Fracture mechanics of concrete:

Structural application

and numerical calculation

Edited by

George C. Sih

Lehigh University,
Institute of Fracture and Solid Mechanics,
Bethlehem, PA 18015, USA

A. DiTommaso

University of Bologna
Bologna, Italy

1985 MARTINUS NIJHOFF PUBLISHERS
a member of the KLUWER ACADEMIC PUBLISHERS GROUP
DORDRECHT / BOSTON / LANCASTER

v |

o)

Z.P. BAZANT ]_

Mechanics of fracture and progressive
cracking in concrete structures

1.1 Introduction

Cracking is an essential feature of the behavior of concrete structures.
Even under service loads, concrete structures are normally full of cracks.
Clearly, cracking should be taken into account in predicting ultimate
load capacity as well as behavior in service.

To fracture mechanics specialists, it appears natural that concrete
structures should be designed according to fracture mechanics. Yet, none
of the existing code provisions are based on fracture mechanics. The
reason is- not ignorance on the part of concrete engineers. Fracture
mechanics analysis was tried, and was found to yield predictions that
deviate from measurements, on the average, at least as much as those
based on the tensile strength approach. These were, however, predictions
of the classical, linear fracture mechanics. ,

In various recent studies, especially those at the Technical University
of Lund, Northwestern University and Politecnico di Milano, it became
apparent that fracture mechanics does work for concrete, provided that
one uses a proper, nonlinear form of fracture mechanics in which a finite
nonlinear zone at the fracture front is taken into account. This may be
done in various ways. In the first part of the present work, an exposition
of one particularly efficient approach will be given. In this approach [8],
which is based on the work recently pursued with success by a group of
researchers at Northwestern University and Politecnico di Milano, crack-
ing is modeled in a continuous, or smeared manner, and fracture is
treated as a propagation of a smeared crack band through concrete.
Continuous modeling of cracks in concrete, introduced by Rashid [119],
has become popular in finite element analysis, not just because it reflects
the reality of densely distributed cracks, but mainly because it is compu-
tationally convenient.

In the present engineering practice, tensile strength is used as the
cracking criterion. This criterion, however, does not give objective results
and does not agree with fracture tests. Remedy can be obtained by
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introducing an energy criterion. This approach will be described in detail,
along with the finite element implementation, comparisons with fracture
tests, and some examples of .application. Considered will be the conse-
quence for the structural size effect, and how this effect should be
manifested in code formulas for brittle failures, such as the diagonal
shear failure of beams. Furthermore, the stability aspects of fracture will
be analyzed focusing attention on the strain localization instability as
well as crack spacing. Finally, the conclusion will center on a more
fundamental study of strain-softening triaxial constitutive relations for
the fracture process zone.

The principal intent of this work* is to highlight various new research
directions, rather than present a systematic review and description of all
the existing knowledge.

1.2 Blunt crack band theory

Basic hypothesis. 'The analysis which follows is based on the hypothesis
that fracture in a heterogeneous material such as concrete can be mod-
eled as a band of parallel, densely distributed microcracks having a blunt
front {1-3]. This hypothesis may be justified as follows.

For the purpose of analysis, a heterogeneous material is approximated
by an equivalent homogeneous continuum. One must then distinguish the
continuum stresses and strains (macrostresses and macrostrains) from the
actual stresses and strains in the microstructure, called the microstresses
and microstrains. In the theory of randomly inhomogeneous materials,
the homogenized continuum stresses and strains are defined as the
averages of the microstresses and microstrains over a certain representa-
tive volume (Figure 1.1). Its size must be sufficiently large compared to
the size of the inhomogeneities. Even for a crude description, this size
must be considered to be at least several times the size of inhomogenei-
ties, i.e., several times the maximum aggregate size.

In the usual analysis, only the average elastic (or inelastic) material
properties are considered and the geometry of the microstructure with the
differences in the elastic constants between the aggregate and the cement
paste is not taken into account. The detailed distribution of stress or
strain over distances less than several times the aggregate size (Figure
1.1). is then meaningless, and only the stress resultants and the accu-
mulated strain over the cross section of the representative volume have
physical meaning. In finite element analysis, it makes, therefore, no sense
to use finite elements smaller than several aggregate sizes. In case of
fracture, this further means that if an equivalent homogeneous con-

* This work was partially supported under AFOSR grant 83-0009 to Northwestern
University.
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Fig. 1.1 Random microstructure, scatter of microstresses, and crack band or sharp crack
model.

tinuum is assumed, it makes no sense to consider concentrations of stress
(or of microcrack density) within volumes less than several aggregate
sizes (Figure 1.1).

Similarly, a straight-line crack is an approximation. The actual crack
path in concrete is not smooth but highly tortuous, since the crack tends
to pass around the hard aggregate pieces and randomly sways to the side
of a straight path by distances roughly equal to the aggregate size (Figure
1.1). Therefore, the actual stress (microstress) variation over such dis-
tances cannot be relevant for the macroscopic continuum model.

In view of the foregoing arguments, one should not subdivide the
width of the crack band front into several finite elements. There is,
however, also another reason. A strain-softening continuum is unstable
and exhibits a strain-localization instability [4,5], in which the deforma-
tion localizes into one of the elements across the width of the crack band
front. This instability will be illustrated later.

For an elastic material in which the stress drops suddenly to zero at
the fracture front (Figure 1.2), it is found (regardless of the aggregate
size) [6,7] that a sharp interelement crack and a smeared crack band in a
square mesh (without any singularity elements) give essentially the same



Fig. 1.2. Gradual strain-softening and sudden stress drop (a~—c), and biaxial failure envelope

(d).

results for the energy release rate and agree closely (within a few percent)
with the exact elasticity solution, provided that the finite element is not
larger than about 1 /15 of the cross section dimension. To demonstrate it
here, Figure 1.3 shows some of the numerical results for a line crack (left)
and crack band (right) {6]. The finite element mesh covers a cut-out of an
infinite elastic medium loaded at infinity by uniform normal stress ¢
perpendicular to a line crack of length 2a. The nodal loads applied at the
boundary are calculated as the resultants (over the element width) of the
exact stresses in the infinite medium at that location. Westergaard's exact
solution is shown as the solid curve. The data points show the calculated
results for the square mesh shown (mesh A), as well as for meshes B and
C (not shown) in which the element size is reduced to 1/2 and 3/8,
respectively. Each element consisted of two constant-strain triangles (and
calculations were made for & = 0.981 a (MPa). E_= 2256 MPa, »= 0.2,
and stress intensity factor 0.6937 MNm™3/2),

A similar equivalence of line crack and blunt crack band may be
expected when a gradual stress drop is considered (Figure 1.2). This is
confirmed in Figure 1.3¢ by the fact that a reduction of mesh size does
not affect the results. The reason for this equivalence is the fact that
fracture propagation depends essentially on the flux of energy into the
fracture process zone at the crack front, which represents a global
characteristic of the entire structure and depends little on the detailed
distributions of stress and strain near the fracture front.

It may be also noted that the results for the stress intensity factor [6]
obtained with nonsingular finite elements agree with the exact elasticity
solution quite closely, usually within 1% for typical meshes. There is no
need to use singularity elements in fracture analysis. Moreover, one
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Fig. 1.3. Finite element results of Ba2ant and Cedolin (1979) for sudden stress drop (a. b),
showing equivalence of blunt crack band and sharp crack modeling. and results of Bazant
and Oh (c, d), showing the results for gradual stress decrease and meshes of different size.

should realize that the nonuniform stress distribution implied in a
singularity element is meaningful only if this element is many times
larger than the representative volume, i.e., is at least 20 aggregate pieces
In size. which is too large for most applications.

Because the line crack and the crack band models are essentially
equivalent. the choice of one or the other is principally a question of
computational convenience. The line crack model appears to be less
convenient. When a line crack extends through a certain node, the node
must be split into two nodes. This increases the total number of nodes
and changes the topological connectivity of the mesh. Unless one renum-
bers the nodes, the band structure of the structural stiffness matrix is
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destroyed. All this complicates programming. Furthermore. when the
direction in which a Mode I crack should extend is not known in
advance, one must make trial calculations for various possible locations
of the node ahead of the crack front through which the crack should
pass. in order to determine the location which gives the maximum energy
release rate.

The smeared cracking approach, introduced by Rashid [8] avoids these
difficulties. The cracking is modeled simply by changing the isotropic
elastic moduli matrix to an orthotropic one. reducing the material
stiffness in the direction normal to the cracks in the band. This is easily
implemented by finite elements. Moreover. a crack propagation in an
arbitrary direction with respect to the mesh lines, or a crack following a
curved path, may be easily modeled as a zig-zag crack band (Section 1.3)
whose overall path through the mesh approximates the actual crack path.
Another advantage of the crack band model is that the known properties
of stress-strain relations and failure envelopes can be applied to fracture;
this includes, e.g., the effect of the compressive normal stress parallel to
the crack, or the effect of creep. Still another advantage of the crack band
model is the fact that, as it will be shown in the sequel. one can treat the
case when principal stress directions in the fracture process zone rotate
during the progressive fracture formation. i.e.. during the strain soften-
ing,

Ahead of the tip of a propagating major crack in concrete, there is
always a relatively large zone of discontinuous microcracks. Formation of
microcracks at the fracture front has recently been observed experimen-
tally [9-11]. From measurements of tensile strain fields by Moiré inter-
ferometry [10,11], it appears that there is at the fracture front a zone of
microcracks whose width is about the aggregate size. From microscopic
observations, it seems that the larger, easily discernible microcracks are
not spread over a band of a large width but are concentrated essentially
on a line. However, the line along which the microcracks are scattered is
not straight but is highly tortuous (Figure 1.1), deviating to each side of
the overall fracture axis by a distance equal roughly to the aggregate size,
as the crack is trying to pass around the harder aggregate pieces. In the
equivalent, smoothed macroscopic continuum which is implied in struct-
ural analysis, the scatter in the locations of visible microcracks is char-
acterized by a microcrack band better than by a straight row of micro-
cracks. Further, it should be realized that the boundary of the fracture
process zone should not be defined as the boundary of visible micro-
cracks but as the boundary of the strain-softening region, i.e., the region
in which the maximum stress decreases with increasing maximum strain.
Since the strain-softening is caused not just by microcracking but also by
unobservable bond ruptures and submicroscopic flaws, the fracture pro-
cess zone is probably much wider (as well as longer) than the region of

(o) Linear Fracture (b) Metals (c) Concrete

Fig. 1.4. Shape of nonlinear zone (N) and fracture process zone (F).

visible microcracks. Measurements of Cedolin et al. [10,11] appear to
support this view. However, because of the foregoing justifications. the
question of the actual shape of the microcrack zone is unimportant for
the macroscopic continuum modeling.

In ductile fracture of metals, there is a large plastic zone in which the
metal is yielding but does not undergo strain-softening, and the strain-
softening zone itself (i.e., the fracture process zone) is only a small part of
the yielding zone (Figure 1.4). On the other hand, in concrete. the
nonlinear zone is not much larger than the strain-softening zone (Figure
1.4) since concrete in tension is not capable of plastic deformation. Thus
one may consider that the concrete outside the fracture process zone
behaves as nearly elastic.

If the relation of the normal stress o, and the relative displacement &,
across a line crack is identical to the relation of o. to the displacement §,
obtained by accumulating the strains ¢ due to microcracking over the
width w_ of the crack band {1), then, according to the above reasoning,
th_e line crack model and the crack band model are essentially equivalent.
Line crack models with softening stress-displacement relations were
proposed in many previous works [12-18]. These include especially the
works of Knauss [16], Wnuk [17], and Kfouri, Miller and Rice [14,15] on
polymers and metals, which considered a gradual release of the forces
between the opposite surfaces as the opening displacements grow, and
n}odeled it by a gradual decrease of the internodal force as one node in a
finite element grid is being separated by fracture into two nodes. For
concrete, the concept of a gradually decreasing stress-displacement rela-
ton was first applied in the outstanding original work of Hillerborg,
Modéer and Petersson [18,19] in their model of fictitious sharp interele-
ment crack. Their pioneering work provided inspiration for developing
the present blunt crack model with gradual strain-softening.

Stress-strain relation for fracture process zone. Cartesian coordinates
X1=x, x;=y, and x,=2z will be introduced with the cracks being
assumed to be normal to the axis z. The normal stress and strain



components may be grouped into the column matrices ¢ = (o,, 0, 0. )
e=(¢,, &, &, )T, where T denotes the transpose. The strains are assumed
to be linearized or small. The elastic stress-strain relation for the normal
components may then be written as 0 = De, in which D is the stiffness
matrix of the uncracked material,

DH DlZ D13
D = D22 D23 . (11)
sym. D,

If the elastic material is intersected by continuously distributed parallel
cracks normal to z, the stress-strain relation has the form [8,20] 6 = D ¢,
in which

Dn —D123D3_31’ Dlz-DISDZBDl_ll’ 0
D" = D,, — Dy, D3, 0 (1.2)
sym. 0

This matrix, representing the stiffness matrix of a fully cracked material,
may be derived from the condition that strain e of the material between
the crack is unrelated to ¢, (except for " < ¢,) and that the stress normal
to the cracks must be zero, assuming that the material between the cracks
behaves as an uncracked elastic material in a plane stress state. This, of
course, is a simplification, because the material between the cracks
becomes damaged by discontinuous microcracks.

To describe progressive development of microcracks in the fracture
process zone, it is necessary to formulate a stiffness matrix which
continuously changes from the form given in Eq. 1.1 to that in Eq. 1.2.
This objective is hard to achieve by direct reasoning, since every element
of the 6 X 6 stiffness matrix changes. It was found [1,3], however, that the
task becomes easier if the compliance matrix, C, is used. For a crack-free
material,

e= Co, (1.3)
where
Cll C12 Cl3
C=D_1 = CZZ C23 (1.4)
sym. Cis

Now, if only cracks normal to x are permitted, the appearance of

cracks at constant stresses increases only the overall strain ¢, normal to
the cracks and has no effect on the lateral strains ¢, and ¢,. Therefore,
the compliance matrix after appearance of partial discontinuous cracks
should have the form [1,3]:

Cn C, Cy
C(p)= Gy Gy (1.5)
sym. Cyp™

where p is a certain parameter, called cracking parameter, which in-
creases Ci;. This formulation must, in the limit, be equivalent to the
well-known generally accepted stiffness matrix D for a fully cracked
material (Eq. 1.2). Indeed, as generally proved in [1], the matrix in Eq.
1.2 results as

D' = lim C™'(n). (1.6)

=0

In writing a computer program, it is convenient for the programmer to
note that instead of setting u = 0, one may assign in the program p~! as a
very large number (e.g., 10*°) and let the computer carry out the
inversion of the matrix numerically; the result is a stiffness matrix like
that in Eq. 1.2 except that extremely small numbers (10~4’) are obtained
instead of 0.

A characteristic feature of the compliance matrix for progressive
microcracking (Eq. 1.4) is the fact that cracking has no effect on lateral
strains. This can be true only if all microcracks are normal to axis z,
which is certainly a simplification. In reality, a certain distribution of the
orientations of the microcracks is expected, the orientation normal to axis
x being just the prevalent one, not the only one. If inclined microcracks
were considered, than it would be necessary to also introduce a gradual
change of the off-diagonal terms in Eq. 1.4 as the formation of micro-
cracks advances.

Comparing now the compliance matrices in Egs. 1.5 and 1.6, it is seen
that a continuous transition from a crack-free state to a fully cracked
state may be very simply obtained by continuously varying the cracking
parameter p between the limits

uncracked state; p=1 and fullycracked state: p=0 1.7)

The law governing the variation of the cracking parameter, 1, may be
determined on the basis of the uniaxial tensile test. It has been proven
independently by several investigators [21-25] that concrete exhibits
tensile strain-softening, i.e., a gradual decrease of stress at increasing
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strain. Tests of strain-softening are stable only if the loading frame is
much stiffer than the specimen and if the specimen is not too long. The
observed stress-strain relation appears [21,22,24,26] to be smoothly
curved. Although a curved ‘strain-softening can be easily implemented
with parameter pu, we assume, for the sake of simplicity, a bilinear
stress-strain relation (Fig. 1.2), the declining (strain-softening) branch of
which is characterized by negative compliance C3,.For uniaxial tension o,
it follows that

€= C33""‘]oz or o,= C33-u'_]ez (1'8)
which must be equivalent to the relation o, = (e, —&)Cs; for the
straight-line softening in which Cj; is negative and g, represents the
terminal point of the strain-softening branch at which the tensile stress
vanishes (Fig. 1.2). This point is related to the strain ¢, at the peak stress
point, &, = e, + (— C;;) . Comparing the foregoing two expressions for
o,, the following result is obtained [1]:

pol = %Céi e (1.9)
33 € TE;
as the law governing the variation of cracking parameter p. Substituting
Eq. 1.9 and Eq. 1.5 and inverting the matrix, the stiffness matrix D to be
used in the finite element program is then obtained.
Concrete may be considered to be isotropic. It follows that

Cy=1/E, Cy;3=1/E, (1.10)

where E = Young’s modulus, and the compliance matrix for partially
cracked concrete takes the following special form:

1 1 -y —v
C(p)=-E l 4 1 -» (1.11)
et e p!

and the limit of its inverse at p — 0 is

E 1 1 4 0

vy 1 0 (1.12)

Dfr=
2
I-»"[0 0 0

in which E = Young’s modulus and » = Poisson’s ratio. v
In computer finite element analysis, it is most convenient to use the

incremental loading technique. For this purpose, the incremental stress-

strain relations may be obtained differentiating Eq. 1.3 in which p from
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Eq. 1.9 is substituted. In a finite element program, it is also necessary to
enlarge the compliance and stiffness matrices to a 6 X 6 form, including
the rows and columns for shear strains and stresses. Most simply, these
may be considered to be the same as for a crack-free material, except that
the shear stiffness in the diagonal term needs to be reduced by an
empirical shear stiffness reduction factor [27,20]. More accurately, the
columns and rows for the shear behavior should reflect the frictional-di-
latant properties of cracks; see, €.g., [28,29]. The question of shear terms
is, however, often unimportant since fracture is geomaterials usually
occurs in principal stress directions.

During the passage of the fracture process zone through a fixed
station, the principal stress directions usually do not rotate significantly.
This justifies another simplifying assumption which has been implied in
the preceding formulation. It is the fact that we use total stress-strain
relations (Egs. 1.3 and 1.5) which are path-independent. In reality, all
inelastic behavior is path-dependent. Nevertheless, the assumption of
path-independence of the stress-strain relation in the vicinity of the
fracture front may be adequate for many situations. Note that the
microplane model outlined in the sequel provides the possibility to take
into account the path-dependence if one is willing to accept a more
complicated method of analysis (Eq. 1.93 in the sequel).

The difference of the total strain ¢, at the strain-softening branch from
the strain predicted for an uncracked material, i.e., &, =¢, — 0,/E, repre-
sents the strain which is caused by microcracking. If this strain is
integrated over the width of the crack band, i.e., & = ¢w,, one may
obtain from our stress-strain relation a stress-displacement relation. For
models in which the fracture is treated as a sharp interelement crack, this
displacement is analogous to the opening displacement, &, of such a
crack. In this sense, the present theory is equivalent to previous models
based on stress-displacement relations, especially the model of Hillerborg
et al. [18,19].

The blunt crack band approach lends itself logically to describing the
effect on fracture of the triaxial stress state in the vicinity of the crack
front. From extensive testing, it is known that in the presence of
transverse normal compression stresses, the tensile strength is diminished
[27,30,31,1,32]. The measured biaxial failure envelope (Figure 1.2d) seems
to consist approximately of a straight line which connects the failure
point for uniaxial tensile failure to that for uniaxial compression failure
in the (o, o,) plane. Accordingly, we may suppose that transverse
compressive stresses reduce the peak stress f to the value f;. given as:

forAf! <0: f.=f +k(o,+0,)

forAf!>0: fL=f (1.13)
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where f] = uniaxial tensile strength, f = uniaxial compression strength,
and k= f/f..

It is worth noting that if p is replaced by 1 — w, then w resembles the
damage parameter used in the so-called continuous damage mechanics,
which has recently been applied to concrete [33-37]. There is, however, a
fundamental difference in that the damage due to microcracking is
considered to be inseparable from a zone of a certain characteristic
width, w_, which is a fixed parameter, a material property.

Fracture characteristics. The fracture energy is defined as the energy
consumed by crack formation per unit area of the crack plane. It may be
calculated as

&,

G,=Ww,, W,= f ‘ode, (1.14)

0

in which w, is the width of the crack band (fracture process zone) and W;
the work of tensile stress per unit volume which is equal to the area
under the tensile stress-strain curve (Figure 1.2).

In theory, it should be possible to determine the crack band width w,
by analyzing the strain-localization instability that leads to fracture. It
should be possible to do this by extending the previous simple analysis of
this instability [4,5]. The practical calculation would be, however, quite
complicated in case of a large fracture process zone with a nonhomoge-
neously stressed specimen. Aside from that, if both W, and G, are
considered as constants, w, should also be a constant. This constant may
be determined empirically. For the bilinear tensile stress-strain relation
(Figure 1.2), one has

2G 1
W.o=1 —CL)fPw. =1f == 1.1
1 =3(Cy3— Ch) 1w =1fles, or w, Iz Cyy— Cy (1.15)

in which Cj; is negative. For isotropic material, C;; =1/E, C};=1/E,.
This equation indicates that the width of the fracture process zone,
precisely, the effective width corresponding to a uniform transverse
distribution of tensile strain over the crack band, may be determined by
measuring the softening compliance, the tensile strength, and the fracture
energy. To ensure that C;; be negative, Eq. 1.15 requires that

2, 2G,E
- or wy=-—_—.
fCs :

(1.16)

W, < Wy, where w, =

Note that the expression for w, is similar to the well-known Irwin’s
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expression for the size of the yielding zone [39-41], in which the yield
stress appears instead of f.

Because of the aforementioned approximate equivalence of the frac-
ture models utilizing stress-displacement relations for sharp cracks [18], it
seems that the precise width w, of the fracture process zone should not
matter, provided that correct energy dissipation due to crack formation is
assured. In other words, we should get essentially the same results
utilizing different widths of the crack band, provided we adjust the
softening compliance C3; so as to assure that the energy consumed in the
fracture process zone equals the given value G;. Thus, we may choose the
value w_, and then we may calculate C;; from Eq. 1.15, thereby assuring
the energy consumption to be correct. It has been numerically demon-
strated [1] (Figure 1.3) that indeed the analyses with different w, yield
essentially the same numerical results. If insistance is made on using the
correct experimentally observed softening compliance C3y, then, of course,
only one value of the crack band width w, is correct. It has been from this
condition that the value of w_ has been determined (Eq. 1.17 below).

Although the stress intensity factor, K, cannot be defined here as a
limiting property of the stress field, one may introduce an “effective” K,
employing the relation known from linear fracture mechanics: K,
= /GE’ where E’ = E for plane stress, and E’ = E /(1 — »?) for plane
strain. All the subsequent expressions involving G, could be stated in
terms of K, but there is no need for this.

Comparison with fracture test data. Most of the important test data from
the literature [25,43-57] have been successfully fitted in report [1] with
the present nonlinear fracture model. Some of the fits, obtained in {1] by
finite element analysis using square meshes, are shown in Figures 1.5 and
1.6 by the solid lines. The best possible fits obtainable with linear
fracture mechanics are shown for comparison in these figures as the
dashed lines (these fits were calculated also by the finite element method
using square meshes). In computations, the loading point was displaced
in small steps. Reaction, representing the load P, was evaluated at each
loading step. The same stress-strain relation was assumed to hold for all
finite elements. However, only some elements entered nonlinear behavior.
A plane stress state was assumed for all calculations.

In optimizing the data fits, it was discovered that the optimum width
on the crack band front was for all cases between 2d, and 54, and that
the crack band front width
w,=3d,, (1.17)
where d, = maximum aggregate size, was nearly optimum for all calcula-
tions. It was for this width w, that the area under the stress-strain curve
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Fig. 1.5. Comparison of theory with maximum load test data of Naus (1971) and Walsh
(1972) (P, = max, load according to strength concept).

yielded the correct value of the fracture energy needed to obtain good fits
of the test data. It thus appears that, at least for plain concretes, the
width of the crack band front may be predicted from the maximum
aggregate size. However, we must caution that the foregoing simple
relation might not hold for high strength concretes, in which the crack
band is, no doubt, more concentrated, since the difference between the
strengths of aggregate and matrix is less.

In view of Eq. 1.17, the present fracture theory is essentially a two
parameter theory. The two material parameters to be determined by
experiment are G; and f.

As for the length of the fracture zone (the strain-softening zone), its
value is not constant. A typical value is roughly 12 d,, but it can be as
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Fig. 1.6. Comparison of theory with maximum load test data by Kaplan (1961), Mindess et
al. (1977), Huang (1981), Carpinteri (1980), Shah and McGarry (1971), Gjerv et al. (1971),
and Hillerborg et al. (1976).
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Fig. 1.7. Finite element resvlts of BaZant and Oh (1983) on stress distribution (1,2,...7)
ahead of fracture front at successive loading stages, and corresponding states on stress-strain
curves. '

small as d,. This is illustrated by the calculated stress profiles at various
stages of loading, shown in Figure 1.7 along with the associated states on
the stress-strain diagram.

Figures 1.5 and 1.6 represent maximum load data, for which the
P,_..-values are normalized with regard to the engineering strength theory
predictions. The data are plotted as a function of either crack length or
structure size. Note that the theory also yields the size effect in bending
failure of unnotched beams (data of Hillerborg et al. in Figure 1.6). This
confirms that this effect is principally a fracture size effect, and not an
effect of statistical inhomogeneity of cross section. It is due to the fact
that, in a small beam, the fracture process zone cannot develop to full
length, causing the energy consumed by fracture to be less than in a deep
beam.

Nonlinear fracture properties are sometimes characterized by means
of R-curves (resistance curves), which represent the variations of ap-
parent fracture energy as a function of the crack extension from a notch.
In some recent works, the R-curves were considered as a basic material
property [41]. This is not so, however, according to the present theory,
since the R-curves can be unique only in the asymptotic sense, for
infinitely small crack extension from a notch. In the present calculations,
the resulting R-curves are somewhat different for different specimen
geometries, loading arrangements, etc. At the beginning of crack exten-
sion from a notch, the theory gives a smaller value of fracture energy
because the fracture process zone is not yet fully developed.

The apparent fracture energies needed to generate the curves in Figure
1.8 were obtained by evaluating for each crack length increment the total
loss of strain energy from all finite elements outside the crack band,
which behave elastically. The specimens for Sok et al.’s data in Figure 1.8
were prestressed in the direction parallel to crack, and this had to be
taken into account; Eq. 1.13 was used.
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factor corresponding to fracture energy G = G).

For details of data fitting and interpretation of test data, see [1]. Table
1.1 {1] summarizes the values of material parameters for all the data fits
shown. Note that the values of G, obtained with the present formulation
are considerably different from the G; values obtained by the experi-
mentalists in a different manner. Table 1.1 also lists the values G!" which
give the best fits for linear fracture mechanics (dashed lines).

The present theory has also been used to analyze the most important
test data on the fracture of rock available in the literature [58]. For rocks
of very different types, involving Indiana limestone, Carrara marble,
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Parameters for fracture test data (after Bazant and Oh, 1983)

TABLE 1

43

lin
f

(Ib./in.)
0.430 *
0.249 *
0.188 *
0.173 *
0.158 *
0.162 *
0.173 *
0.176 *
0.170*
0.047 *

G

Test series

(Ib./in.)
0224
0.113*
0.185 *
0.270 *
0.123 *
0.133*

(in.)

(in.)

(Ib./in.)
0.205 *
0.099 *
0.174*
0.188 *
0.126 *
0.133
0224+
0.193 *
0.088 *
0.108 *
0.108 *
0.101

(ksi)

(psi)

7.664 *
6.111*
6.356 *
5.535 *
5.845 *

1125+
1125+
1.50 *
1.50 *

0.375

460 *

1. Naus - no. 1

4,450 *
4,500 *
3,299 *
4,083 *

0.375
0.50

360 *

2. Naus - no. 2

347+

3. Walsh - no. 1

0.50
0.50
0.50

430 * -

4, Walsh - no. 2

1.50 *
1.50 *

273+

5. Walsh - no. 3

2,593 *
2,716 *
4,697 *
3,928 *

5.888 *
5.725 *
5.897 *
7.154 *
6.400 *
6.400 *
6.269 *

286 *

6. Walsh — no. 4

0.348 *
0.253 *
0.087 *
0.103 *
0.103 *
0.098 *

1.50 *

0.50
0.50

495 *

7. Walsh — no. §

1.50 *

414 *

8. Walsh - no. 6

1.125*
1.125*
1.125 *
1.50 *

0.375

6,260

370 *

9. Mindess, Lawrence, Kesler

10. Shah, McGarry

0.375

300 *

3,000 *
3,000 *
4,190

0.047 *
0.177*

0.375
0.50
0.50
0.50

300 °

11. Gjerv, Serensen, Arnesen

12. Kaplan

300 *

0.217 *

7.227 *
7.227*
10.14 *

0.337*
0245 *
0.147 *
0.201 *
0.118 *
2910+

1.50 *
1.50 *

0225 *
0.225 *
0.207 *
0.280 *
0.100 *

3,122+
3,122+
2,700 *
3,130 *
3,300 *
3,000 *
2,200 *
3,000 *
3,000 *
3,000 *

360 *

13. Huang - no. 1

0.217*

360 *

14. Huang - no. 2

0.128 *
0.315*
0.086 *
1.600 *
0.178 *
0.848 *
0.657 *
0.617*

1.125 *
2256 *
0471+

0.375

313+

15. Carpinteri — no. 1

6.130 *
8.758 *
21.66 *

0.752

356 *

16. Carpinteri — no. 2

0.157
0.472

400 *

17. Hillerborg, Modéer, P@éterss_on

18. Sok, Baron, Frangois

19. Brown

1416 *
0.141 *
0.750 *

2800
0.182*
0.855*

0746 *

740 *

11.93 *
1249 *

0.185 *
0.860 *

0.047

0.250 *

690 *

40

20. Wecharatana, Shah .

9.366 *

2.360 * 0.755 *
0.630 * 8.405 *

2.360 *

0.787

450 *

21. Entov, Yagust — no. 1

0.787

440 * 0.640 *

22. Entov, Yagust ~ no. 2

Note: psi = 6895 N/m?, Ib./in. =175.1 N/m, in. = 25.4 mm, ksi = 1000 psi; ¢, =1— E/E,.
* Asterisk indicates numbers estimated by calculations; without asterisk as reported.

19

Colorado oil shale, and Westerly granite, it was found that nearly
optimum fits are achieved for all these rocks with w, =5d, where
d8= grain size of rock. These studies involved the measurements of
maximum load, as well as of the resistance curves (R-curves). Statistical
regression analysis for the test data for various rocks also indicated a
significant improvement. The coefficient of variation of the deviation
from the regression line for the plot of relative maximum load values was
found to be 10.6%. This is to be compared with the value 15.2% for linear
fracture theory, and the value 79.6% for strength-based predictions.

The test data on concrete fracture available in the literature are
sufficiently numerous for a statistical regression analysis of the errors.
Figure 1.9 shows a regression analysis of the maximum load data for
twenty-two different concretes [1]. In this plot, the abscissa is X = P, /P,
and the ordinate is Y= P_ /P,, in which P, = measured maximum load
P,.., P = theoretical value of P_,,, and P,= failure loads calculated
according to the strength theory. If the theory were perfect, then the plot
of Y vs. X would have to be a straight line of slope 1.0, passing through
the origin. Thus, the vertical deviations of the data points from the
regression line characterize the errors of the theory. The coefficient of
variation, w, of the vertical deviation from the regression line in Figure

1.9is [1}:
For the present fracture theory w =0.066
For linear fracture theory w=0.267 (1.18)
For strength criterion w=10.650

These results confirm that the improvement achieved with the present
non-linear fracture theory is quite significant.

The test data available in the literature on the R-curves may be
analyzed similarly [1]. In this regression analysis, the fracture energy
values were normalized with regard to the product f/ d,, and the
theoretical values of G,/f,d, were plotted against the measured values of
this ratio. Again, if everything worked perfectly, this plot would have to
be a straight line of slope 1.0 and intercept 0.0. The standard errors for
the vertical deviations from this regression line have been calculated for
the sets of various test data available in the literature,

s =0.083

s=0.317

The values of the fracture energy obtained for the optimum fits of
various fracture data on concrete were further examined to see whether
the fracture energy could be approximately predicted from the elemen-

For the present fracture theory:
. (1.19)
For linear fracture theory:
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Fig. 1.9. (a) Statistical regression analysis of maximum load data from Figs. 5-6 based on
present theory ( P,, = measured maximum load, P; = theoretical maximum load); (b) same,
but for linear fracture mechanics; (c) same as (a) but in a different scale (data set numbers
~ see Table 1).

tary characteristics of concrete. The following approximate formula was
found [1}

G, =0.0214( f’ + 127) ’d,/E (1.20)

in which f/ must be in psi (psi = 6895 Pa), d, = maximum aggregate size,

21

o b) ¢)
(043 . z
. fe'q AN £)
f
eq
/ ©

v 'L ]
L \d) o \e)\ it ==

Fig. 1.10. Change of stress-strain relation for fracture process zone needed to ensure correct
energy dissipation.

E = elastic modulus, and G; is in Ib/in. The values C-;f predicted from Eq.
1.20 are listed in Table 1.1. The coefficient of variation of the errors
G, — G, is about 16% [1].

It must be emphasized, however, that Eq. 1.20 yields only the fracture
energy values for the present nonlinear theory, and not the apparent
fracture energy values determined according to linear fracture mechanics
or those determined from other theories.

Noting that G; = 3d, f'2(E~' — E[")/2, the following prediction for-
mula for E, further ensues:

—699 E

E=71567

(1.21)

1.3 Finite element implementation

Effect of element size. Eq. 1.16 gives the upper bound on the finite
element size for the present formulation. However, for large structures
such as dams or reactor vessels, much larger finite elements need to be
used and should be sufficient. This is indeed possible if the correct value
of fracture energy G; is preserved. To preserve it, the strength limit f/
needs to be reduced to a lower value f[, called the equivalent strength
[6,59,60]. We may either consider a vertical stress drop (Figure 1.10a) or
keep the correct declining slope E, (Figure 1.10b).

Consider a vertical stress drop and assume a uniform stress distribu-
tion across the crack band. The condition of preserving the correct
fracture energy for crack band advance Aa is AU = AU, — AU, = G,Aa
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where AU, = (c?w,Aa/2E")0,(0, — ¥'63) + 0;(0; — »'0;)] = strain energy
in the frontal element before its cracking, AU, = (k w,Aa/2E")e"} =
strain energy in this element after cracking; o, 6, = initial transverse and
longitudinal normal stresses ‘in the element, o, = longitudinal normal
stress after cracking; w,, = h = element side if the crack band runs in a
square mesh parallel to a mesh line; ¢; = empirical coefficient (close to 1)
taking into account the actual nonuniform stress distribution in the finite
element; and for plane stress £’ = E, »' =», while for plane strain
E'=E/(1 - %), » =v/(1 - ») where E = Young’s modulus of concrete
and » = its Poisson ratio. The formation of cracks has no effect on stress
o, parallel to cracks, and assuming that no loading change occurs which
would change o, during the crack advance, it follows that o] = 6,. Also,
set o, = f/, = equivalent strength, and substitute G, = w, fAE -
E")/2 as determined from a uniaxial test. From the condition AU, —
AU, = G;Aa, it is found that

) 2G.E"\'"? ) E \ w |2
fcq_c{( ) =i (1+ "Ex)wcr’r ’

Wer Tt
g
re=1—2»"—> 0 (vertical stress drop) (1.22)

€
0,

The strength value f;, used in analysis must be increased as the element
size, w,,, decreases. Furthermore, a compressive normal stress parallel to
the crack plane causes a reduction of f;, or the effective fracture energy.
This result agrees with experience. However, the decrease of £, due to r
might be too strong since, at » =1/6, a compression o, = —60; would
reduce the tensile strength to zero, while biaxial failure test data indicate
that the tensile strength is nonzero for any ratio o,/0,. This means that
the effective fracture energy is probably also variable, as a function of
0,/0,, which is neglected in Eq. 1.22 (cf. Eq. 1.13). Nevertheless, for
0,/0, < — 6, the tensile strength is, no doubt, greatly reduced and so Eq.
1.22 might be acceptable for practical purposes. In previous works
[6,59,60], coefficient r; was not used (r;=1); the effect, however, was
almost nil since o, /0, was negligible in the examples solved.

Coefficient ¢,, which takes into account the nonuniformity of strain
distribution enforced in the frontal finite element by its shape function,
may be calibrated empirically, so that the results would agree with those
obtained from the energy criterion (Eq. 1.33 in the sequel). For a square
element consisting of two identical constant strain triangles, c,ﬁ =0.921
[6), while for that consisting of four identical constant strain triangles
(with a central node condensed out), ¢;y2 = 0.826 [59]. For a four-node
square with a single-point numerical integration and Flanagan-Be-
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lytschko’s optimal orthogonal (elastic) hour-glass control [61], ¢, = 0.74,
as determined by P. Pfeiffer at Northwestern University.

If the finite element size w, is up to a few time w, then it is best to
modify the stress-strain diagram in such a manner that both G; and f; are
preserved. This may be achieved by replacing the actual downward slope
E, by an effective one E, (Figure 1.10d). The condition of equal energy
dissipation is w. f2(E™' = E7')/2 = wee /" t(E™" = E[')/2, which yields
the rule

E

w E
—<f1-=1-1
Wf(l E()

[

(1.22a)

_E=

Thus, the downward slope E, must be made steeper as the finite element
is made larger. There is a limit for this; a vertical stress drop, for which
1/E, =0, and Eq. 1.22a indicates that this happens when w,;=w, (1 —
E/E,). So. a change of downward slope (Eq. 1.22) can be used to achieve
correct energy dissipation only if

WS Wy = wc(l + ——EE_) (1.22b)
t

If the finite element needs to be made larger, then one must keep a
vertical stress drop and adjust the strength limit according to Eq. 1.22;
see Figure 1.10a.

For relatively small structures it may be sometimes desirable to use
finite elements smaller than w, = 3d, (Figure 1.10f). Leaving aside (for
lack of data) the question of how important it is to keep a blunt fracture
front, the correct fracture energy may then be preserved by using a
downward slope £, that is milder (less steep) than the actual one, E,. This
slope may again be calculated from Eq. 1.22a, in which w /w,>1.
Obviously, there is now no mathematical limit on how small w,, can get.
Note that if one reduces only the width of the finite elements in the crack
band, permitting these elements to become elongated rectangles (Figure
1.10f), then a reduction of w, to a very small volume makes this
approach equivalent to that of Hillerborg et al. {18}, in which one uses a
stress displacement relation, the displacement being & = w,e..

Another possibility of preserving the correct fracture energy is to keep
the actual downward slope E, and change the peak stress value from f to
J.q (Figure 1.10b). This may be less realistic than the previous method
(Eq. 1.22a) for w,; < w;, but is simpler and avoids the limitation in Eq
1..22b. In this approach the stress-strain diagram remains geometrically
similar, and so this approach is easier to implement if one uses a curved
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stress-strain diagram. The energy balance condition remains the same as
before except that 1/E’ must now be replaced with (1 - E/E)/E".
Making this replacement in Eq. 1.22, one obtains

E -1/2 2G.E’ 1/2 w 1/2
fe'q=Cf(1+—) ( L ) =c,f,’( °) (correct slope E,)

—E, et Tt WerTs

(1.23)

where again r, = 1 — 2»’0; /3. In contrast to Eq. 22, this equation should
apply even for small structures (nonlinear fracture range). One should
also realize that the sudden stress drop is an inappropriate assumption
for dynamic finite element programs since it generates spurious shock
waves [62,63,64].

For larger structures, it is found that the present method with an
abrupt stress drop gives results which are in excellent agreement with the
exact solutions for sharp cracks, and approximate these solutions just as
well as the method of sharp interelement cracks. This has been demon-
strated by BaZant and Cedolin [59,6,60,7) and one of these demonstra-
tions is shown in Fig. 1.12 in which a nondimensionalized load parameter
is plotted versus the crack length, a. The specimen is a rectangular panel
with a center crack, loaded by a uniform normal stress at top and
bottom. The calculation has been carried out for three different meshes
shown in Fig. 1.11, with finite element sizes in the ratios 4:2:1. (Note
that the exact solutions are slightly different for each mesh because the
boundary of each mesh was not exactly the same.) We see that, with finer
meshes, the present method can be used to obtain linear fracture mecha-
nics solutions.

The energy actually dissipated per unit extension of the crack band in
the finite element mesh is W’ =wf'?(E~' = E[')/2, which is propor-
tional to the width w of the frontal finite element. So, by reducing the
clement size to zero (w — 0), the energy that needs be supplied to
produce the fracture becomes vanishingly small if £/, E and E, are
constant. This conspicuously demonstrates the irrationality of using the
same complete stress-strain diagram regardless of the element size.

The foregoing deductions regarding the effect of element size are
based on the premise that the cracking front is single-element wide. This
premise is justified by two reasons:

1) If the fracture front is considered to be two or more elements wide,
then one finds that a deformation increment of localization type (see Sec.
4.2 in the sequel) consumes negative energy, i.€. the multi-element width
of the cracking front is unstable.

2) If the loading step is so small that the strain in only one element
goes over the peak stress point within this step, it is impossible to obtain
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Fig. 1.11. Numerical example of center-cracked rectangular panel and finite element meshes
used (after BaZzant and Cedolin, 1980).

a multiple-element cracking front. Cracking of one finite element relieves
the stress from its neighbor element on the side, and for this reason this
neighbor element can never be made to crack in subsequent loading
steps. One can get both finite elements to crack only if the loading step is
sufficiently large.

In the currently existing large finite element codes, propagation of
distributed (smeared) cracking from one element to another is being
determined on the basis of the tensile strength criterion. It is well known
that such a calculation cannot converge to correct results, since refine-
ment of the element size to zero leads to infinite stress concentrations just
ahead of the front cracked element, causing that the load needed for
further extension of the crack band tends always to zero. It has not been
however generally recognized that the use of the strength criterion can
lead to very large errors. According to the numerical results of BaZant
and Cedolin [6,59,60], the differences in the results can be as large as
100% when the finite element sizes differ as 4:2:1. To demonstrate it,
some of these results are reproduced in Fig. 1.11, in which the failure
load needed to cause further extension of the crack band is plotted for
the same panel as in Fig. 1.11 against the length of the crack band. The
curves obtained for meshes A, B, C of finite element sizes 4:2: 1 are seen
to be very far apart, whereas the curves for the finite element results on
the basis of the equivalent streneth anpproach for the ahrunt stress dron
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Fig. 1.12. Results for different mesh sizes for the panel from Fig. 1.11 (a) unreinforced, (b)
reinforced, no bond slip, (c) various reinforcements, bond slip (after BaZant and Cedolin,
1980), ( p = reinforcement ratio).
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(as well as those obtained on the basis of energy criterion in Eq. 1.33
below) agree with each other well; see Figure 1.12. The difference
between the curves is negligible and tends to zero as the mesh is refined.
The curves for the equivalent strength criterion closely agree with those
for the energy criterion.

The calculation results in Figure 1.2¢ further demonstrate that also in
the case of gradual strain softening, the finite element results strongly
depend on the chosen mesh size, and thus are unobjective. When,
however, the downward slope is varied to preserve the same energy, the
results for various meshes are about the same; see Figure 1.12c.

The foregoing examples demonstrate that strength criteria are
fundamentallly at fault, except for plastic failures, characterized by
constant rather than decreasing stress during failure. This is true not only
of tensile failure of plain concrete but also of reinforced concrete, and of
shear and compression failures whenever they exhibit strain softening.
Eventually, it will be necessary to develop fracture mechanics for com-
pression and shear failures of concrete if consistent results, independent
of the chosen mesh size, should be achieved.

On the other hand, the use of strength criterion in the literature often
vielded results that agreed well with measurements. This must have been
due to one of the following two reasons:

(1) The measurements were made on laboratory specimens the size of
which was the minimum possible with regard to the aggregate size. In this
case. f, = f{ and the strength analysis is correct (see the discussion below
Eq. 1.46). However, engineers need to extrapolate from such laboratory
structures to much larger real structures, and this is in question.

(2) Many concrete structures are fracture-insensitive, i.e., the tensile
strength of concrete has very little effect on the failure load. These
include the bending failure of beams or plates (which must be designed,
according to ACI Standard 318 [65], so that steel fails plastically before
concrete fails in compression), or failure of spiral or tied columns, in
which the confinement makes concrete relatively ductile. To determine
whether the structure if fracture-insensitive, the analyst needs to analyze
his structure twice — once for the actual strength value, and once for a
zero strength value. If the results of both analyses are not approximately
the same, fracture mechanics analysis is required.

As the size of the structure, and thus the size of the finite element,
becomes very large, the value of the equivalent strength (Eq. 1.22 or 1.23)
obviously tends to zero. In the limit, the no-tension material is obtained.
This approach was pioneered in the mid-1960’s by Zienkiewicz et al. as a
method for the cracking analysis of large rock masses.

Effect of mesh inclination. 1In a general situation, the fracture direction
need not be parallel to the mesh lines. A smoothly curved or inclined
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Fig. 1.13. (a) Zig-zag crack band propagation in finite element mesh in skew direction; (b)
False bias in crack direction caused by a slightly slanted mesh.

crack or crack band may then be conveniently represented as a zig-zag
crack band through the finite element mesh; see Fig. 1.13. Numerical
studies indicated that the equivalent strength and energy criteria may still
be used but must be modified.

Consider a rectangular mesh of mesh sizes Ax and Ay (Figure 1.13).
Let ay be the orientation angle of the zig-zag crack band (overall fracture
direction), ay, be the orientation angle of mesh lines x, and ac be the
direction of the cracks (microcracks) within the finite element (Figure
1.13). To be determined is the effective width w, of a smooth crack band
which is equivalent to the zig-zag band. Consider one cycle, of length /,
on the line connecting the centroids of the elements in the zig-zag band.
The number of elements per cycle / in the x-direction is N, =/ cos a /Ax,
and the number of those in the y-direction is N, =/sin a/Ay where
a = |ag — ayl (0° < a < 90°) (Figure 1.13). The area of the zig-zag band
per cycle / is (N,Ay)Ax + (N,Ax)A y. This area must equal the area Iw,
of the equivalent smooth crack band, in order to assure the same energy
content (assuming same stresses). This condition yields

wy=Axsina+Aycosa or wy=c.h, ¢, = V2 cos(45° — a) (1.24)

where the second equation applies to a square mesh (Ax=Ay=h).
Thus, we see that the value of w,; to be substituted into Egs. 1.22 or 1.23
for the equivalent strength depends on the inclination « of the mesh with
regard to the fracture direction. Note also that the correction factor due
to a is always between 1.0 and 1.41.

By a similar argument, for a three-dimensional orthogonal mesh of
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steps Ax, Ay, Az, the equivalent width of a three-dimensional zig-zag
pband may be shown to be

wo =P |Ax +[]Ay +|v;]Az (1.25)

where »,, ¥, »; are the direction cosines of the normal of the fracture
plane (overall fracture direction) with regard to the mesh coordinates.

Instead of Eq. 1.24 for effective width, a somewhat different equation,
namely, w,; = h/cos a, was used in previous work based on a different
argument. For a =0 and a = 45°, this equation gives the same values of
w,, as Eq. 1.24, and between 0 and 45° it gives slightly smaller values of
w,, (not smaller by more than 17%). However for a close to 90°, the
equation w,; = h/cos a is inapplicable; it cannot be correct when a — 90°
since it would give w,; — 0o, which in turn, would yield f;, — 0, causing
the equivalent strength criterion to always incorrectly indicate that a
crack band parallel to the mesh would always jump to the side, per-
pendicular to the crack direction [66]. Eq. 24 or 25 avoids this problem.

Although the foregoing equations give correct overall energy dissipa-
tion by a zig-zag crack band, they do not completely avoid a directional
bias due to the mesh as far as determining the direction of individual
jumps of the crack band front is concerned. For example, if a square
mesh in the center-cracked rectangular panel is slanted, but only mod-
erately so (Figure 1.13b), then the criterion in Eq. 1.24, used in compari-
son with the maximum principal stress, indicates the crack band to run
straight along the mesh line, i.e. in the inclined direction, while correctly
it should zig-zag so as to conform to an overall horizontal direction. It
appears rather difficult to avoid this type of bias. On the other hand, for
a 45° slant of a square mesh, this problem does not occur and the crack
band propagates zig-zag in an overall horizontal direction. Various
methods to avoid the bias due to the slant of the mesh are being studied
[66-68].

The calculation results must be also objective not only with regard to
the choice of the element size but also with regard to the choice of mesh
inclination. To demonstrate it, the example shown in Figure 1.11 has
been calculated [60] for a square mesh whose sides are inclined at 45°
with regard to the side of the rectangular panel. The results of this
calculation are shown in Figure 1.15, in which case 1b corresponds to this
inclined mesh and case 1a to a square mesh whose sides are parallel to
the sides of the panel. An excellent agreement of these two calculations is
seen. Similar agreement has been found for the inclined meshes when the
element size is varied [60]. A 26.6° inclination of the square mesh has
also been considered, and the results were again satisfactory, although
the scatter was larger than for the 45° inclination [60].
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Fig. 1.14. Illustration of bond slip and equivalent free bond slip length L* (after Bazant and
Cedolin, 1980).

Effect of reinforcement and bond slip. It has been customary in finite
element analysis of reinforced concrete to assume that the steel bars are
rigidly attached to concrete in the nodes of the mesh. This treatment is,
however, not only physically unjustified but also unobjective with regard
to the choice of mesh, and causes incorrect convergence. The bars
connecting the nodes on the opposite sides of the crack band represent
an elastic connection, the stiffness of which varies inversely as the
distance between the nodes, i.e., the width w of the crack band. Thus, as
the mesh size is refined to zero (and the crack band width tends to zero),
the stiffness of the connection across the crack band increases to infinity,
which prevents opening of the crack band. So it is clear that no cracking
can be obtained in the limit of a zero element size.

The effect of the mesh size on the results is demonstrated in Figure
1.12b where the load parameter is plotted vs. crack length a for a
rectangular panel [59]. The panel is the same as before, but is reinforced
by regularly and densely spaced vertical bars of various reinforcement
ratios p. We see that the results for the three meshes of sizes 4:2:1 differ
greatly, not only for the constant strength criterion but also for the
energy criterion.

To obtain an objective and properly convergent formulation, one must
take into account the bond slip. The bond slip occurs over a certain
length, L, (Figure 1.14). The most realistic treatment of bond slip would
call for using separate nodes for concrete and steel connected by some
nonlinear linkage elements representing forces transmitted by bond.
However, this approach would be too cumbersome. In the spirit of the
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approximations involved in the smeared crack band model, it should be
sufficient to introduce the bond slip in such a way that the stiffness of the
connection provided by the steel bars crossing the crack band would be
roughly correct and independent of the finite element mesh.

Thus, to simplify the formulation, the actual curvilinear variation of
the bond forces and the axial forces in the bars may be replaced by an
idealized piece-wise constant variation of the bond force and the corre-
sponding piece-wise linear variation of the actual axial force in the bars
(Figure 1.14). The latter may further be replaced by a piece-wise constant
variation of the axial force, such that the overall extension of the bar over
the distance of the bond slip would be roughly the same.

An estimate of L, will be made. Let 4, = cross section area of bar.
Since the bar force 4,0, must equilibrate the remote bar force 4,0/, plus
the bond force Uy L, the bond slip length is L, = (o, — 0.) A4,/ U], (Figure
1.14) where Uj = ultimate bond force per unit length of bar, as de-
termined by pull-out tests; o,, o, = tensile stress in the steel bar at the
point where it crosses the crack band, and at the end of the slipping
segment, respectively. Furthermore, o/ may be approximately related to
o,; Ao, must equal the force per bar carried jointly by steel and concrete
at the end of the slipping segment where the strain, ¢, = o//E,, is the
same for concrete and steel. Thus [E,p + E (1 — p)]o//E, = po, or 6, =
on'p/(1.—p+ n'p) in which n’ = E_/E_ = ratio of elastic moduli of steel
and concrete, and p = A4_/(A_ + A,) = steel ratio. The following result is
obtained [59]:

(1.26)

This equation gives the bond-slip length as a fixed property characteristic
of the steel-concrete composite.

For the purpose of finite element analysis, the actual bond-slip length
L, may be replaced by some modified length L* such that the steel stress
over this length is uniform and the slip of steel bar within concrete may
be considered as free. The length L* is determined from the condition
that the extension of the steel bar over the length L, would remain the
same. In this manner, the following expression for the equivalent free
bond-slip length can be derived [59]:

. A4t -p) s
= 2[4,(1 — p + pn) — pnat] [LS+ wo(l 4L, )] (1.27)

where w = width of the element-wide crack band, s, = spacing of cracks
within the crack band (s, =d,) and A% = the cross-section area of bar
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chosen for computations. One may conveniently choose such A% that Eq.
1.27 give a length which coincides with a distance between two nodes of
the mesh. As a crude approximation

L*=1L if At=A,. (1.28)

S

Using Eq. 1.27, the finite element analysis of the center-cracked
rectangular panel, the same one as before (Figure 1.11), yields consistent
results when finite elements of different sizes are used (Figure 1.12¢) [60].
Further, it has been demonstrated [60] that the use of different mesh sizes
for a reinforced panel yields consistent results even when the mesh is
inclined; see Figure 1.15 for a 45° mesh inclination and Figure 1.16 for a
26.6° inclination. :

The formula for the equivalent strength of concrete needs to be
generalized to reflect the bond slip effect. The stiffness of the concrete-
steel composite over band width w, for loading normal to the crack band
may be written as C,=(1—-p*)E/w.+c,p'E /L, where E,, E =
Young’s moduli of steel and concrete, L; = L¥ cos a, = actual free bond-
slip length projected on the normal to the crack band, a, = angle of the
reinforcing bars with this normal, p’ = p* cos’a, where cos’a, represents
a correction of stiffness of the steel bars due to their inclination (satisfy-
ing the condition that the stiffness be zero when a;=0), and ¢, =
empirical correction factor introducing the effect of deformation of
concrete outside the element that cracks but lies within length L¥. The
deformation f. /C, should equal the deformation feg/ C, where cg =
equivalent strength in absence of reinforcement, as given before, and
C,=E.(1-p')/w, = stiffness of concrete across the band width w,.
From the condition f/ /C, = 1.2/ C,, the following expression for f;, for

q
sudden stress drop may be obtained after algebraic rearrangements:

’ 2GrEc i Es 4
f“‘_c‘(_;'ef_ff—) 1+CPE:E; COS a (1.29)

if 1 — p is replaced by 1 (normally p < 1). This formula is the same as
that derived in [60]. by using the expression for the asymptotic displace-
ment field near the tip of an equivalent sharp crack [40], except for one
difference: The dependence on a,. By solving a number of examples for
reinforced panels on the basis of the energy criterion, and requiring that
the use of f;, would yield approximately the same results, a table of
optimum values of ¢, for various a, was set up {60); approximately,
¢, = 0.7 for all a,. Note that Eq. 1.29 satisfies the obvious condition that
[, must become the same as given by Eq. 1.22 when a, = 90°, or p =0,
or E.=0, or L* - oo.
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Fig. 1.15. Results for various finite element sizes for zig-zag crack band in a 45° inclined
mesh and parallel mesh, both for energy criterion and equivalent strength (after BaZant and
Cedolin, 1983).

A more realistic continuum treatment of reinforcement and bond slip
would be to approximate the reinforcing net by a continuum that is
allowed to slip against the continuum representing concrete, and consid-
er that the distributed (volume) forces transmitted between the two
continua depend on the relative slip displacement. This would be, how-
ever, more complicated.
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Using Eq. 1.27, the finite element analysis of the center-cracked
rectangular panel, the same one as before (Figure 1.11), yields consistent
results when finite elements of different sizes are used (Figure 1.12¢) [60].
Further, it has been demonstrated [60] that the use of different mesh sizes
for a reinforced panel yields consistent results even when the mesh is
inclined; see Figure 1.15 for a 45° mesh inclination and Figure 1.16 for a
26.6° inclination. :

The formula for the equivalent strength of concrete needs to be
generalized to reflect the bond slip effect. The stiffness of the concrete-
steel composite over band width w, for loading normal to the crack band
may be written as C,=(1-p*)E /w.+c,p'E/L; where E,, E_=
Young’s moduli of steel and concrete, L, = L¥ cos a, = actual free bond-
slip length projected on the normal to the crack band, a, = angle of the
reinforcing bars with this normal, p’ = p* cos?a, where cos’a, represents
a correction of stiffness of the steel bars due to their inclination (satisfy-
ing the condition that the stiffness be zero when a,=0), and ¢, =
empirical correction factor introducing the effect of deformation of
concrete outside the element that cracks but lies within length L*. The
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Co=E(1 —p')/w, = stiffness of concrete across the band width w,.
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that derived in [60]. by using the expression for the asymptotic displace-
ment field near the tip of an equivalent sharp crack [40], except for one
difference: The dependence on a,. By solving a number of examples for
reinforced panels on the basis of the energy criterion, and requiring that
the use of f,, would yield approximately the same results, a table of
optimum values of ¢, for various a, was set up [60]; approximately,
¢, = 0.7 for all a,. Note that Eq. 1.29 satisfies the obvious condition that
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Fig. 1.15. Results for various finite element sizes for zig-zag crack band in a 45° inclined
mesh and parallel mesh, both for energy criterion and equivalent strength (after BaZant and
Cedolin, 1983).

A more realistic continuum treatment of reinforcement and bond slip
would be to approximate the reinforcing net by a continuum that is
allowed to slip against the continuum representing concrete, and consid-
er that the distributed (volume) forces transmitted between the two
continua depend on the relative slip displacement. This would be, how-
ever, more complicated.
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Fig. 1.16. Results for various finite element sizes for zig-zag crack band in a 26.6° inclined
mesh, both for energy criterion and equivalence strength (after Bazant and Cedolin, 1983).

1.4 Energy considerations

Energy criterion for crack bands. When a structure is so large that a
sudden stress drop may be considered, and fracture energy is the only
important fracture property, the energy criterion may be directly imple-
mented in a finite element program [6,59]. One needs to evaluate in the
program the amount of energy, AW, that is available for fracture as the
crack bands extends by length Aa of one finite element.

A similar problem is the extension of a notch, and energy analysis of
this case was made by Rice [69]. The case of a crack band differs from
that of a notch by the fact that, as the element of volume AV ahead of the
crack front gets cracked (Figure 1.17), it loses merely the capability of
transmitting stresses across the crack plane, but remains capable of
carrying normal stresses parallel to the crack planes. Moreover, one must
take into account the fact that the volume AV may contain reinforcing
bars which, in the uncracked state, transmit to concrete interface forces.
We consider now the steel-concrete composite, and distinguish steel and
concrete by subscripts s and c. Assuming the material to be elastic (and
the applied forces to be conservative), the variation of the potential
energy of the structure due to the extension of the crack band into
volume AV is independent of the path in which this extension happens.
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Fig. 1.17. Assumed stages of extension of crack band to explain energy criterion (after
Bazant and Cedolin, 1980).

Consequently, as in [6], the crack extension may be decomposed in two
stages.

Stage I. Cracks are created in concrete inside volume AV of the
element ahead of the crack in the direction of principal tensile stress
(Figure 1.17b), while, at the same time, the deformations and stresses in
the rest of the body are imagined to remain fixed (frozen). This means
that one must introduce surface tractions AT° applied on the boundary
AS of volume AV, and distributed forces A A 0 apphed at the concrete-steel
interface, such that they replace the prewous action of concrete that
cracked upon the remaining volume ¥ — AV and upon the reinforcement
within AV.

Stage II. Next, forces AT? and Af? (Figure 1.17c) are released
(unfrozen) by gradually applying the opposite forces —AT? and -Af?,
reachmg in this way the final state.

Let «? and e ; be the displacements and strains before the crack band
advance and let u; and ¢;; be the same quantities after the crack band
advance. For the purpose of analysis, the reinforcement may be imagined
to be smeared in a separate parallel layer undergoing the same strains as
concrete. The interface forces between steel and concrete, Af 0, then
appear as volume forces applied on the concrete layer.

Upon passing from the initial to the intermediate state (Stage I), the
strains are kept unchanged, while the mechanical properties of concrete
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inside AV are varied. Thus, the correspondmg stress changes in concrete
in AV are given by Aoj, = of; — - E; 160 = (&0 + veR)EL/(1 — v'2) — Elel);
Ao, = 05; Adf, = of,. Here, o ° denotes the stress fraction carried before
cracking by concrete alone, defmed as force in concrete per unit area of
the steel-concrete composite; E. and ». are the Young’s modulus and
Poisson’s ratio of concrete. The conditions E/ = E_ and v} = »_ apply to
plane strain and E/=E_/(1 —»?) and »,=7»,/(1 —»,) to plane strain.
Assuming that cracks in concrete propagate in the dlrectlon of the
principal stress just ahead of the crack, one has Aoj, = oS =0 in the
above expressions. The change in potential energy of the system during
Stage I in Figure 1.17b is given by the elastic energy initially stored in AV
and released by cracking, i.e.,

AW = -fAV%( — EL&l) )av. (1.30)

The change in potential energy during Stage II in Figure 1.17 is given
by the work done by the forces AT and A /2 while they are being
released, i.e.,

AL= [ AT (u,—uf)dS+ [ 3070 (u,~u?)dv. (1.31)
AS ! AV i

Coefficients 1,/2 must be used because, for a sufficiently small Aa, the
forces T, and f, vary almost linearly during Stage II and reduce to zero
at the end of Stage II.

Not all of the energy that is supplied to the element that cracks from
the rest of the structure and from the unloading of concrete between the
cracks is available for producing new crack surfaces. Part of this energy is
consumed by the bond slip of reinforcing bars during cracking within
volume AV. This part may be expressed [60] as:

W, = [ U8 ds (1.32)

where 8, represents the relative tangential displacement between the bars
and the concrete, U}, is the average bond force during displacement §,,
per unit length of the bar (force during the slip) and s is the length of the
bar segment within the fracture process zone w, (and not within volume
AV since the energy consumed by bond slip would then depend on the
chosen element size and would thus spoil the objectivity and proper
convergence of the fracture criterion). Approximately, Uj = ultimate
bond force.

The energy criterion for the crack band extension may now be
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expressed as
AU=G,Ad — AW — AL — AW, > 0 stable
= 0 critical
> ( unstable (1.33)

where AU = energy that must be externally supplied to the structure to
extend the crack band of width & by length Aa. (AU = total energy in the
case of rapid, or adiabatic, fracture, and AU = Helmholtz’s free energy in
the case of slow, or isothermal, fracture.) If AU> 0, then no crack
extension can occur without supplying energy to the structure, and so the
crack band is stable, does not propagate. If AU < 0, crack band extension
provokes a spontaneous energy release by the structure, which is an
unstable situation, and so the crack extension must happen; the crack
then extends in a dynamic manner, and the excess energy —AU is
transformed into kinetic energy. If AU =0, no energy needs to be
supplied and none is released, and so the crack band may extend in a
static manner; in this case G; + AW, /Aa = (AW + AL)/Aa = finite dif-
ference approximation to the energy release rate of the structure. For this
approximation to be second-order accurate, the corresponding crack
band length a should be considered to reach up to the centroid of the
frontal element that undergoes cracking.

For practical calculation, the volume integral in Eq. 1.30 needs to be
expressed in terms of nodal displacements using the shape functions of
the finite element. The boundary integral in Eq. 1.31 is evaluated from
the change of nodal forces acting on volume AV from the outside [59].
Among the terms in Eq. 1.33, AW and AW, normally are relatively small
and often may be neglected, yielding AL/Aa = G; as the approximate
energy criterion [70].

The energy AL released from the surrounding body into AV may be,
alternatively, also calculated as the difference between the total strain
energy contained in all finite elements of the structure before and after
the crack advance. According to the principle of virtual work, the result
is exactly the same as that from Eq. 1.31 [6,59]. This calculation is
possible, however, only if the structure is perfectly elastic whereas Eq.
1.31 is correct even for inelastic behavior (assuming Aa to be so small
that T, and f., vary almost linearly during Stage I). It should also be
mentioned that Y.T. Pan, A. Marchertas and coworkers at Argonne
National Laboratory [66,71] calculate AL in their finite element analyses
(using the crack band approach) by means of the J-integral. They keep
the integration contour the same for various crack lengths. Their calcula-
tion yields the same AL because their integration contour passes only
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through the elastic part of the structure (except for crossing the crack
band behind the front where, however, the stresses are aimost zero).

In the case of a zig-zag, inclined crack band, the value of Aag in Eq.
1.33 must be replaced by the effective extension Aa in the direction of
the equivalent smoothed crack band. The notation from Figure 1.13a will
be adopted. Similarly to the derivation of Eq. 1.24, assume that Aa,; is
the same for each crack band advance within the cycle /, whether the
advance is in the x- or y-direction. Then Aa = 1//N where N=N_+ N,
= number of elements per cycle / (Figure 1.13a). This condition yields

A — cosa+sina -1 or
ef Ax Ay

h
V2 cos(45° — a)

Aa, = , (0 < a<90°) (1.34)

where the first equation applies to any rectangular mesh, and the second
one to a square mesh (Ax=Ay=h).

Various numerical examples confirm the use of Eq. 1.34 (or some
similar equation) is objective in that it gives results that are essentially
independent of the choice of the mesh [66-68).

Strain localization instability and interpretation of tensile test. The forma-
tion of fracture through a gradual deformation of a finite fracture process
zone may be treated as an instability of a nonlinear continuum, in which
a uniformly distributed strain localizes into a band of finite width, w,_, at
the boundary of which there is a jump in the value of strain while the
stress is continuous. With regard the shear failures in an infinite medium,
the concept of strain-localization instability was analyzed in detail by
Rice [72] and others, with particular attention to the effect of geometric
nonlinearities. A stability analysis of strain localization in tensile failures,
with particular attention to finite size bodies and to a combination of
strain-softening and unloading was presented in [4,5].

Following previous work [5], it is instructive to analyze the failure of a
uniformly stressed specimen subjected to uniaxial tension (Figure 1.18).
Such a specimen may serve as an approximate model for the fracture
process zone. The specimen is loaded through a spring of spring constant
C which represents either the spring constant of a testing machine per
unit cross section area of the specimen, or the stiffness (per unit area) of
the elastic support provided to the fracture process zone by the surround-
ing structure (the dimension of C is N/m per m?, i.e., N/m’). Let the
cross section of the specimen be 4 = 1. The appearance of the crack band
in the specimen may be considered as a sudden finite jump by distance
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(d}

Fig. 1.18. (a—c) Strain-localization in a tensile specimen serving as model for fracture
process zone; (d) possible effect of size on stress-strain diagram.

Aa =1 in which the front of the crack band moves from the left face to
the right face of the specimen (Fig. 1.18). For a uniaxial stress state of an
unreinforced specimen of length L, Egs. 1.30 and 1.31 take the form

0

Q

00

(1.35)

AW = %ooso =

0| I
by

00

0
AL=%0°(Au—Au0)=%ao[(L—wc)%—+-CT (1.36)

u

in which o and ¢ are the axial stress and strain; Au — Ay, is the change in
the relative displacement between the opposite face of the crack band of
width w; and E,, is the average unloading modulus (Figure 1.18c).

Alternatively, AW can be calculated from the changes of strains ¢, in
the crack band and ¢, outside the crack band. To satisfy equilibrium in
the tensile specimen in Figure 1.18c, the stress change 86 must be the
same inside and outside the crack band, and thus

de,=080/E,, 8¢,=80/E,. (1.37)

The energy consumed in the crack band and the energy released from the
rest of the specimen may now be calculated as

AU, = 22 505e, = (39) (1.38)
©= 3 %0% =W O '
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8o )(80) (80)°

AU—‘SO[(L w,) e, + = | = (L—w, e (1.39)

Expressing now the stability conditions similarly to Eq. 1.33, one has

AU= AU, — AU, > 0 stable

= ( critical
< 0 unstable (1.40)
Considering a finite stress change from o° to 0, ie., 80 = -0, for

which E, and E, in Egs. 1.38 and 1.39 must be replaced with the average
unloadmg modulus E, and with the average tangent modulus E, (E, <0),
respectively, one may substltute Egs. 1.33 and 1.35-39 into the crmcahty
condition AU = AU, — AU, = 0. The resulting equation involves G, and
solving it for G; one gets

5f=&(__1____1_ )002 (1.41)

in which a bar is attached to G; to indicate that this is an apparent
fracture energy value. It is not a constant since it depends on the stress o’
at which the fracture begins, which is governed by an incremental
stability condition and is not necessarily equal to the peak stress o,,.

In case that the instability which produces fracture happens right at
the peak stress point, Eq. 1.41 provides

G =&(%_+ - )o; (1.42)
u t

which is a constant and represents the fracture energy value correspond-
ing to the value used in the fracture model to fit test data. The value of G;
is characterized by the cross-hatched area in Figure 1.18a limited by the
unloading and the softening branches emanating from the peak stress
point.

When a curved stress-strain diagram is considered, one should in
general, distinguish two types of instability: incremental instability (in
the small, tangential) and instability in the large. The former concerns
infinitely small displacements, the latter concerns complete failure. The
value of ¢° at which the instability occurs may be determined from Eq.
1.40 by substituting Eqs. 1.38 and 1.39 in which, for the incremental
instability, one uses the incremental moduh E, and E,, and for the
instability in the large, one uses the E, and E, instead. This yields the

“
critical states [4,3]:
- E,\"!
__EE = (~M—[)‘- -1+ C:z ) (incremental) (1.43)
—_ - -1
- L E .
_ETE_' = (; -1+ C»: ) (in the large). (1.44)

As the strain in a tensile specimen is increased, E,, E,, E, and E, all
vary as a function of strain &. Two types of failure may occur: (1) either
the incremental critical state (Eq. 1.43) is reached first, or (2) the critical
state in the large (Eq. 1.44) is reached first. In the first case, failure is
static and occurs when Eq. 1.44 becomes satisfied. In the second case,
failure cannot happen statically, however when Eq. 1.43 is satisfied later,
there is an excess energy ( —AU) for the instability in the large, and then
the failure occurs dynamically as a snap-through instability, — AU being
converted into kinetic energy.

Considering the stress-strain diagram to be bilinear and E, to be
constant (Fig. 1.2) has the advantage that failure instability occurs always
at the peak stress point. The fracture energy G, is then constant and
equals the entire area under the tensile stress-strain diagram. Whether
this simplification is adequate for practical analysis of concrete structures
should be examined more closely.

From Egs. 1.43 and 1.44 it is noted that when the loading frame is
very soft (C — 0), or when the specimen is very long (L/w,— 0), the
strain localization starts at £, = 0, i.e,, at the peak stress point. When the
loading frame is very stiff (C — o0),-and when the specimen is very short
(L =w,_), Eq. 1.43 indicates a large magnitude of |E |, and so instability
never occurs. These are the requirements for being able to measure the
complete stress-strain curve. Eqs. 1.43 and 1.44 may be used also to
calculate the stiffness C of the loading frame needed to carry out tensile
tests with stable strain softening.

The analysis of strain localization sheds light on the interpretation of
the direct tensile test. The question is whether the strain can be evaluated
from the measured displacement assuming the strain distribution to be
uniform. The conditions in Eqgs. 1.43 and 1.44 answer this question in the
affirmative. Indeed, if the stress can be measured, it means that specimen
is not unstable, since otherwise measurement would be impossible. And if
it is not unstable, it means that the strain localization has not occurred,
i.e.,, the strain must be uniform (in the macroscopic sense, of course; we
do not consider microstresses here). So, in a stable direct tensile test, the
strain-softening zone can be wider than w,, which is a different situation
than in fracture process zones. There, since fracture is being formed, the
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Fig. 1.19. Structural size effect.

strain must localize, and a constant width w, of the strain-localization
zone may be a good approximation.

A related question, raised by some experimentalists, is whether not
only the failure point, but also the shape of the stress-strain diagram
(Figure 1.18d) is affected by the stiffness of the loading frame. In a
deterministic analysis, the stress-strain diagram should be considered as
unique, unaffected by the loading frame. The analysis in [5] shows that
observed variations of peak stress o, (tensile strength) as a function of
machine stiffness can be explained by the effect of statistical inhomo-
geneity of the material on strain localization. These effects are significant
only when the material is very inhomogeneous (poor quality concrete).

Structural size effect. The main purpose of fracture mechanics is to
correctly capture the size effect in the ultimate load capacity of a
structure. The size effect may be illustrated by considering structures of
different sizes but the same shape (e.g., beams of the same crack
length-to-depth ratio, and the same span-to-depth ratio), and plotting the
logarithm of nominal stress at failure, log 6y, versus log A where A =d/d,,
d = structure size (characteristic dimension), d, = maximum aggregate
size; see Figure 1.19. o, may be defined as P/bd (P = failure load,
b = thickness), possibly times some constant characterizing the shape of
the structure. According to all strength criteria (i.e., stress-based failure
criteria), such as those used in elastic, plastic or elastoplastic design (as
well as viscoelastic or viscoplastic design), ¢ is independent of d (see the
examples of beam bending, shear or torsion in Figure 1.19). Thus, the
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plot of log oy versus log A is a horizontal line (Figure 1.19), and the only
difference between elasticity and plasticity is the level at which this line is
drawn.

For linear fracture mechanics, this plot is completely different. It is
known that oy varies inversely as Vd for all linear fracture mechanics
solutions, and so the slope of the plot of log oy vs. log A is a straight line
of slope —1/2; see Figure 1.19.

The finite element solutions for the crack band theory with gradual
strain-softening represent a gradual transition from the horizontal line
for the strength criterion to the downward sloping straight line for the
linear fracture mechanics; see Figure 1.19. With the exception of very
large and massive concrete structures, such as dams, most concrete
structures fall into this transition range, in which neither the linear
fracture mechanics nor the strength criterion is applicable. Failures in
this transition range are obviously more difficult to analyze than those
for the two limiting cases, and this is the main challenge in failure
analysis of concrete structures.

In laboratory testing, the model structures have normally been made
the smallest size possible with regard to the aggregate size (cross sections
of 5 to 15 aggregate diameters). Thus, most of the laboratory tests of
beams, plates, panels, slabs, shells, etc. carried out thus far around the
world fall into the initial, nearly horizontal range of the diagram in
Figure. 1.19. Obviously, such tests miss the size effect. Present methods
of design embodied in the codes are all based on strength criteria, elastic
or plastic, and therefore they give an incorrect, unsafe extrapolation to
larger sizes characteristic of actual structures. This fact is certainly a
matter of concern, and calls for reexamination of existing design proce-
dures for those failures that are of brittle nature; e.g. the diagonal shear
failure and torsion failure of beams, punching failure of slabs or shells,
shear failure of deep beams and panels, cryptodome failure of top plate
in a reactor vessel, etc. Recently it has become popular to apply to these
failures plastic analysis, even though the failure is caused by concrete
cracking. This trend is, in the writer’s opinion, dubious and has led to
successful comparisons with test data only because a wide range of sizes
has not been tested in the laboratory.

The case of punching shear failure of slabs might be a good illustra-
tion. Plasticity analysis can be made to agree with the existing laboratory
data only if the tensile strength is considered to be about £ /200, which is
about 20-times less than the correct value of tensile strength. The proper
conclusion from such an agreement should not be that plasticity of
concrete works, but that it does nor work, and that fracture mechanics, is,
therefore, necessary. Obviously, the small value of nominal stress at
failure must be due to the fact that the existing laboratory test data do
not pertain to the initial horizontal portion of the diagram in Figure 1.19.
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Let us now try to derive a simple function to describe the typical
transition curve in Figure 1.19. Consider first a center-cracked rectangu-
lar panel (Figure 1.20a) of thickness b, width 24, and a sufficiently large
length 2 L. The panel is loaded by vertical normal stresses o at top and
bottom. The crack band is horizontal, symmetrically located, and has
length 24 and width w, = nd, (n = 3, d, = aggregate size). Before crack-
ing, the strain energy density in the panel is uniform and equals o2/2E.
The formation of the crack band may be imagined, as an approximation,
to relieve stress and strain energy from the area 1254361 in Figure.
1.20(a), in which the “stress diffusion” lines 25, 45, 16, 36 have a certain
fixed slope k, (close to 1). The energy release is

02

2E°

02
’

W=W,+W,, W, =2k,a2b2E

W, =2nd,ab (1.45)

Cracking is imagined to occur at fixed top and bottom boundaries such
that the contribution of the work of load ¢ on the boundaries is zero. The
potential energy release rate of the panel then is dW/da, and the energy
criterion in Eq. 1.33 reads dU/da =2G;b — dW /da = 2bG;— 2(2ka +

nd,)bo?/2E =0. After substituting G,=nd,(1—E/E)f'?/2E (Eq.
1.15), p may be solved from this equation; this yields o = Af* with

N (.
fr=rtm A= (3 n=d) (1.46)

45

E 2|a

A4 and C are constants when geometrically similar beams are considered.
They are independent of the size. f* may be called the size-reduced
strength. It is a characteristic of the entire structure (and must be
distinguished from f, , which is a characteristic of one finite element).
As a second example, consider a crack band of length a and width
w,=nd, (n=3) in a rectangular unreinforced beam of thickness b and
depth d, subjected to bending moment M. First consider that a < d
(short cracks). The formation of the crack band may be imagined, as an
approximation, to relieve the strain energy from the area 1264351 in
Figure 1.20b, where the “stress diffusion” lines 15 and 26 have a certain
empirical slope &, close to 1. Before cracking, the strain energy density at
the tensile face of beam is 62/2E where o, = 6M/bd?, and the same
value approximately applies over the whole region 1264351 if a < d.
Thus, the total energy release is W= W, + W,, W, = k,a%}{/2E, W, =
nd,acl/2 E. The potential energy release rate of the beam is 3W/9a, and
the energy criterion in Eq. 1.33 reads d0U/da = bG; — dW /da = bG; —
b(2k,a + nd Y6M/bd*)* /2 E = 0. Substitute G; = nd,(1 - E/E)) '} /2E
and evaluate the derivative dW,/da of constant M. Then substitute
M =o,(d—a)?/c, (where ¢, =const. = 6 for elastic strength analysis,
and ¢, = 4 for plastic strength analysis), and express o, from the result-
ing equation; this yields oy = Af* where f* is given by Eq. 1.46 with

2 E 2.kla
A—E-(d_a) \/1+_—E , C—-n—-‘;. (1.48)

Again C and A are constants when geometrically similar beams are
considered.

Thirdly, consider the same beam but a —d < d (short ligament);
Figure 1.20c. Let U = bG;a — (M6,/2) — W,. Here, W, = strain energy of
beam if no crack existed, which is independent of a, and ¢ = additional
rotation caused by crack band. Since the force resultants of the bending
stresses over the ligament are zero, these stresses should affect only a
region of size d— a, according to St. Venant’s principle. It may be
imagined that the localized bending moment M transmitted through the
Ii_gament d — a affects the region 1265781 in Figure 1.20c, with segments
18 and 26 equal to ky(d — a) where k, = empirical constant, close to 1.
Approximately, 6 = [2k,(d — a)+nd,IM/EI, where I, = b(d—a)’/12
= inertia moment of the ligament section. Substitute G; = (1 —
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E/El)ndaf’f/ZE. and evaluate the derivative d( M8 /2)/da at constant
M. Inserting the result, as well as the relation M =o(d — a)?/c,, into
the condition aU/da = G;— d(M8/2)/3a =0, and solving o from the
resulting relation, it follows that oy = Af* where f* is again given by Eq.
1.46, in which

E
=sVI*TE €73 g (1.49)

Eq. (1.46) can be derived for various other situations, e.g., edge-cracked
panels, crack band in infinite medium, double-cantilever specimen, etc.
The solutions are approximate in the evaluation of energy release;
however, this causes uncertainty only in the constants k, and k,, but not
in the form of Eq. 1.46. ‘

It appears that Eq. 1.46 might be of general applicability. This can be
verified by a dimensional analysis. Let the geometry of a given two-di-
mensional structure of thickness b be characterized by some set of
dimensions d, I, l,, I;,...,1,, and consider all geometrically similar
structures such that the ratios ¢, =1,/d (i=1,2,...,n) are the same, so
that size of the structure may be characterized by one characteristic
dimension d. From the preceding examples, note that fracture needs to
be described by two independent parameters — length a of the crack
band, and width nd, of the cracking front. It may be noted further (e.g.,
from Eq. 1.45) that the strain energy relieved by cracking may be
expressed as W= W, + W, where W, is the strain energy relieved from
the outside of the crack band, which is proportional to a?* (e.g., strain
energy contained in triangular areas 136 and 245 in Figure 1.20a), and
W, is the strain energy relieved from within the area and, occupied by the
crack band. To nondimensionalize these variables, one may set a® = ajd?
and and, = a,d* where a, and a, are the nondimensional parameters

and,
d 2

(1.50)

B a2=

als

a; =

representing the nondimensional length and the nondimensional area of
the crack band. The energy release by crack band formation may now be
generally expressed as
P\*d*b
W=f(€i,a1,a2)(‘l;1) Y3 (1.51)

where P is the given applied force or loading parameter, and function f
depends on the shape of the structure and of the crack band, but is
independent of size d. The condition of crack band propagation is
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aw/da=Gb, and differentiating equation (1.51) at constant §; (similar
structures) leads to (f,/d + f,nd,/d*)P?/2bE = Gb in which the nota-
tions f, =9f/3a, and f,=9f/3a, have been adopted. Setting G;=
nd (E~'—= E7")f7/2 (Eq. 1.15), P = oxbd, and d = Ad,, yicld the rela-
tion o = Af*, where f* is again given by Eq. 1.46 and

d 1 E
g A fz(1+-E‘)’ €=, (1.52)

where 4 and C are constant as the structure size is varied.

To sum up, the essential property which has led to Eq. 1.46 is the
dependence of energy release on both the crack band area and the crack
band length. If the energy release depended only on the crack band
length ( f, =0), one would get oy =(2GE/f, Y72 //d , which is the size
dependence of linear fracture mechanics. If it depended only on the crack
band area (f, =0), one would get the size dependence of plasticity
(o, = const.).

It may be concluded that Eq. 1.46 is of general applicability, as long as
the two nondimensional parameters a, and a, (and no further parame-
ters) are needed, and suffice, to characterize fracture.

For a small size relative to the size of aggregate, A -0, f* — f/, and
oy = Af!. For a very large size, A — oo, the relation

fE=f/VCX (A> ). (1.53)

holds. Thus, Eq. 1.46 asymptotically approaches the size effect of linear
fracture mechanics. Fracture-insensitive behavior is also a special case of
Eq. 146; C=0.

Eq. 1.46 may be checked against the test data of Walsh [56] who tested
geometrically similar three-point bent specimens of various beam depths
d. His test results for six different concretes are plotted in Fig. 1.21 as Y
vs. A where Y = (f//oy)>. In such plots Eq. 1.46 is a straight line of slope
C/A? and Y-intercept 1/4%. The regression lines corresponding to Eq.
1.46 are plotted in Fig. 1.21. It is seen that they agree reasonably well
with the data. For strength theory, the regression lines would have to be
horizontal, which is certainly not the case, and for linear fracture
mechanics, the regression lines would have to pass through the origin,
which is also evidently not the case.

Reinforcement located near the fracture front may have influence, too.
To examine it, consider the same center-cracked rectangular panel as
before (Figure 1.20d), reinforced by vertical steel bars which are spaced
uniformly and so closely that a smeared modeling is possible. The panel
is loaded on top and bottom by uniform normal stress ¢. Before cracking,
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Fig. 1.21. Regression analysis of Walsh’s (1972) fracture data.

the stress in concrete is o, = k.o where x, = E /[E(1—-p)+E.p], p=
steel ratio; E., E, = Young’s elastic moduli of concrete and steel. When
cracks form, the steel bars slip near the cracks, as discussed before (Eq.
1.27). For the same reasons as before, the frictional slip may be replaced
over the actual bond-slip length 2L, by free (frictionless) slip over a
modified, free bond-slip length 2L (Eq. 1.27), and assume perfect bond
beyond this length (Figure 1.20d). Consider that L*=L./2.

Formation on fracture relieves the stress in concrete from the region
1254361 in Figure 1.20(d), in which the “stress-diffusion” lines 16, 25, 36,
35 have a certain constant slope k,. The stress relief is, however, complete
only if this region is entirely within the free bond slip length 2 L¥; Figure
1.20(d). If crack band length a is so large that this region reaches beyond
the free bond slip length, then the tensions in the steel bars introduce
tensile stress into concrete within the triangular regions 5ab and 6cd in
Figure 1.20(d). The value of stress in steel within the slip region, o , is
less than (but probably close to) the stress that the steel carried before
cracking, i.e., 6, <o where x, =L /[E.(1-p)+ E, p]. Thus, the stress
resultant per unit area, applied on these triangular regions is < pkgo,
which produces in concrete within the triangular regions the stress o/
such that o/ < k.( pxo). This gives

0! =c pKK O (1.54)

where ¢, is a coefficient less than 1 but probably close to 1. The strain
energy release from the panel of thickness b may now be expressed as

(o)’ H, 2

W= (k1a2+anda)—2£:— —k—l(kla-—zL:)z_z"_E_ b (1.55)
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where H,=1if kja>2L}, and H, =0if k,a<2L!.

In the energy balance, the energy consumed by bond slip should be
included. The maximum slip of bars is at the crack axis and is roughly
(f'/E.)L,. At the ends of length 2L, the slip is zero, and so the mean
slip is about f/L /2 E,_. The bond stress is roughly U;, per unit length of
bar, as determined from pull-out tests. The number of steel bars per unit
cross section of panel is p/A4, where 4, = cross-section area of one bar,
and L ,=2L* So the work of bond stresses over length L, per unit
advance of the crack band is

,_p LLE
Wb“Ab E. Upb (1.56)

where b = panel thickness. In Egs. 1.56 and 1.55, further substitution
leads to L*=L_/2=c, A,/2U; where ¢, =0,— 0/ as defined in Eq.
1.26.

The energy balance condition for crack band advance may now be
written as bG, + W), = dW /da, where G;=nd,(1 — E./E,)f'/2E,. Dif-
ferentiating Eq. 1.55 and substituting, we obtain o, = A’f/ where o, = ko
and

PR SN
1+ CA

RN

(zn=3) (1.57)

E pc
A =/[A,/B,, C'=C/B,, A=1-— 3
1/1 1/] 1 1 _E(+ndaf(/,

2¢, A 2k
B =1+ Ha;d—: T]%(clpxs)z, C, =T‘[1 —2H,(c, px.)] )

Consider now geometrically similar panels (same a/d), with same
steel ratio p, and same bars, i.e., same 4, (also, ¢ = constant). Then, Eq.
1.57 indicates the same type of dependence on structure size, A, as Eq.
1.46, except that coefficient C’ is larger than C. This shifts the asymptotic
declining straight line in the plot of log f* versus log A to the right; see
Figure 1.22a. If the steel bar size is increased with the structure size, the
§ize effect becomes somewhat more pronounced since f* decreases as 4,
Increases.

The size effect in reinforced structures is seen to be less pronounced
fgr smaller sizes of the structure, but for large enough structure sizes the
size effect becomes just as significant as for unreinforced structures since
the asymptotic slope remains —1/2. This is, however, true only if the
f‘einforcement remains elastic. For a long enough crack band, the opening
in the center of its length becomes sufficiently large to cause the steel to
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Fig. 1.22. (a) Structural size effects in reinforced concrete structures, and (b) statistical size
effect of strength in structures.

yield, and that will completely alter the size effect. If the steel bars are
yielding, the strains are so large that all resistance of concrete is lost, and
the load is resisted by reinforcement alone. In that case, the value of o
becomes size independent. Therefore, in reinforced structures, the plot of
log f* versus log A eventually stops decreasing and approaches a horizon-
tal line. However, this limiting plastic value might be too low for
practical purposes.

Finally, it is instructive to compare the results to the well-known
statistical size effect. Concrete is heterogeneous, and the strength varies
randomly throughout a concrete structure. This variation is independent
of structure size. The stress gradient, on the other hand, normally varies
inversely with the structure size, and the region of peak stress becomes
larger in a larger structure. Therefore, the chance of encountering low
strength in the peak stress region is higher in a larger structure, and so
the apparent strength must decline with structure size. However, the
decline stops when the peak stress region becomes much larger than the
low strength regions. Therefore, all theories of the statistical size effect
produce a plot of log ey versus log A which tends to a horizontal
asymptote. This is completely different from the fracture-mechanics size
effect (Fig. 1.22b), except when yielding of reinforcement makes the
response plastic.

It seems that many observed size effects in concrete structures should
have been explained by fracture mechanics rather than statistical varia-
tion of strength. The dependence of the apparent bending strength on the
depth of plain concrete beams is a blatant example. If the test data do
not cover a very large range of A, both theories seem to work. This may
be misleading for extrapolations.

1.5 Applications and practical analysis

Diagonal shear failure of beams. Eq. 1.46 may be applied to introduce
the size effect into various existing strength-based formulas for failure of
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concrete structures. For example, the ACI or CEB-FIP code formulas for
the diagonal shear failure of beams with longitudinal reinforcement but
without web reinforcement involve no size effect. In an on-going study at
Northwestern University, J.K. Kim and BaZant analyzed failure data for
over 300 beams which have been tested in various laboratories throughout
the world and were reported in the literature. After determining and
optimizing an approximate semiempirical formula (similar to that in ACI
Code) for the nominal shear stress o, at failure as a function of the shear
span and of the longitudinal reinforcement ratio, the dependence of oy
on the size parameter A = d/d, has been analyzed statistically, using Eq.
1.46 for regression analysis of existing data of diagonal shear failure of
beams without web reinforcement, notably the data by Kani, Leonhardt,
Bhal, Walraven, Taylor, Rusch and Swamy [77-83].

Although most existing test data involve very small beam depths, there
exist a few data which involve beams of various depths. One result of the
ongoing study is the diagram in Figure 1.23 [84]. It is seen that the data
points are not well approximated by a horizontal line, which would mean
the absence of fracture mechanics type size effect; the data points agree
well with the function in Eq. 1.46, plotted as the solid curve. This is
better illustrated by statistical regression analysis in Figure 1.24, in which
Y =05? is plotted versus A. Function f*(A) appears in this plot as a
straight line of the equation Y=a+ b\ where a=(Af))™%, b=Ca.
Absence of the size effect would mean a horizontal regression line in
Figure 1.24, and this is clearly contradicted by the data. Despite a large
scatter, the data points exhibit an upward straight-line trend. Thus, the
existing data clearly confirm a significant size effect and justify Eq. 1.46.

Based on this analysis, it seems that most of the code formulas for
predicting the strength of structural members would be improved by
replacing in them f/ with f*. A more detailed investigation is needed,
however, and coefficient C needs to be determined for each case.

Reinhardt [85,86] has recently studied some of these data, and found
that they reasonably agree with a linear fracture mechanics size effect
(CA > 1). This type of size effect would correspond in Figure 1.24 to a
straight regression line passing through the origin, and in Figure 1.23,
this would correspond to an inclined straight regression line rather than a
curvilinear regression. It is seen from this figure that such trends are not
confirmed when all available test data are considered. The size effect of
linear fracture mechanics would be too strong. Clearly, the bulk of
existing test results for diagonal shear failure indicates the need for a
nonlinear fracture theory.

As an example of finite element fracture analysis, the results obtained
by Cedolin and Bazant [60] may be presented for the shear failure of the
panel sketched in Figure 1.25, which is reinforced only by horizontal steel
bars concentrated near the bottom of the panel, and is loaded by a
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Fig. 1.24. Same data as in fig. 23a plotted in linear regression.
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1.25. Finite element analysis of shear failure of deep beams (after Bazant and Cedolin,

1982, 1983),



54

vertical force at midspan. The crack band path is not known is advance
but is to be found. Among the elements sharing a side with the crack
front element, the crack band was assumed to spread into that element in
which the principal tensile stress is the largest. The analysis was carried
out both for the actual tensile strength f;” and for the equivalent strength
feq- The displacement at the loading point was introduced in small
increments. At each load step, Newton-Raphson iterative procedure was
used to redistribute the unbalanced nodal forces due to cracking until a
stable crack band configuration was reached. Linear elastic behavior was
assumed for concrete in compression.

The analysis was carried out for three different meshes (A, B and C in
Figure 1.25), in which the finite element sizes are in the ratio 4:2:1. The
load-deflection curves obtained for these three meshes are plotted in
Figure 1.25. Even though this problem is less sensitive to the value of
tensile strength than others, the deflection curves are more consistent for
the equivalent strength criterion. The element size effect is largest for the
value of the load at which the cracking zone reaches a certain fixed
distance from the top. This distance was fixed as one-half of the size of
the element in the crudest mesh (A), which then equals a distance of one
element for mesh B, and of two elements for mesh C. The loads for which
the cracking zone reaches this distance from the top are indicated in
Figure 1.25 by horizontal arrows. For the equivalent strength criterion,
they differ from each other much less than they do for the fixed tensile
strength criterion. Furthermore, it was found (see Closure of [59]) that
the crack patterns for meshes A, B and C are rather different and, in
particular, the cracking zone for the finest mesh is not diffuse but
localizes into narrow, separate crack bands of single element width at the
front. This behavior is obtained, however, only when the loading steps
are taken to be so small that no more than one element cracks during the
first iteration of each loading step.

Deflections of cracking beams. As another application, consider deflec-
tions of unprestressed reinforced concrete beams. Their deflections are

je- b =

ﬂ \ A\\\ JLEC

Fig. 1.26. (a) Stress-distribution in cross sections of beams with tensile-strain softening: (b)
calculated beam deflections (Bazant and Oh, 1983) and their comparison with tests by
Gerstle et al. (1964, 1965), Burns and Siess (1966), and Hollington (1970).

<
\

55

40} S €0
v,
€ o} T et
£ £ P r-d
o o /
= x V
g 20} 6" g 0t
£ soon | g 6
:o Le69 g / L-68"
28~ 7 —
—— Theory 4 3
10 s Y —
===~ Sinha, Gerstie, Tulin{I964) s g Theory
==== Agrawal, Tulin, Gerstie (1965)
° £ L 1 o L L L
[} Q00023 0.000% 0.00075 [s] Q.00025 0.0005 Q000758 000
Curvature {in.") Curvature (in)
20 20
Beom J-11 ol Beam v-17
g -
, 7
6l Theory e 16l /,
-=-=8uyrns, Siess (I19686) i /,
L o L 7
3. // @ //
St ¢ anzp 4
e ,I -
- F ’ & r
° e ©
S 8l 7 8 8 00
o /s e} 2m8
5 A 12 L 12°]
/e 298| Loiaa” 248 Liae”
ok ok o o
8* [ Y
o i 1 1 i L L L L 1 i
o 1] 0.2 0.3 o4 o0s o€ o.7 cO [+R] 0.2 0‘3 0:4 0.3 o8
Deflection ot Midspon {in.) Deflaction at Midspan {in.)
10 IOl
Beam S-8 Beom T-9 e
e~ . -1 d
, 4
, 4
2 % 2 g
2er s - -
€ 4 € '/ oo
4 12 ~ B af ‘ 2 P
§ Le108 3 4 204| Le108°
. s /
2t — Theory 2+
_ - Burns, Sless {1966)
o 1 1 1 1 1 o N i 1 i’ 1
[+] =X} 0.2 0.3 a4 05 [0} o o 0.2 03 04 05 06
Deflection ot Midspan (in.) Deflection at Midspan (in.)
(K- L8
(a) Beam No. 61-63 (b) Beam No. 64-6€6
= Theory
-2 o -=== Simplitied Modet
= MYr © Hollington (1970)
§
]
&
<
8 2] s
84 18
oL L 1 1 ) L 1 i
0 300 €00 900 1200 © 300 600 900 1200
Test Duration {days) Test Duration {days)
Fig. 1.26 (b).



56

considerably less than those calculated under the assumption of no
cracking; obviously the beams crack, even under service loads. On the
other hand, if one assumes a no-tension material (which is the accepted
approach to strength analysis, justified by the fact that strength is
determined by the weakest cross section rather than the overall mean
behavior), then the calculated deflections are much larger than the
measured ones. This phenomenon, which is usually referred to as “ten-
sion-stiffening,” is due to progressive microcracking of concrete in the
tensile zone of beam, and so it should be possible to obtain correct
deflections using our present bilinear stress-strain relation with strain
softening (Figure 1.26).

This was done in [87]. The value of E, was predicted from Eq.1.21. On
the compression side, Saenz’ expression for strains due to uniaxial
compression was assumed. The uniaxial stress-strain diagram of steel was
considered as elastic—perfectly plastic, and the average strain of steel was
assumed to be equal to the average strain of concrete at the same level.
Based on these assumptions, the typical distributions of normal stress in
concrete were as shown in Figure 1.26a.

As far as the cracking front is concerned, it is assumed here that the
cracking does not localize and the strain everywhere follows the kine-
matic constraint expressed by the usual assumption that the cross sec-
tions remain plane and normal. The localization of cracking into certain
cross sections is assumed to be prevented by tensile reinforcement and by
the constraint provided to the cracking front by the compression zone
(for deep beams, or for shear failures, the absence of localization cannot
be assumed, of course).

Calculations based on the foregoing assumptions were compared [87]
with the measurements of beam curvatures and deflections reported in
the literature [89-92]. No fitting of data was attempted, i.e., no material
parameter was adjusted to improve the fit. The comparisons are shown in
Figure 1.26. The agreement is good, much better than the corresponding
case when the tensile resistance of concrete is neglected. It was also
shown [87] that the calculations give essentially the same results as the
well-known Branson’s empirical formula [76] within its range of validity
(service loads). This success indirectly lends further support to our
stress-strain relation for fracture.

The foregoing analysis of deflections, which applies to short time
loading, was further extended to long-time loading. The effective mod-
ulus method was used to take concrete creep into account. The creep
properties were predicted on the basis of double power law [93]. Since
this creep law does not apply for the tensile strain-softening range, and
since creep in this range may be expected to be larger, the tensile creep
deformations were multiplied by an empirical coefficient c,, the value of
which was determined so as to get the best fit of measured long-time
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Fig. 1.27. Determination of crack extension from R-curves.

deflections (c, = 3). No other material parameter was adjusted. The
results of calculations were compared [87] with the long-time deflections
of beams tested by Hollington [94]; the agreement was again good
(Figure 1.26). Furthermore, the long-time deflections have been calcu-
lated for typical singly and doubly reinforced beams, and were compared
with an ACI empirical formula. The agreement was good again [87], and
in particular, the strong effect of compression reinforcement on creep
deflections of cracked beams, as known from tests, was predicted cor-

rectly.

Application of R-curves. For practical nonlinear fracture analysis, it is
helpful to use the approach of resistance curves, or R-curves {95,41].
R-curve is the curve of effective or apparent fracture energy G, as a
function of the extension a of a crack from a notch (Figures 1.27a and
1.27b). For materials which deviate from linear fracture mechanics, it is
found that the amount of energy per unit crack extension, which flows
into the fracture process zone, increases as the crack extends until 1t
stabilizes at some constant limiting value, G;, unless some boundaries or
loads are near the fracture front.

As shown in the foregoing (Figure 1.6), in the crack band approach,
the R-curve can be predicted from the tensile strain-softening stress—strain
relation. The predictions are different for different body geometries, or
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different loads and loading paths. It appears, however, that the shape of
the R-curve (Figure 1.27) is nearly the same for most situations. Even
though this can be exactly true only for infinitely short extensions of a
crack from a notch, the R-curve can be assumed, for most purposes, to be
approximately a fixed material property, independent of body geometry
and the type of loading [41], as proposed in 1961 by Krafft et al. [95].
This assumption was proven to be rather successful for ductile fracture of
metals {41]. Following the work in [96], a simple form of fracture analysis
of concrete using the R-curve approach will be outlined.

Consider that the effective fracture energy, G_, depends on ¢ where
¢ =a— a,, a=length of crack with the notch, a, = length of the notch;
G, = G.(¢). The energy that must be supplied to the structure is U=
[G.da — Wi(a) (if the thickness of the body is b = 1), where W = release
of strain energy from the body, and G, effective fracture energy at
distance a from the notch. An equilibrium state of crack occurs when no
energy needs to be supplied to change a by 8a, i.e.,, when U =0 or
U= (G,— W)8a=0or

W'(a)=G(c) (1.59)

where W'(a)= 3W /da = energy release rate, and ¢ = a — a,. The equi-
librium crack state is stable if the second variation 82U is positive, i.e.,
32U = 1(3G,/9a — 3°W /3a*)8a*>> 0 or 3G.(c)/9c > dW'(a)/da. The
imit of stability, i.e., failure, occurs if

oW’(a) _ 9G_(¢)
da 3¢

(1.60)

For most structural situations, the strain energy release rate increases as
the crack grows, i.e. W’(a)> 0. By elastic structural analysis, the curve
Wi(a) corresponding to a unit load can be calculated. Then, for any load
P, W'(a)= P*W](a). In Figure 1.27, we sketch the curves W’(a) for a set
of increasing P-values, P,, P,, P,,... According to Eq. 1.59, the equi-
librium states of crack extension for various loads are given by the
intersections of these curves with the curve G,(c). These states are,
according to Eq. 1.60, stable if the slope of the G_(c)-curve is larger than
the slope of the W’(a)-curve (see points 1, 2, 3 in Figure 1.27b). As the
crack grows, the difference between the slopes 9G,/da and dW’/da
gradually diminishes until the slopes become equal at the failure point
(Figure 1.27); this point represents a critical state (or failure state)
according to Eq. 1.60. Beyond this point, the crack exterision is unstable.
In the case that W’ <0 for all a, Eq. 1.60 is always satisfied. The crack is
then stable for all a (Figure 1.27¢).

In the case that G, = constant = G, Eq. 60 reads 0 > dW’/da. This
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condition can never be satisfied if W’ increases with a (Figure 1.27d).
Thus, the fact that a stable crack growth from a notch exists implies that
G. cannot be constant but must increase.

For an approximate estimate of the values of W’(a), one may use
linear fracture mechanics provided that crack length a is interpreted as
the equivalent length that gives the same remote stress field as the crack
band. It might be difficult to actually determine this equivalent crack
length for a given situation, but for practical purposes this is not
necessary since the actual crack length at failure need not be known.

In a recent study [96], R-curves were used to analyze fracture test data
from the literature [44,45,47-49,51,53,56] obtained with bent specimens
or centér-cracked specimens (the same data as used in Figures 1.5 and
1.6). The R-curve was assumed in the form

Gc(c)=Gf(1—,Bce—‘/“"“) (c=a-a,) (1.61)

where G;, B, and ¢, are constants to be found by fitting test data, and

d, = maximum aggregate size. A more general expression, namely G, =

Gi[1 — B; exp(—c/c,d,)?]) was also studied but ¢ =r =1 was found to

be about optimum. The energy release rates, W{(a), for unit load

(P =1), were calculated as W{(a)= K?/E from the existing analytical

expressions for the stress intensity factor K, as listed for these specimens

in Tada’s manual [97]. The computational algorithm was as follows:

(1) Set the values of G, B;, ¢;, Aa (= 0.01 a,), and set a = a,,.

(2) Increment a, replacing a with a + Aa. Set c=a — a,.

(3) For each a, calculate W](a), and since W’ = W;P? determine the
load corresponding to a as P =[G.(c)/W;(a)]'/2. If this value of P is
larger than the previous P-value, return to 2.

(4) Now 0G_/dc < dW'/da, i.e. the specimen fails. Set P_, = P. (One
could interpolate for the exact a at which 3G,/d¢c = dW’ /da but this
is not necessary if Aa is as small as 0.01 a,.) Evaluate deviation of
given test data from the theory as AP, P P, where P =
measured value of maximum load.

(5) Repeat steps (1) to (4) for another case of the same test series (e.g.,
another notch depth a, or another beam depth H), and accumulate
the sum ® = 2(AP,,,,/P,)* where P,= prediction of failure load
according to the bending strength theory (based on the ligament
section).

The foregoing algorithm (computer subroutine) is then used with a

library optimization algorithm, such as Marquardt-Levenberg’s, to vary

the values of G;, B and c, until those values which give min ® are

determined. In this manner, it was found [96] that the values 8, = 0.72

and ¢, =1.85 are nearly optimum for all concretes tested, while the

values of G, vary substantially from concrete [96]. Note that the optimum

rror
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Fig. 1.28. Statistical comparison of measured failure loads with R-curve calculations for
various test data from literature (after Bazant and Cedolin, 1983).

G, values for the R-curve approach are not the same as those for the
finite element crack band approach.

To get an idea of the error magnitude, Figure 1.28 reproduces from
[96] a plot of Y versus X where Y =P,/P,, X=P, /P,, P, = measured
P,.x» P,=P,, obtained from the R-curve analysis for the optimum
material parameters determined as just described. This figure includes the
data from [44,45,47-49,51,53,56]. By regression analysis, the standard
deviation at the data centroid is found to be 0.037, and the coefficient of
variation 5.8%. This is quite satisfactory and proves the applicability of
the R-curve approach. Note that the error for the crack band finite
element model (Figure 1.9) is about the same.

The R-curve analysis may be simplified if the energy release rate
W’(a) may be approximated by a straight line within the R-curve region,
and if the R-curve is described by a parabola

Gc(c)=Gr[1—Bf(c—ﬁi;—1)2} (O<c<ed,). (1.62)

Egs. 1.59 and 1.60 then become P*W{’ = 3G,/dc and PX (W] + W'c)=

)8
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G.(c). Substituting Eq. 1.62, we may reduce these two equations to a
quadratic equation for c:

2 7
c 2 W] ( c ) 1
——1) - —+ -1}|=—. 1.63
(Clda ) Clda ( 1" C) Clda :Bl i ( )

Solving ¢ from this equation, G_.(c¢) may be evaluated and the failure load
may be calculated as P,, = G.(c)/(W]+ W{'c). For this solution, it
suffices to determine from linear fracture analysis the values of W7 and
W, at a = a, (and for unit load).

If W’ (a) is approximated by a parabola, an algebraic equation of
fourth degree must be solved to determine c.

In another recent study [98], the R-curve approach has been used
under the assumption that the nonlinear zone is negligibly small com-
pared to specimen dimensions, crack length and ligament size. In this
case, the stress field near the nonlinear zone may be solved considering
that the crack tip is surrounded by an infinite elastic medium.

1.6 Crack development

Crack spacing at uniform strain. Crack spacing has a major influence on
the crack width, which in turn, affects structural performance, including
shear transfer, tensile stiffness, energy absorption capability, ductility
and corrosion resistance. Recently, fracture mechanics energy analysis
has been used to derive formulas for the spacing of parallel cracks
produced by tension [88]. Only some simple solutions will be indicated
here.

Consider one steel bar of diameter D embedded in the axis of concrete
cylinder of diameter b (Figure 1.29). If the cross-section area of concrete
per bar is replaced by a circular area, this situation may be used also as
an approximate model for concrete reinforced by a regular array of
parallel bars subjected to a uniform uniaxial tension. Consider equidis-
tant cracks normal to the bar, denote their initial spacing as 2s (Figure
1.99), and try to determine the formation of further cracks that halve the
spacing to s. In the light of the preceding theory, there are now two
criteria to consider:

(1) The strength criterion decides whether the strain can exceed the
strain value e, for peak stress, f. If there is no bond slip, the strength
cniterion simply is

&> f!/E, (strength, no slip). (1.64)

If there is bond slip, and the ultimate bond force U}, per unit length of
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bar is constant and is given, there results the equilibrium condition
U,L,=A_.f, where A_=(b*>— D?*)m/4=area of concrete, and L, =
length over which there is slip. Since L, < s, it follows that

(B2 2
> /(6" — D) (strength, slip). (1.65)
4aU,

(2) For the energy criterion, the release of strain energy caused by
cracking may be estimated by imagining that the formation of the crack
relieves the strain energy from the shaded triangular region in Figure
1.29, limited by “stress-diffusion” lines of empirical slope k, close to 1.
Assuming that 25 > k(D — b), these triangular areas do not overlap, and
the volume per crack obtained by rotating these areas about the bar axis
is ¥, =wb*/12k, in which D? is neglected in comparison with b>. The
strain energy density before cracking is 62V, /2 E_ where o, = E,_¢_ if there
is no bond slip. The strain energy release due to formation of the new
cracks between the original ones is AW = V,0{/2E,. For the cracks to
form, this must equal or exceed the energy consumed by the crack
formation, which is G;7b?/4, D? being again neglected compared to b2.
This yields the condition

6kG,\'?
e > (—E%) (energy, no slip). (1.66)
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A similar formula may be derived for the case 25 < k(D-b).
If there is bond slip, then o, = Ujs/(wb”/4). Using this to express
AW,, as before, the following condition is obtained:

37%kEGH '
s> (—z—gUL,J——) (energy, slip). (1.67)
b

Egs. 1.64 to 1.67 give boundaries of halving of crack spacing in the
plot of spacing s versus steel strain e,; see Figure 1.29. In [88], more
involved formulas based on more realistic assumptions are given; for
them, the boundaries in Figure 1.29 become smoothly curved giving a
one-to-one correspondence between ¢, and s (curve e in Figure 1.29b and
1.29¢). Only with such a formulation it is possible to describe successive
halvings of crack spacing at increasing strain [88]; Figure 1.29c.

In Egs. 1.66 and 1.67, the energy criterion is used in an unorthodox
manner. Instead of using the energy balance condition for small incre-
ments (or rates), the energy balance condition was used for the transition
from no crack to a complete crack. This always indicates the cracking to
occur somewhat later in the loading process than does the incremental
energy condition (at point B instead of point A in Figure 1.27d). It seems
that when analyzing cracks that are not much longer than the aggregate
size, it makes no sense to consider infinitesimal crack length increments
since a continuum model makes no sense on that scale.

As the strain is increased, some mutually very remote cracks form
first, and all subsequent crack formation may be assumed to evolve by
means of halving of the spacing, to which Eqgs. 1.64 to 1.67 apply. The
manner of crack formation differs depending on whether the strength
criterion or the energy criterion is fulfilled first. The strength criterion
(Eq. 1.64 or 1.65) indicates merely that ¢, exceeds the strain e, for peak
stress. Therefore, if only the strength criterion is fulfilled, it means that
microcracking begins but complete cracks do not necessarily form. For
that to happen, the energy criterion (Eq. 1.66 or 1.67) must become also
satisfied. In this case, the crack formation is obviously gradual, static.

If the energy criterion (Eq. 1.66 or 1.67) is satisfied first, cracks cannot
begin to form, and so they cannot form at all. Then, if the strength
criterion (Eq. 1.64 or 1.65) becomes satisfied later, there is an excess
energy available for crack formation. The excess energy gets converted
into kinetic energy, and so the cracks form suddenly, dynamically
(emitting sound), in the manner of snap-through instability.

The theory just briefly outlined permitted achieving satisfactory com-
parisons with the measurements of crack spacing s and crack width w. As
an example, Figure 1.30, taken from {88], shows a comparison with Chi
and Kirstein’s data [100], in which the crack width is estimated as
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Fig. 1.30. Comparisons of theory with Chi and Kirstein’s (1958) measurements of crack
spacing and crack width (after Bazant and Oh, 1983).

w = g_s. Other data, e.g. those by Clark [101], Kaar and Mattock [102],
Hognestad [103}, and Mathey and Watstein [104] have been also success-
fully fitted [88].

Drying shrinkage cracks. Due to relatively small tensile strength and
large shrinkage strains, drying typically produces cracks in concrete. If
they are densely spaced and hair-thin they do little damage; however,
long-time deformations are usually greatly affected. In particular, the
drying creep as well as shrinkage cannot be realistically predicted without
taking the effect of cracking and its evolution into account [105,106].
Consider just one typical problem: the initial spacing of drying cracks
at the surface of a concrete halfspace. Using diffusion theory with given
diffusivity of moisture in concrete, one can calculate profiles of specific
moisture content of concrete at various times after the start of drying.
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Fig. 1.31. System of parallel shrinkage or thermal cracks in a halfspace, and illustrations of
constraint on instability mode by analogy with beam.

From these, one can get the profiles e, (x) of the free (unrestrained and
incompatible) shrinkage strains. Assume that the environmental humidity
is constant, and the moisture transmission at the surface is perfect. Then
these profiles may be regarded as approximately parabolic.

Let x, y, z be Cartesian coordinates, x being normal to the halfspace
surface. The stresses produced by the shrinkage strains may be solved
from the conditions (o —v0”)/E— ¢, =0 and o =0?, where »=
Poisson’s ratio of concrete and E, = E/(1 + ¢) = effective modulus for
elastic deformation plus creep, ¢ = ¢(¢, t,) = creep coefficient, which is a
function of drying duration ¢ — ¢, and age ¢, at drying start. Thus we
obtain o, = 0 = e, (x) E,¢c/(1 — »).

Assume now that a sudden formation of cracks normal to y-axis
(Figure 1.31) reduces stress o, to 0, i.e., the stress change is Ao, = —o,.
Let Ao, be the change of o,, and let A¢)® be the change of strain in
concrete between the cracks. From Hooke’s law A&l = (—ay0 —vlo,)/E
and Ae, = (Ao, + vo,”)/E = 0, the solution of which is Ao, = —vo?, Ae™
=-(1- vz)oyo/E. The loss of strain energy due to cracking per unit
area of halfspace surface is AW, = [(o, + 140,)Ae]dx or AW, =
P02/ = v2 X0l /E)dx = [Epe/( = »))HP el(x)dx(1 — »?)/2E.
Assuming the profile of e,(x) to be parabolic, we may substitute
e(x)=(1 — x/D)%, for x < D, and e, (x)=0 for x > D, where £, =
constant = shrinkage strain at halfspace surface, and D = penetration
depth of drying (which is a function of drying duration 7 — ¢,). Integra-
tion then yields AW, = 0.1 DE[&5, /(1 + ¢)]*(1 + »)/(1 — »).

Stresses o actually are not reduced completely to zero. Therefore, the
actual potential energy release will be rAW, where r is a certain fraction
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(0 < r <1) which can be determined only by exact solution of the stress
field. Probably r is between 0.6 and 0.8. The energy balance during crack
formation requires that rAW,s > G,a, where a = crack depth. This yields
the condition

10(1-v)G, (1+¢) a
s> F(1+7)E ( o D (energy) (1.68)

derived, without creep, in [99]. Note that factor 1/(1 + ¢) is applied to
€3, not E. The cracks, however, form early in the drying process, and
then ¢ = 0.

The ratio a/D, as well as the ratio a/s, can be determined by linear
fracture analysis; this was done by finite elements [74], and yielded a/D
as a certain function of D/s. For short cracks, one may use a/D = 1.5
and a = 2s as very crude estimates.

For typical properties of concrete, Eq. 1.68 yields s =5 c¢m, and for
typical properties of hardened portland cement paste, s =3 mm. The
corresponding crack widths, calculated as w = s, are 0.03 mm for
concrete, and 0.004 mm for cement paste [105]. Cracks as fine as this are
obviously not visible. Moreover, they are so fine that they cannot be
continuous. So, the drying cracks must begin as microcrack zones, which
means that concrete may still transmit substantial normal tensile stress
across the cracks. This is not necessarily so, however, at a later stage of
drying, as it will be shown in the next section.

The strength criterion simply requires that o, > f or

A %(1 -v)(1+¢) (strength). (1.69)

This criterion decides whether progressive microcracking can start but
not whether complete cracks form.

If the surface shrinkage &3, is sufficiently large, Eq. 1.69 is satisfied
before Eq. 1.68 and then the initial drying cracks form gradually,
statically. If &) is not large enough, the cracks can never initiate,
regardless of the penetration depth D. However, some other disturbance
can make the strength criterion satisfied, and then the cracks form
dynamically. -

In testing shrinkage and creep at drying, deleterious cracking may be
avoided on very thin specimens if the environmental humidity is varied
gradually and sufficiently slowly. Formulas indicating the maximum
admissible drying rate have been developed [105]. Also, a formula for
cracking of a tubular drying specimen has been derived, using the global
energy balance for complete crack formation [105]. Another interesting
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question is a possible coupling between drying and cracking due to the
effect of cracking on diffusivity.

Crack system instability. Whereas the cracks in a tensioned reinforced
bar may become denser as the loading proceeds, in some other situations,
they may become sparser. This is so for cracks growing toward a
compression region, a typical example of which is the system of parallel
equidistant drying cracks or cooling cracks growing perpendicularly to
the surface of a halfspace (Fig. 1.31).

In general, the work, U, that needs to be done to produce cracks of
lengths a; in an elastic body may be expressed as [107,99]

N a.
U=W(a, ay,....a5 D)+ ¥ [ Gy da; (1.70)
i=170

where W = strain energy, G; = fracture energy = material property (which
could depend on a;), D = loading parameter which represents here the
penetration depth of drying. The equilibrium state of cracks is char-
acterized by a zero value of the first variation of U, i.e.,

m k

8U=Y (W,+G,)8a,+ ) Wda;=0 (1.711)
i=1 j=m+1

where W, = —3W /da, = energy release rates; i =1,...,m are the cracks

which grow (8a,>0); j=m+1,...,k are those which close (8a; <0);
and i=k+1,...,N are those which neither grow nor close (8a; = 0).
Since Eq. 1.71 must be satisfied for any admissible 8a,, it follows, for
equilibrium (nondynamic) crack extensions,

for8a,>0: —-W,=G,; forda,<0: W,=0. (1.72)

The first condition is the well-known Griffith failure criterion [40],
identical to Eq. 1.33. The cases — W, > G; and — W, <0 cannot happen
for equilibrium states because Eq. 1.71 could give 8U < 0. So it follows
that only the following crack length variations are admissible:

for - W, =G, : 8a;>0
for0< —-W,<G,: 8a,=0 (1.73)
for W,=0: 8a;<0

Equivalent statements can be made in terms of the stress intensity factors
K,=(-w/E)"
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The question of stability of, the states which satisfy the equilibrium
conditions (Eq. 1.71) is decided by the second variation of W [107,99]:

> 0 for all admissible 84;...stable
8U=1 %

U ~3a,-30,- = 0 for some admissible 84, .. .critical

n
tJ
=1 < 0 for some admissible 8q;...unstable

i=1j

(1.74)

in which U, =23%U/da,da,. When G; are independent of a, (the usual
case, except if one uses the R-curve approach), U, = W, = 0*W/0a,0a e
So, stability is decided not by the energy release rates but by their
derivatives. Eq. 1.74 further implies

> 0 for all n, 84, all admissible...stable
det, (U,,){ =0 for some n, admissible 8a,. . .critical (1.75)
< 0 for some n, admissible 8q;. . . unstable

where det,, = principal minors of matrix U, of sizes n < N. The eigenvec-
tor 8a, corresponding to the critical state is determined from the equation
system [107,99]:

2. Uda;=0. (1.76)

Jj=1

Consider now the parallel cracks that are initially of equal length
(Figure 1.31), and examine when the increments of a; can become
different, alternating between 8a;, and 8a,. In the 2 X2 matrix U,
(= W,,), there is the need to check the sign of U, = det,(U,,) = 9°U/da3,
and of dey(U,,). If del(U;;) =0, then Uy,Us, = U;yUs, or U = U7 (since
a, = a,), and the eigenvector is then given by U84, + U;,6a, =0 and
Uy,8a;, + U,,8a, = 0. Thus, if 3U/da, > 0, it follows that 8a,/8a, =
-Wh/ Wy = —W,,/W,,. Now, since the energy release rates
(—9W/0da;) should decrease with increasing a; if the crack system is
stable before the point of instability, it is expected that W,, >0 and
W,, > 0, and numerical calculations confirm that [107,99]. Thus, either
8a, or 8a, must be negative. A negative 8a, is, however, impossible if
— W /da,= G, (growing crack). So, this type of instability cannot hap-
pen.

This interesting situation is analogous to that of buckling of a continu-
ous beam with two spans (Figure 1.31) which are constrained so that they
can buckle only to the left. Without those one-sided constraints, the
spans would buckle in opposite directions (the first critical state). The
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Fig. 1.32. Evolution of crack lengths in a system of parallel cracks in Fig. 31 (after BaZant,
Ohtsubo, Aoh, 1979).

presence of one-sided constraints makes the first critical state inapplica-
ble and causes that the beam can buckle only in the second critical mode,
in which both spans deflect to the left. The same must happen for the
crack system, i.e. instability can arise only due to the second critical
condition, W,, = 0. In that case, since the eigenvector is given by W,,8a,
+ Wy8a, =0, it follows that W,;8a, = 0, and since W,, # 0 according to
numerical calculations, 8a, =0, while 8a; cannot be negative since
—0W/da, = G,. So, there exists an instability such that 8a, >0 and
8a, =0 at constant D. '

These conclusions and further, more detailed analysis [99] indicate the
following evolution of the parallel crack system. Equally spaced drying
cracks extend at first at equal length (a, =a,) as the drying front
advances into the halfspace. The (2 X 2) determinant of 3°U/da,da,
vanishes first, but this does not represent any critical state. Subsequently,
32U/da? vanishes, and this does represent a critical state at which each
other crack gets arrested. Further growth of cracks at equal length is
impossible since it is unstable (as 32U/da2 < 0), even though the energy
balance condition (Eq. 1.71) is satisfied. Rather, cracks a, suddenly jump
ahead at constant a, and constant D (Figure 1.32). Then cracks a, extend
again gradually as the drying proceeds (D increases). At the same time,
cracks a stop growing and dU/da, gradually diminishes as a, and D
increase, until 9U/da, becomes zero; this represents a second critical
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state, which can be shown to correspond to a vanishing (2 X 2) determi-
nant of U, . At this point, cracks a, suddenly close over a certain part of
their length at constant a, and D. Thereafter, cracks a, grow at increas-
ing D. Because cracks a, are closed, this is equivalent to the initial
situation with equal crack lengths, but the spacing is doubled. The
process then gets repeated at doubled spacing, quadrupled spacing, etc.
(For a precise numerical calculation of this process, see [99].)

The foregoing behavior is true for a two-dimensional problem. In
three dimensions, the behavior is similar but the cracks form hexagonal
prisms rather than parallel planes. Some hexagon sides successively close
and the hexagon sizes multiply, as the remaining cracks open ever more
widely during drying. Drying mud-flats (in dried lakes) demonstrate this
behavior [108,109}.

The closing of cracks during the progress of drying has the effect that
the spacing and the width of the open cracks doubles at each critical
state. Numerical calculations [99,74] show that the lengths of the leading
cracks and the spacing of the open cracks fluctuate within the limits

067D<a<077D, 039D<s<061D (1.77)

where the first limit corresponds to the start of closing of every other
crack, and the second limit to the completion of their closing. According
to these inequalities, the average crack length and average crack spacing
are

a=072D, s=0.69a=0.5D. (1.78)

As the open cracks are getting more widely spaced, their opening w
increases. Roughly, w = se, (s=spacing). The drying cracks become
visible when, roughly, sey, > 0.2 mm, and considering that ¢, = 0.0006,
this happens for s > 30 cm, D > 60 cm and a > 43 cm. The required value
D is so large that cracks caused by drying in massive concrete walls
cannot become visible except after many years.

From the foregoing conclusion, it follows that the drying cracks
normally are too narrow to form distinct, sharp, and continuous cracks.
Rather, what has been referred to as cracks must be cracking bands (or
microcrack bands). The foregoing conclusion does not apply in other
situations, e.g., when cracking releases flexural strain energy. For exam-
ple, thin-wall tubular specimens exposed to drying may develop longitu-
dinal cracks in a radial plane. It was shown {105] that these cracks form
when the shrinkage strain reaches the value

1-» 12G, '
= (155 e (1.19)

) ]

where r = radius up to midthickness of tube wall. For a typical cement
aste specimen of r = 7.5 mm, the critical shrinkage strain is achieved by
a drop from 100% to 90% relative humidity [105].

In various types of tests of concrete or cement paste specimens, e.g., in
measurements of shrinkage and drying creep as a material property,
sorption isotherms, internal surface areas, etc., it is important to make
sure that no tensile cracks or microcracks be produced by drying (or
cooling). This problem was analyzed in detail in [105] from the view-
points of both linear and nonlinear diffusion theories. If one considers a
linear time variation of surface humidity, a perfect moisture transmission
at the surface, and a planar wall of thickness b, then the maximum rate
of change of environmental relative humidity h, to assure a crack-free
state is found to be [105]

dh, C
Max( - )_0.14 = (1.80)
where C = moisture diffusivity. For typical properties of structural con-
crete, this gives the rate 2.2% humidity change per year for a 6-inch thick
slab, which means that prevention of cracking cannot be assured in
normal specimens. The bulk of existing test data grossly violates this
condition. For an 0.75 mm thick wall, the maximum rate is 10% humidity
change per hour, and so tests of material properties at drying must be
carried out on extremely thin specimens, made of cement paste or fine
mortar, if cracking should be avoided. (Note, however, that cracking can
be also avoided by applying sufficient biaxial compression parallel to the
surface, and then large specimens are usable.)

The gradual closing of some cracks at the expense of a wider opening
of others exists in various other situations. For example, it has been
demonstrated [75] that equally spaced bending cracks growing toward the
neutral axis in an unreinforced or reinforced beam subjected to bending
or eccentric compression can exhibit this type of behavior. However, it is
also found that here this question is only academic since this type of
behavior is possible only for reinforcement percentages below about
0.18%, which do not represent realistic situations. For normal reinforced
beams and plates, the bending cracks do not exhibit the instability just
analyzed and maintain the same spacing, which is analyzed in a preced-
ing section from another viewpoint.

Crack path and shear fracture. The question of determining the crack

path is rather difficult and the present knowledge is fragmentary. For
many situations, it seems, one may assume that the crack propagates in
such a direction that a Mode I situation would prevail at fracture front,
(i-e., the stress and displacement fields would be symmetric). The Mode I
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Fig. 1.33. Shear fracture as a band of inclined microcracks.

situation is justified by the experimental fact that, due to crack surface
roughness, the ratio of crack slip increment to crack opening increment is
nearly zero at very small openings [28]. However, if Mode I always
applied, then shear fracture would be impossible, yet it exists in certain
situations, e.g., that pictured in Figure 1.33 where the shear zone is
narrow and concentrated. If the fracture would propagate in Mode I, it
would extend in 45° inclined directions which would quickly bring the
crack front into a zone of small principal tensile stress and arrest the
crack.

Shear fractures probably develop as a band of 45° inclined micro-
cracks, which themselves are of Mode 1 (symmetric) type (Figure 1.33).
This concept of shear fracture can be modeled by finite elements using
the blunt crack band approach. In this case, the fracture energy for the
band of inclined cracks would probably be about the same as for tensile
(Mode 1) crack band, i.e., equal to G;. However, the multiaxial stress
state at the crack front needs to be taken into account. Thus, if the
frontal element is subjected to pure shear, Eq. 1.22 (0; = —o0,) yields the
equivalent strength in diagonal tension:

1
== 1.81
feqll /1 + 2y f‘h ( )

where f;, is the equivalent strength in pure tension (Mode I), as given by
Eg. 1.22 with r;=1.

1.7 General model for progressive fracturing

Microplane Model, For some types of loading, especially the dynamic
ones, it may happen that a principal tensile stress of direction z causes
only partial cracking and fracture is completed later by superimposing
another loading of different principal strain direction. For such situa-
tions, one needs a softening stress-strain relation that can be applied for
general loading paths, in particular, loading paths with rotating principal
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stress directions. For this purpose, the stress-strain relation used before
(Eq. 1.12) needs to be generalized.

An attractive method to do this is the microplane model developed in
{110,111]. This model is defined by specifying the constitutive properties
by a relation between the stresses and strains acting within the micro-
structure on a plane of any orientation. This involves no tensorial
invariance restrictions. These restrictions can then be satisfied by a
suitable combination of planes of various orientations, e.g., in the case of
isotropy, each orientation must be equally frequent.

The idea of defining the inelastic behavior independently on planes of
different orientation within the material, and then in some way superim-
posing the inelastic effects from all planes, has a long history. It appeared
in Taylor’s work [112] on plasticity of polycrystalline metals. Batdorf and
Budianski [113] formulated the slip theory of plasticity, in which the
stresses acting on various planes of slip are obtained by resolving the
macroscopic applied stress, and the plastic strains (slips) from all planes
are then superimposed. The same superposition of inelastic strains was
used in the so-called multilaminate models of Zienkiewics et al. {114] and
Pande et al. [115,116], and in many works on plasticity of polycrystals.
Recently, a model of this type was developed to describe tensile strain-
softening due chiefly to microcracking [110]. While in previous works
dealing with plasticity of polycrystals, the stresses on various microplanes
were assumed to be equal to the resolved macroscopic stress, this new
model uses a similar assumption for part of the total strains.

The resultants of the stresses acting on the weak planes over unit areas
of the heterogeneous material will be called the microstresses, s, and the
strains of the heterogeneous material accumulated from the deformations
on the microplanes will be called the microstrains, e,;. With regard to the
interaction between the micro- and macro-levels, one may introduce the
following basic hypotheses [110,111].

Hypothesis 1. The tensor of macroscopic strain, ¢, is a sum of a
purely elastic macrostrain ¢, that is unaffected by cracking, and an
inelastic macrostrain e, which reflects the stress relaxation due to crack-
ing, i.e.,

eij == 87} + eij (1.82)

Here, Latin lower case subscripts refer to Cartesian coordinates x;
(i=1,2,3).

Hypothesis II. The normal microstrain e, which governs the progres-
sive development of cracking on a microplane of any orientation is equal
to the resolved macroscopic strain tensor e,; for the same plane, i.e.,
(1.83)

en=n,nje,-j
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in which n, = direction cosines of the unit normal n of the microplane,
and the repeated Latin lower case subscripts indicate a summation over
1,2, 3. .

Hypothesis III. The stress relaxation due to all microcracks normal to
n is characterized by assuming that the microstress s, on the microplanes
of any orientation is a function of the normal microstrain e, on the same
plane, i.e.,

27
sn=-—3—F(en). (1.84)

The factor (27/3) is introduced just for convenience, as it will later
cancel out.

The last hypothesis is similar to that made for shear microstresses and
microstrains in the slip theory of plasticity. Hypothesis II is however
opposite. There are three reasons for hypothesis II:

(1) Using resolved stresses rather than strains on the microplanes
would hardly allow describing strain-softening, since, in this case, there
are two strains corresponding to a given stress but only one stress
corresponding to a given strain.

(2) The microstrains must be stable when the macrostrains are fixed. It
has been experienced numerically that, in the case of strain-softening. the
model becomes unstable if resolved stresses rather than strains are used.

(3) The use of resolved strains, rather than stresses, seems to reflect the
microstructure of a brittle aggregate material better. The use of resolved
stresses is reasonable for polycrystalline metals in which local slips
scatter widely while the stress is roughly uniformly distributed throughout
the microstructure. By contrast, in a brittle aggregate material consisting
of hard inclusions embedded in a weak matrix, the stresses are far from
uniform, having sharp extremes at the locations where the surfaces of
aggregate pieces are nearest. The deformation of the thin layer of matrix
between two aggregate pieces, which yields the major contribution to
inelastic strain, is determined chiefly by the relative displacements of the
centroids of the two aggregate pieces, which roughly correspond to the
macroscopic strain. The microplanes may be imagined to represent the
thin layers of matrix and the bond planes between two adjacent aggre-
gate pieces (Figure 1.34), since microcracking is chiefly concentrated
there.

In Hypothesis 111, the relaxation of shear microstresses s, caused by
the shear and normal microstrains e, and e is neglected. This assump-
tion is probably quite good for very small crack openings, since it has
been deduced from test data on shearing of cracks in concrete that no
relative shear displacements on the rough interlocked cracks is possible
before a certain finite crack opening is produced, and that the shear
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stiffness of the cracks decreases rather slowly as the crack gradually
opens. One must admit, however, that Eq. 1.84 (Hypothesis III) is also
useful for its simplicity. It would be much more complicated to assume a
general relation between the normal and shear microstresses and micro-
strains on each plane.

The virtual work of stresses per unit volume may be written, according
to Eq. 1.82, as §W =g, ,8¢,; = 0, 8¢, + 0, 8¢,,. Summing the virtual work
due to 8¢, and de,, it gives W =078¢] + 5, 8¢, in which s,; is the
macrostress tensor resulting from s, on all planes, and ¢ is the stress
tensor corresponding to ;. Since both expressions for §W must hold for
any 8¢}, and any de,;, s,;, =07 =o0,,. Equilibrium conditions may be
expressed by means of the principle of virtual work:

8W°=gm,jae,j=2fssnaenf(n)ds (1.85)

in which § represents the surface of a unit hemisphere, the factor (47/3)
is due to integrating over the surface of a sphere of radius 1, and
dS = sin 8dfd¢ (Figure 1.34c). Note that there is no need to integrate
over the entire surface of the sphere, since the values of o, or e, are equal
at any two diametrically opposite points on the sphere. Function f(n)
introduces the relative frequency of planes of various orientations n,
contributing to inelastic stress relaxation.

Substituting Eqs. 1.83 and 1.84 into Eq. 1.85 yields o,;0e,, =
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[sF(e,)n;n de, f(n)dS, and because this must hold for any de,; it gives
27 pm/2 .

o, = F(e,)n,n f(n) sin ¢dodb. 1.86

o= [ [ F(ea)nin f(n) sin odo (1.86)

Furthermore, according to Eq. 1.83, dF(e,) = F'(e,)d(e,) =
F'(e,)n,n, de,,,, and thus the differentiation of Eq. 1.86 finally yields
do,; = D/, de,,, (1.87)

ijkm

in which [110,111]
c 27 /2 , . .
D,.j,m,=f0 ./(; aijkmF(en)f(n) sin pd¢dl, with a,,,,=nnn.n,,.

(1.88)

D;,, may be called the tangent stiffnesses of the microplane system.
Noting that the sequence of subscripts of Df,,, is immaterial, it is seen
that there are only six independent values of incremental stiffnesses. Eq.
1.88 applies to initially anisotropic solids. For isotropic solids, substitute
f(m)=1.

The mathematical structure of the present model may be geometrically
visualized with the rheologic model in Figure 1.34b.

The compliance corresponding to the additional elastic strain o must
satisfy isotropy conditions, and so

o =z 8, B+ s (8148, — 18,8, (1.89)

ijkm 9Ka ij km+ZGa ik jm ij%km

in which K and G? are certain bulk and shear moduli which cannot be
less than the actual initial bulk and shear moduli X and G. For fitting of
test data, it was assumed, with success, that 1/G* =0 [110].

Recalling Eq. 1.82 (and Figure 1.34b), the incremental stress-strain
relation may be written as

do;;= D, ,de,,,, with [Dijkm] = {(Dc_‘)ijkm + Cii'km] o (1.90)

Applying Eq. 1.88 to elastic deformations (with f(n)= 1), one finds
that the matrix in Eq. 1.88 always yields Poisson’s ratio v = 1 /4. This is
because the microplane shear stiffnesses are neglected. Since »=1/4 is
not quite true for concrete, the additional elastic strain must be used to
make a correction. Now, determine the value of K 2 needed to achieve the
desired Poisson’s ratio ». Let superscripts ¢ and a distinguish between the

values corresponding to Djj,,, and C?,,,. For uniaxial stress, it is found
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that £, = 06,/9K*+ ¢,,/E and ¢,, = 0,,/9K* — v°0,, /E® in which »° =
1/4 and E ¢=2rwE, /5, E,= F'(0)=initial normal stiffness for the mi-

croplane. Since &, = —vg,,, it follows that [110,111}:
+
Ki=—T2Ee (fory<e). (1.91)
9(»°—»)

This is, of course, under the assumption that 1/G* = 0.

The stress—strain relation for the microplanes, relating o, to ¢,, must
describe cracking all the way to complete fracture, at which o, reduces to -
zero. In view of the kinematics visualized in Figure 34d, it is clear that o,
as a function of &, must first rise, then reach a maximum, and then
gradually decline to zero. The final zero value is chosen to be attained
asymptotically, since no precise information exists on the final strain at
which ¢, =0, and since a smooth curve is convenient computationally.
The following expressions were used in computations [110] (Figure
1.34d):
fore,>0:0,=E.ee.e %, for e ,<0: o,=E,e, (1.92)
in which E, k and p are positive constants; k =1.8 X 107, p = 2.

The integral in Eq. 1.88 has to be evaluated numerically, approximat-
ing it by a finite sum [110,111]

N
Cim = 2 Wa| @ imF(€0)] - (1.93)

a=1

in which « refers to the values at certain numerical integration points on
a unit hemisphere (i.e., certain directions), and w, are the weights
associated with the integration points. Since in finite element programs
for incremental loading, the numerical integration needs to be carried out
a great number of times, a very efficient numerical integration formula is
needed. For the slip theory of plasticity, the integration was performed
using a rectangular grid in the § — ¢ plane. This formula is, however,
computationally inefficient since the integration points are crowded near
the poles, and since in the § — ¢ plane, the singularity arising from the
poles takes away the benefit from a use of high-order integration for-
mula.

Optimally, the integration points should be distributed over the
spherical surface as uniformly as possible. A perfectly uniform subdivi-
sion is obtained when the microplanes normal to the a-directions are the
faces of a regular polyhedron. A regular polyhedron with the most faces
is the icosahedron, for which N =10 (half the number of faces); such a
formula was proposed by Albrecht and Collatz [118].
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TABLE 1.2

Direction cosines and weights for 2 X 21 points (integrates exactly 9-th degree polynomials).

a Xt x5 x5 w
1 0.1875924741 0 0.9822469464 0.01984126984
2 0.7946544723 -0.5257311121 0.3035309991 0.01984126984
3 0.7946544723 0.5257311121 0.3035309991 0.01984126984
4 0.1875924741 - 0.8506508084 —0.4911234732 0.01984126984
5 0.7946544723 0 —-0.6070619982 0.01984126984
6 0.1875924741 0.8506508084 —0.4911234732 0.01984126984
7 0.5773502692 —0.3090169944 0.7557613141 0.02539682540
8 0.5773502692 0.3090169944 0.7557613141 0.02539682540
9 0.9341723590 0 0.3568220897 0.02539682540
10 0.5773502692 —0.8090169944 -0.1102640897 0.02539682540
1 0.9341723590 —0.3090169944 —0.1784110449 0.02539682540
12 0.9341723590 0.3090169944 —0.1784110449 0.02539682540
13 0.5773502692 0.8090169944 —0.1102640897 0.02539682540
14 0.5773502692 -05 —0.6454972244 0.02539682540
15 0.5773502692 0.5 —0.6454972244 0.02539682540
15 0.3568220898 —0.8090169944 0.4670861795 0.02539682540
17 0.3568220898 0 -0.9341723590 0.02539682540
18 0.3568220898 0.8090169944 0.4670861795 0.02539682540
19 0 -0.5 0.8660254038 0.02539682540
20 0 -0.5 - 0.8660254038 0.02539682540
21 0 1 0 0.02539682540

Numerical experience revealed, however, that 10 points are not enough

when strain-softening takes place; it was found that the strain-softening
curves calculated for uniaxial tensile stresses oriented at various angles
with regard to the a-directions significantly differ from each other, even
though within the strain-hardening range the differences are not very
large. Therefore, more than 10 points are needed, and then a perfectly
uniform spacing of a-directions is impossible.

Bazant and Oh [119] developed numerical integration formulas with
more than 10 points, which give consistent results even in the strain-
softening range. The most efficient formulas, with a nearly uniform
spacing of a-directions, are obtained by certain subdivisions of the faces
of an icosahedron and/or a dodecahedron [119)]. Such formulas do not
exhibit orthogonal symmetries. Other formulas which do were also devel-
oped [119]). Taylor series expansions on a sphere were applied and the
weights w, were solved from the condition that the greatest possible
number of terms of the Taylor series expansion of the error would cancel
out. The angular directions of certain integration points were further
determined so as to minimize the error term of the expansion. Formulas
involving 16, 21, 33, 37 and 61 points were derived, with errors of 10th,
12th and 14th order. Tables 1.2 and 1.3 define two of these numerical
integration formulas, with 21 and 25 points, one without, and one with

TABLE 3
Direction cosines and weights for 2X 25 points (integrates exactly 11-th degree polynomi-
als) *.
a Xy R x3 x3 we .
1 1 0 0 0.01269841058
2 0 1 0 0.01269841058
3 0 0 1 0.01269841058
4 0.7071067812 0.7071067812 0 0.02257495612
5 0.7071067812 —0.7071067812 0 0.02257495612
6 0.7071067812 0 0.7071067812 0.02257495612
7 0.7071067812 0 —0.7071067812 0.02257495612
8 0 0.7071067812 0.7071067812 0.02257495612
9 0 0.7071067812 —0.7071067812 0.02257495612
10 0.3015113354 0.3015113354 0.9045340398 0.02017333557
11 0.3015113354 0.3015113354 —0.9045340398 0.02017333557
12 0.3015113353 -0.3015113354 0.9045340398 0.02017333557
13 0.30151113354 —0.3015113354 —0.9045340398 0.02017333557
14 0.3015113354 0.9045340398 0.301513354 0.02017333557
15 0.3015113354 0.9045340398 —0.3015113354 0.02017333557
16 0.3015113354 —0.9045340398 0.3015113354 0.02017333557
17 0.3015113354 —0.9045340398 —-0.3015113354 0.02017333557
18 0.9045340398 0.3015113354 0.3015113354 0.02017333557
19 0.9045340398 0.3015113354 —0.3015113354 0.02017333557
20 0.9045340398 —0.3015113354 0.3015113354 0.02017333557
21 0.9045340398 —-0.3015113354 —0.3015113354 0.02017333557
22 0.5773502692 0.5773502692 0.5773502692 0.02109375117
23 0.5773502692 0.5773502692 —0.5773502692 0.02109375117
24 0.5773502692 —0.5773502692 0.5773502692 0.02109375117
25 0.5773502692 - 05773502692 —0.5773502692 0.02109375117

B = 25.239401°
* Note added in proof: This formula was previously obtained by McLaren and is given by
Stroud {178) with better accuracy than here.

orthogonal symmetry. These formulas give sufficient accuracy for most
practical purposes. For crude calculations, a formula with 16 points [119]
may sometimes also suffice. The directions of integration points are
illustrated in Fig. 1.35. Also shown are the stress-strain diagrams calcu-
lated with the formula for uniaxial tension applied in various directions
with regard to the integration points (directions a, b, ¢, d,...); the spread
of the curves characterizes the range of error.

The following numerical algorithm may be used for the microplane
model:

(1) Determine e{® from Eqs. 1.82 and 1.83 for all directiona =1,...,N.
In the first iteration of the loading step, use &, for the end of the previous
step, and in subsequent iterations, use the value of ¢, J determined for the
mid-step in the previous iteration. In structural analysis, repeat this for
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Fig. 1.35. Directions of integration points for some integration formulas for the surface of a
sphere. and response curves for universal tension in direction a, b, ¢, d, ... (after Bazant and
Oh, 1983).

all finite elements and for all integration points within each finite
element.

(2) For all directions n'®, evaluate F'(e,) for use in Eq. 1.93. Also
check for each direction whether unloading occurs, as indicated by
violation of the condition s Ae, > 0. If violated, replace F’(e,) with the
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unloading stiffness (which may be approximately taken as E,; however, a
better expression exists [120]).

(3) Evaluate Dy, from Eq. 1.88 and D, ,,, from Eq. 1.90. In struct-
ural analysis, repeat this for all elements and all integration points in
each element. When solving stress-strain curves, calculate then the incre-
ments of unknown stresses and unknown strains from Eq. 1.90. In
structural analysis, solve (by the finite element method) the increments of
nodal displacements from the given load increments, and subsequently
calculate the increments of ¢;; and o,; for all elements and all integration
points in each element. Then advance to the next iteration of the same
loading step, or advance to the next loading step.

In simulating uniaxial tensile loading of fixed direction, the unloading
criterion is not important since the only unloading occurs at moderate
compressive stresses, for which a perfectly elastic unloading may be
assumed.

The microplane model can be calibrated by comparison with direct
tensile tests which cover the strain-softening response. Such tests, which
can be carried out only in a very stiff testing machine and on sufficiently
small test specimens, have been performed by Evans and Marathe [21] as
well as others [22-25]. Optimal values of the three parameters of the
model, E,, k, and p, have been found [110] so as to achieve the best fits
of the data of Evans and Marathe. Some of these fits are shown as the
solid lines in Figure 1.34, and the data are shown as the dashed lines. A
better test of the model would, of course, be a tensile test under rotating
principal stress directions, but such tests have not yet been performed.

Note that, in this theory, one has only two material parameters, E,
and k, to determine by fitting test data. Trial-and-error approach is
sufficient for that.

Shear in cracked concrete. The microplane model just described appears
capable of modeling also the resistance of cracks in concrete for shear,
characterized by crack friction (aggregate interlock effect) and dilatancy.
For this purpose, the model needs to be enhanced by more realistic
¢, — &, curves for unloading, and if cyclic shearing is considered, then
also for reloading. This was done in [120].

Test data are available only for shear loading of blocks (Figure 1.36a)
that have been previously fully cracked in tension [28,121-126]. Even
though a finite separation is evident from the relative displacement of the
blocks, the resistance to shear is not zero, not even at the beginning of
shear. Obviously, there must be some contacts between the opposite
surfaces even after the tensile stress normal to the crack has already been
reduced to zero.

Using the microplane model, we treat the distinct crack in a rectangu-
lar test specimen as a band of certain finite width, w,. This is probably
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Fig. 1.36. Shear resistance of crack modeled by crack band.

not too unrealistic in view of the roughness of the crack surface, as well
as the fact that concrete near the crack must have been microcracked
during its previous tensile loading that produced the crack. In numerical
simulation, one starts with an intact concrete and implements first
uniaxial tensile loading in direction z until the stress o, is reduced to zero
(in practice, to 0.001 f). Subsequently, either a shear stress 7,, or a shear
strain v, ,, depending on the conditions of simulated test, is gradually
applied in small increments; see Figure 1.36b. Doing this, the normal
strain g, on the microplanes inclined +45° (Figure 1.36¢c) is increased,
and so o, remains zero on these microplanes. However, ¢, on the
microplanes inclined —45° (Figure 1.36¢) is decreased, and so contrac-
tion (unloading) occurs on those microplanes. For contraction, the nor-
mal stiffness is non-zero. Therefore, shear produces in the crack band a
set of inclined compression forces illustrated in Figure 1.36d. These
forces have a component along the crack, representing crack friction, and
a component normal to the crack, representing the pressure opposing
dilatancy. If such a pressure is not generated by the support conditions,
then a simultaneous expansion (dilatancy) occurs so as to reduce the
normal force component to zero.

Figure 1.36e shows the unloading o,—¢, curves that have been used in
[120], in which analytical expressions for these unloading curves may be
found. Typical response curves which have been simulated with the
microplane model are shown in Figure 1.37, where they are compared

83
-
E
£,
E 5 104
n
* . ©00 Wairaven , Reinhardt, 198)
38 71 1982 —~ 84
o {Test 1/02/04) 8
b3
g —— Theory ( Batant, Gambarova ~
1983}
(-] © 6
f.c* 367 MPa Tnt .:-
— d = 16mm o b
i ' 550000 °°°%" & 4
, [
ot o, =3 Theory
2 0° " 2 w=d
® 2 0 0000l 0, < “a
s oo °°°°°o (2x28 points)
7] 5o ° -5 0000 'Pswk and Pouioy
o < °°o°° 'c'c' 19MPg
okfao r Y v o N v r
] (1] 1.0 (K] 2.0 (o] 02 04 o8 1.} Lo
8, (mm) 8, (mm)

Fig. 1.37. Comparison of crack band model with measurements by Walraven and Reinhardt
(1981, 1982) and Park and Paulay (1974) (after Bazant and Gambarova, 1983).

with the data points obtained in‘Paulay and Loeber tests [121]. In [120],
it was shown that this model can fit essentially all the existing data on
aggregate interlock or crack shear.

Thus we have a model which correctly describes both the tensile
strain-softening up to full fracture and the crack shear in fully fractured
concrete. It may be expected that the model would also represent the
shear resistance of partially cracked concrete, and perhaps also shear
fracture. Another possible use is biaxial (spatial) nonproportional shear
loading, i.e., loading of the crack plane by shear stresses 7., and 7. (or
shear strains v,, and y,,) which do not increase in proportion.

If a simultaneous representation of both tensile fracture and crack
shear is not needed, one may of course use simpler models consisting in a
relation between the stress and relative displacement on the crack. For a
realistic description, one must use (in 2 dimensions) both the normal and
tangential relative displacements §, and 8, across a crack, and describe
the normal and shear stresses on the crack, ¢, and g,,, as a function of §,
and §,. In an incremental form, such a relation may be written as

donn — Bnn Bn[ dan l 94
do, |~ |B. B, ]\ds, (1.54)

in which B_,...,B,,, called crack stiffness coefficients, depend on 8, and
.. A model of this type was developed and callibrated by test data in
[28].

Experimental evidence [28,121-127] reveals that the crack stiffness
coefficients are extremely variable depending on the normal and tangen-
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tial displacements across the crack. For very small openings, the cracks
present a very large resistance to shear, while for large crack openings,
this resistance may become quite small. At small crack openings, even a
small tangential displacement produces large compressive stresses if
dilation of the crack is prevented, while for a wide crack even large
tangential displacements do not produce large compressive stresses.

Considering a system of dense, parallel and equidistant cracks, and
superimposing the deformations on the crack and those due to sohd
concrete between the cracks, one can obtain the flexibility matrix of
cracked concrete. For small crack openings, this matrix can be written in
the following explicit form [28]:

den Cll +A|°m|par;:zv Cl2’ _'tAp|0m|0n_m] d‘Jn

de, y=1| Gy, C,, O do,

dYnt iBlOm'p+lU,;2, 0 C33 + 3(p + l)lomlar;ll dOm
(1.95)

in which A4, B, p = material constants which depend on crack spacing;
Cy1s- . -»Cs; = flexibility coefficients for the concrete between the cracks,
which should properly be larger than those for intact concrete and should
reflect the damage done to concrete during previous tensile loading which
produced the cracks. The + signs refer to shear to the left and to the
right. Note that this matrix contains large off-diagonal terms which
determine normal stress produced by the shear strain in confined con-
crete, as well as the shear deformation caused by a change in normal
strain at constant shear stress. These effects are neglected in those models
in which crack response to shear is described only by assuming a finite,
smaller than elastic, shear stiffness.

As a cruder approximation, the crack stiffness matrix can be obtained
by assuming frictional dilatant slip with a constant friction coefficient k
and a constant dilatancy ratio a,, defining the magnitude of the ratio of
normal to tangential relative displacements across the crack. The result is
[29]

do, 1 v +2ay de,

E
do, )=1|v» Eﬁ—-’- v?  +2ayv de, ). (1.96)
do-m +k tkv (£2a,)(xk) {\de,

It is interesting that this matrix is singular, which is a consequence of the
friction relation. However, this singularity does not cause problems in
reinforced concrete analysis because the deformation is stabilized by
reinforcement or the boundary restraint.
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Finally, it should be pointed out that if the slip of cracks should be
prevented by reinforcement, then the reinforcement required to balance
given loads is larger than that when crack friction is neglected. This is
because the tensile reinforcement must balance not only the applied
loads but also the normal component of friction on the cracks [117,73].
Consideration of friction leads to a reinforcement design for which the
maximum deformations of orthogonally reinforced concrete, which occur
in the diagonal directions, are significantly less than for the design in
which friction is neglected.

1.8 Conclusion

In conclusion of the present work, it may be emphasized that fracture
mechanics offers a realistic and consistent approach to the analysis of
cracking in concrete structures. The form of the fracture mechanics to be
used must be nonlinear, taking into account the existence at the fracture
front of a finite nonlinear zone in which the material undergoes pro-
gressive microcracking. This type of fracture modeling is objective in that
it is independent of the chosen mesh, and it gives a correct structural size
effect. The effect of structure size on the apparent (nominal) strength of
concrete is the most important salient feature of fracture mechanics. The
present crack band theory gives the size effect as a gradual transition
from failures governed by the strength limit to failures governed by
fracture energy, with linear fracture mechanics as the limit for very large
structures. It appears that introduction of such a size effect into various
existing provisions of design codes, such as the ACI Code [65] or the
CEB-FIP Model Code [47] would improve the predictions of structural
response, particularly when the structure to be designed is much larger
than the laboratory structures that were used to verify and calibrate the
code provisions. In the writer’s opinion, improvement in regard to the
size effect should be taken as one important goal for further code
development.
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