverse shear angle. The
forces in stirrups bring concrete under confining hydrostatic pressure, and, according to
endochronic theory, this greatly increases ductility and strength and suppresses strain-
softening. The theory is applicable to any history of bending moment, shear force, and
axial force, and allows the necessary cross-sectional area of stirrups to be calculated. It
is most remarkable that a number of test data have been correctly predicted without
having to adjust any of the material parameters determined previously from tests of
plain concrete. The endochronic theory represents not merely a descriptive model, but
a prediction method.
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