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CAN MULTISCALE-MULTIPHYSICS METHODS
PREDICT SOFTENING DAMAGE AND STRUCTURAL
FAILURE?†
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The possibility of replacing semiempirical constitutive laws with computationally intensive multiscale and multiphysics
simulations of complex material behavior on the mesoscale has led to exaggerated expectations. This brief paper shows
that this has been the case for the simulation of softening material damage and fracture in quasi-brittle structures. It is
argued that the problem of determining the material lengths on the mesoscale and trasmitting them to the macroscale
would have to be mastered before realistic predictions of structural damage and failure could be expected.
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The multiscale approach was pioneered by Tadmoret
al. (1996) for atomistic-based quasi-continuum analysis
of dislocations and hardening plasticity of polycrystalline
metals. In that case, the structural failure is due to neck-
ing, which is caused by nonlinear geometric effects of fi-
nite strain, or to sharp fracture, which is modeled sepa-
rately [see also Ghoniemet al. (2003)]. There can be no
dispute that the multiscale approach is realistic, deliver-
ing to the continuum macroscale essential information on
the physical behavior on the subscale.

However, applying the multiscale approach to failure
due to an interacting crack system, or to softening dam-
age such as distributed cracking, is an entirely different
matter. To clarify it, let us discuss a few typical multi-
scale approaches representative of a flood of recent pub-
lications.

1. TYPES OF SUBSCALE INTERACTIONS IN
DAMAGE OR FRACTURE

The multiscale models are intended to capture two types
of interactions on the microscale:

1. Interactionsamong orientationsof microdamage
processes (e.g., orientations of tensile or splitting mi-
crocracks, and frictional microslips).

2. Interactionsat distance(e.g., among different grains
or fibers, or among different microcracks and mi-
croslips). These interactions are of two kinds:

a. Those affecting theaverage stress-strain rela-
tion

b. Thosegoverning localizationand the material
characteristic lengthl0, in particular

Type 1 interactions are captured not only by the mul-
tiscale model but also by the microplane model, although
for the latter they are lumped into one continuum point.
Type 2(b) interactions are captured by neither, and be-
cause 2(b) affects 2(a), type 2(a) interactions are hardly
captured by the multiscale model any better than by the
microplane model.

Thus, it appears that the current multiscale (and
multiscale-multiphysics) approaches only facilitate the
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computational handling of strong mesh refinement. They
fail to capture the physics of localizing distributed soften-
ing damage, such as the cracking and frictional slip in the
mesostructure of concrete or the propagation of a soften-
ing kink band in fiber composites. These approaches offer
real advantages over simpler models such as microplane
models only if the material is hardening, but not if it ex-
hibits softening damage which can localize into a crack
band or shear band and must be described in terms of a
material characteristic length,l0. An archetypical qua-
sibrittle material is concrete. Others include rock, sea
ice, consolidated snow, paper, carton and, most impor-
tantly, ‘high-tech’ materials such polymer-fiber compos-
ites, tough or toughened ceramics and rigid foams, as well
as many bio-materials such as bone, cartilage, dentine
and sea shells. All the brittle materials and many duc-
tile materials become quasibrittle on a sufficiently small
scale, for instance metallic thin films and nano-compo-
sites.

Let us now clarify how the requirement forphys-
ical determination ofl0 defeats the usefulness of the
multiscale-multiphysics concept.

2. TYPES OF MULTISCALE MODELS AND

MATERIAL CHARACTERISTIC LENGTH

Type 1.A discretized subscale material element is em-
bedded into a point of the macroscale continuum (e.g., an
integration point of a finite element) (Fig. 1).

Type 2.A finite region of the macrocontinuum coarse
mesh is overlapped by a fine mesh or discrete mesostruc-
ture model representing the material on the subscale, or
mesoscale (Fig. 2).

Type 3.A finite region of the macrocontinuum coarse
mesh is replaced with a refined discrete model of the
mesostructure (Fig. 2).

Type 4.The interactions in a subscale material element
among inelastic phenomena of all possible orientations
are lumped into one point of the macrocontinuum (Fig. 1).
This leads to a microplane model, representing a semi-
multiscale model in which the interactions at distance are
discarded.

Generally, only types 1 and 2 have been considered
as multiscale methods. However, types 3 and 4 are also

FIG. 1: Top: RCE embedded in a point of macrocontinuum, with interactions among orientations (top right) and
at distance (lower right).Bottom: Material element larger than RVE, with localization band. Bottom left: Isolated;
Bottom right: Interaction with the rest of structure, modeled by springs of tangential stiffness
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FIG. 2: Region of structure where a fine mesh supposed to represent the mesostructure overlays a coarse mesh that
discretizes the macrocontinuum

multiscale models and have some significant advantages
over types 1 and 2 when the material exhibits softening
damage.

For types 1 and 2, one faces various kinds of difficul-
ties with the regularization of the continuum boundary
value problems:

1. Inappropriate boundary conditions of the subscale
material element that undergoes softening

2. Ignoring energy release from the whole structure
into the front of fracture or strain-localization band

3. Replacing subscale micro- or mesostructure with an
empirically assumed continuum model

4. Physically unjustified choice of localization limiter
for the subscale material element

5. Lack of any localization limiter to be delivered to the
macroscale continuum

Normally, the strain increment at a continuum point
(e.g., an integration point of a finite element) is applied
on the mesoscale to a material element [a representative

volume element (RVE), or larger] with a randomly gener-
ated mesostructure (consisting, in the case of concrete, of
aggregates and the matrix). The corresponding average
strains of the RVE, which can undergo strain softening,
are calculated by a mesoscale program and then upscaled
[i.e., delivered to either an integration point of a finite el-
ement of the macrocontinuum (type 1) or transmitted to
an overlapping region of a coarse macrocontinuum mesh
(type 2).

Although the macro stress-strain relation may get im-
proved by dipping into the subscale, it is still alocal
strain-softening stress-strain relation. Consequently, the
macroscale tangential stiffness matrix is not positive def-
inite, causing the wave speed to be imaginary, the bound-
ary value problem to be ill-posed, and the equilibrium on
the continuum level to be unstable. Thus, the finite ele-
ment solutions lack objectivity with respect to the mesh
choice, exhibiting spurious mesh sensitivity and conver-
gence to material failure that is localized to a zero vol-
ume (domain of measure zero) and thus occurs with zero
energy dissipation. This blatantly incorrect feature pre-
cludes simulating the energetic size effect (Bažant, 1976,
1986, 2002, 2004; Bǎzant and Planas, 1998), which is
the salient aspect of all quasibrittle or softening failures
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(in fact, the size effect in concrete, laminates, sandwich
shells, or other quasibrittle materials seems not to have yet
been successfully modeled by any multiscale approach).

Therefore, some sort of a localization limiter, associ-
ated with a material characteristic lengthl0 or material
fracture energyGf (per unit area, not per unit volume),
is crucial in order to regularize the boundary value prob-
lem (i.e., make it well posed). Realistic estimation ofl0
is inevitable to model strain softening objectively and re-
alistically, and to capture the size effect.

The simulated material element may be taken as the
RVE, the size of which, in the case of strain softening,
should be taken equal to only about two to three dominant
grain or inhomogeneity sizes (Bažant and Pang, 2006,
2007) (Fig. 1). Because no localization can occur within
such a small material element, the desired benefit of phys-
ical support for the chosen type of regularization is for-
feited.

If the simulated material element is taken to be larger
than one RVE, say, a cube having the side of 10 grains
(and thus a volume 1000 grains), then a localized damage
band may develop within such an element (Fig. 1). But
regardless of whether the boundary conditions of this ele-
ment are periodic or are specified as displacement or force
increments, the width and orientation of the localization
band will not be realistic because the band formation de-
pends not only on the stiffness and energy dissipation of
the localization band (of unknown size, orientation and
location), but also on the rate ofenergy releasenot just
from this element but from thewholestructure. The en-
ergy release, which is what matters, is conveyed to the
band in this larger element through the tangential stiffness
matrix of the surrounding structure acting on the bound-
ary nodes of the material element (Fig. 2). This matrix
must correspond to proper loading-unloading combina-
tions everywhere in the surrounding structure. Unfortu-
nately, the existing multiscale models do not meet this
requirement.

As a related problem, the stresses and strains in an
oversized material volume element that contains a local-
ized damage band can be highly nonuniform. This ren-
ders their averages unrealistic for transfer to the contin-
uum macroscale.

Another related problem stems from the requirement
that the sum of the volumes of the RVEs associated with
all the integration points of one macroscale finite element
must be equal to the volume of that element. This require-
ment has typically been ignored. But then the strain en-
ergy release delivered to the macroscale integration point
as the RVE unloads is incorrect. Hence, the size of the

embedded subscale element and the macroscopic finite el-
ement size must be uniquely related.

The characteristic lengthl0 governing localization es-
sentially represents the minimum spacing of parallel co-
hesive cracks, or the localization band width, and gov-
erns the type 1 size effect (Bažant, 2004). It is differ-
ent from (though related to) Irwin’s characteristic length
l = EGF /ft

2, which controls the length of the fracture
process zone and governs the type 2 size effect (Bažant,
2004) (E = Young’s modulus,ft = tensile strength). Un-
ambiguous identification ofl0 calls for computational
simulation and matching of scaled size effect tests on the
given brittle heterogeneous material. If the small- and
large-size asymptotic power laws are experimentally or
computationally identified, then their intersection gives
a certain characteristic sizel1 and multiplying it by a
proper geometry factor yieldsl0. Arbitrary imposition
of some kind of localization limiter with characteristic
length l1 into a subscale finite element mesh helps, of
course, to stabilize strain softening but certainly does
make the model realistic.

Some so-called multiscale models do not try to simu-
late the actual heterogeneous microstructure on the sub-
scale (mesoscale). Rather, they simply introduce in the
subscale material element a refined mesh and adopt arbi-
trarily some localization limiter (e.g., the micropolar con-
tinuum) regardless of its physical justification. There is
nothing physicallymultiscale about such computational
exercises. They merely serve as a convenient approach to
mesh refinement.

Without a good subscale (micro- or mesostructure)
model, the choice of a proper type of localization limiter
is another major problem. The existing possible choices
include the following:

1. A strongly nonlocal formulation (in the form or an
integral over a finite neighborhood, or a coupled
Helmholtz equation)

2. A weakly nonlocal formulation (in the form of the
second strain gradient, or the first strain gradient,
as in Cosserat’s, Mindlin’s, or Eringen’s micropolar
media)

Many more choices exist for orthotropic composites.
These arbitrary choices of regularization of the boundary
value problem do not yield identical results. For example,
the micropolar model, adopted for the mesoscale in some
recent studies, is known to be a poor localization limiter;
it can control only localization into pure shear bands, but
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not into tensile cracking bands, compression shear bands,
or compression splitting bands.

Unfortunately, the requirement for some kind of non-
local model, with a localization limiter involving a mate-
rial characteristic length, defeats the main purpose of the
multiscale approach—modeling based on the physics of
microstructure. Thus, in the case of softening damage,
the multiscale approach, while more complex, is actually
no more realistic than the simpler microplane approach,
which, too, delivers no characteristic length of material
and requires this length to be introduced separately.

3. REPLACING A FINITE REGION WITH
HETEROGENEOUS MESO-STRUCTURE
SIMULATION

An approach that appears to realistically capture the
mesoscale behavior is the confinement-shear lattice-
particle (CSL) model of the mesostructure (Cusatis and
Cedolin, 2007; Cusatiset al., 2006, 2003) (Fig. 3). Large
three-dimensional structures, of course, cannot be simu-
lated in this manner. But even for large structures, the
lattice particle model can be used within a small region
of the structure where severe distributed cracking, slip-
ping, fracture, or shear banding is expected, while the reg-
ular finite elements are used for the remaining nonsoften-
ing region. For strain-softening distributed damage, this
combination of a continuum with a mesostructural lattice-

particle system appears to be the only viable, fully multi-
scale approach at present.

Some recent variants, called “multiscale” (e.g., the
“bridging multiscale method”) are not really aimed at
capturing the physics on the mesoscale but merely serve
to reduce the computational burden of strong mesh refine-
ment. They introduce hierarchical, or sequential, overlap-
ping meshes of different refinements (Fig. 2). A region of
coarse mesh, in which damage is expected, is overlapped
by a fine mesh whose displacement field is considered to
be additive to the macrocontinuum displacement and is
intended to capture softening damage with its localiza-
tion (Kadowaki and Liu, 2004; Liuet al., 2006; Fishet
al., 1999; Fish and Yu, 2001; Oskay and Fish, 2007).

However, in some approaches (e.g., the “bridging mul-
tiscale method”), the discretization by a fine mesh does
not reflect the actual mesostructure of the material. Rather
it consists again of a continuum—a strain-softening con-
tinuum. This makes it necessary to introduce a localiza-
tion limiter in the fine mesh on the subscale. This local-
ization limiter must again be some type of a nonlocal or
gradient model, which must possess a material character-
istic length,l0. Thus, again, one cannot avoid a purely
empirical choice of bothl0 and the type of localization
limiter.

Consequently, despite using the term “multiscale,”
methods such as the bridging multiscale method or

FIG. 3: Objectivity criteria for multiscale models, whose check cannot be ignored
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sequential multiscale method are not really complete
multiscale-multiphysics approaches as far as damage and
structural failure is concerned. They merely supplant to
the damage regularization problem on the macroscale an-
other damage regularization problem on the subscale.

Some approaches (e.g., the “multiscale asymptotic ex-
pansion method”) uses a homogenization method for the
microstructure on the subscale. The resulting stress-strain
relation, however, is good only for hardening behavior be-
cause the hypotheses of homogenization procedures ex-
clude damage localization and imply absence ofl0 (Os-
kay and Fish, 2007).

Thus, it appears that, thus far, there is no way to es-
chew, on the subscale, a discrete micro- (or meso-) struc-
ture model covering the entire region of potential soften-
ing damage localization (Fig. 2). Only such a lower-scale
discrete model can capture both the interactions among
orientations and the interactions at distance [including
the material characteristic length implied by the dominant
spacing of material particles (e.g., the grains of the mate-
rial)].

4. DAMAGE MODELED AS DISPERSED
COHESIVE OR SINGULAR LINE CRACKS

When damage is modeled by dispersed discrete cohesive
or singular cracks embedded on the subscale, there is no
crack band of a finite width, and thus one might think that
the problem of characteristic material length cannot arise.
But it can. In the case of parallel line cracks, there must
exist a certain minimum possible crack spacing (Bažant
and Jiŕasek, 2002). Although a softening stress-strain re-
lation (with a fixed postpeak) dissipates finite energy per
unit volume and thus gives a zero energy dissipation for
a band of elements of vanishing size, a system of par-
allel cohesive cracks whose spacing tends to zero dissi-
pates infinite energy. Thus, the minimum spacing must be
a material property representing a material characteristic
length (Bǎzant, 1985), which is physically determined by
inhomogeneity sizes or by Irwin’s length for mesoscale
cracks. Otherwise, the computational results may be un-
objective when the dispersed line cracks remain dispersed
(i.e, when their openings do not localize into the opening
of one single crack). Such a nonlocalized crack system
will occur, e.g., when parallel cracks grow into a stabiliz-
ing compression zone (Bažant and Wahab, 1979) or when
they are stabilized by transverse reinforcement; see an ex-
ample in Bǎzant (1985). If no minimum spacing, based on
a physically established characteristic length, is imposed,
the results will depend on the element size on the subscale

and, for vanishing element size, will exhibit a physically
impossible convergence.

5. SPECIAL CASE OF INERTIA DOMINANCE AT
HIGH-RATE IMPULSIVE LOADS

In the case of dynamics of impact and groundshock, the
mass inertia, coupled with the viscous strain rate effect or
other damping, may delay any pronounced damage local-
ization beyond the duration of impact event. In that case,
the aforementioned regularization of softening damage
can be ignored, though only as an approximation (which
becomes progressively worse with the passage of time be-
cause localization begins to develop already during the
impact event) (Bǎzantet al., 2000). For this reason, it is
appropriate that the finite elements have roughly the size
of the material characteristic length (or the width of the
localization band). Such an approach corresponds to what
is called the crack band model.

Even for high-rate loading problems, it is usually nec-
essary to relate the tensorial constitutive equation based
on material properties obtained in standard material tests,
uniaxial as well as multiaxial, which are necessarily
static. This relationship cannot be realistic if the mate-
rial characteristic length is not properly captured.

6. OBJECTIVITY CHECKS FOR MULTISCALE
MODELS

The lack of objectivity is best detected by simulating
mesh refinement or, equivalently, the size effect in ge-
ometrically similar structures (Fig. 3). The simplest is
to simulate a homogeneously stressed rectangular speci-
men (Bǎzant, 1976). If mesh refinement leads to differ-
ent postpeak responses, the multiscale model is not suit-
able for damage and failure analysis (Fig. 3, top). Neither
is it if, for a cracked two-dimensional rectangular panel
(Fig. 3, middle and bottom), the curves of load versus
crack band length, or load versus deflection, change sig-
nificantly with mesh refinement, or with the scaling of
panel size at constant mesh size (Bažant, 1985, 1986).
These simple basic checks should not be ignored.

7. ANALOGOUS PROBLEM IN SEISMIC
STRUCTURAL TESTS WITH REAL-TIME
SIMULATION OF DAMAGING ZONE

In recent experimental studies of seismic resistance of
structures, it has become fashionable to use computer-
driven servocontrol to simulate a cracking zone of a re-
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inforced concrete structure. One technique is to mea-
sure a small displacement increment of the surrounding
structure, then compute according to a previously cali-
brated model of the cracking zone the corresponding dis-
placement increments, and then impart these increments,
in real time, by fast computer-controlled hydraulic jacks,
onto the rest of the structure. Unfortunately, seismic load-
ing is not fast enough to shield this technique from all the
aforementioned problems. The simulated cracking zone
behaves just like the embedded subscale material element
already discussed. As long as this zone is hardening, there
is, of course, no problem. But as soon as softening be-
gins, which is what is of main interest, the localization of
cracking damage within this zone will differ from reality.
The reality is not the imposed displacement increments
but a two-way interaction (with energy release and proper
tangent stiffness constants) of the damage zone with the
rest of the structure. To expect a real seismic behavior of
concrete structures to be reproduced by such a technique
is wishful thinking.

8. CONCLUSION

As long as the simulation of subscale mesostructure does
not yield the material characteristic length and the type
of localization limiter, the multiscale modeling is not a
valid approach to softening damage. At present, the only
valid approach is a discrete (lattice-particle) simulation of
the mesostructure of the entire structural region in which
softening damage can occur.
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Bažant, Z. P.,Mechanics of fracture and progressive crack-
ing in concrete structures,Fracture Mechanics of Con-
crete: Structural Application and Numerical Calculation,
G. C. Sih and A. DiTommaso, Eds., Dordrecht:Martinus
Nijhoff, pp. 1–94, 1985.
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