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ABSTRACT

Closed form and finite element solutions are reviewed for several problems
with strain—-softening materials. In the closed form solutions, strain-
softening causes localizstion of the strain which is accompanied by an instan-
taneous vanishing of the stress. The finite element solutions agree closely
with analytic solutions in many cases and exhibit a rate of convergence only
slightly below that for linear problems. The main difficulty ‘which has been
identified in strain-softening constitutive models for damage is the absence of
energy dissipation in the strain-softening domain, and this can be corrected by
a nonlocal formulation, such as one which is reviewed here.

INTRODUCTION

In materials such as concrete or rock, failure occurs by progressive
damage which 1s manifested by phenomena such as microcracking and void for-
mation. In most engineering structures, the scale of these phenomena, as
compared to the scale of practical finite element meshes, is usually too small
to be modelled and their effect must be incorporated in the numerical analysis
through a homogenized model which exhibits strain—softening.

Strain-softening, unfortunately, when incorporated in a computational
model, exhibits undesirable characteristics. In static problems, finite
element solutions with strain-softening often exhibit a severe dependence on
element mesh size because of the inability of the mesh to adequately reproduce
the localization of strain which characterizes static strain-softening.
Furthermore, the solutions are physically inappropriate ian that with increasing
mesh refinement the energy dissipated in the strain-softening domain tends to
zero [1].

It was first hoped, although in retrospect little practical evidence
existed for this optimism, that in dynamic problems, strain-softening would not
be as troublesome because the inertia of the continuum would alleviate the
instability. Support for this can be found in the snapthrough of an arch; in
this problem the load-deflection curve contains a limit point after which the
force~deflection curve is anegative, or softens. A static solution for the
snapthrough is often very difficult, whereas a dynaamic solution is relatively
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straightforward because the inertia of the structure alleviates some of the
difficulties introduced by the negative slope in the force-deflection
relation. The use of strain-eoftening models has become quite commonplace in
dynamic concrete analysis. For example, in Marchertas et al. [3], strain-
goftening appeared to reproduce the salient features of dynamic concrete
response even when severe failure had developed. In the community as a whole,
a certain complacency evolved and little effort was devoted to examining the
basic soundness of these solutions with strain-softening.

Attention was recently focused on the validity of strain-softening models
by the work of Sandler and Wright [4], in which they asserted that strain-
softening models are basically ill-posed because a small difference in load
results in large changes in the response. Sandler's example, which will be
described in more detail later, consists of a one-dimensional rod with the
velocity prescribed at one end in which the material strain-softens. By
increasing the load slightly, a significantly different response was obtained
for the problem. Sandler and Wright also noted a strong dependence of the
solution on the mesh size. They concluded that “"a rate independent dynamic
continuum representation of strain-softening is incapable of reproducing
softening behavior in a dynamic simulation of experiments™ and then proceeded
to show that in this problem the introduction of viscosity eliminates the
sensitivity of the response to the load. Incidentally, as will be shown later
in this paper, viscous damping is not a panacea for the sensitivity observed in
strain-softening solutione; in certain problems which will be described herein,
sensitivity to mesh size persists even after the introduction of damping.

In an effort to develop a problem with strain-softening in which the
localization does not occur on the boundary, we investigated two problems: one,
which was presented in Ref. [5], consists-of a linear elastic bar joined to a
strain-softening bar. Solutions for this bar were obtained by the method of
images and compared to finite element solutions. These results exhibited
convergence with decreasing element length. A more interesting problem was
subsequently constructed in which tensile waves are initiated at two ende of a
bar so that strain-softening occurs at the center, Ref, [6]. It was shown that
a solution exists to this problem but that the behavior cf the strain-softening
domain is rather unusual: the strain-softening is limited to an infinitely thin
domain, in wihch the strain becomes instantaneously infinite and in which the
energy dissipation is zero.

In order to remedy some of these undesirable features of strain-softening
solutions, Bazant, Belytschko and co-workers [7-8]) proposed a new nonlocal
formulation for treating strain-softening. Nonlocal theories have been intro-
duced by Kroner, Kunin and Krumhans]l and other [9-12] and developed further by
Eringen and coworkers [12-14]. The basic ingredient of a nonlocal theory is
that the strains are not considered to be local quantities but reflect the
state of deformation within a finite volume about any point. In this respect,
the theory lends itself admirably to problems of heterogeneous media, where the
representation of the microscopic detail of strain-fields and cracks is an
insurmountable tagk. By dealing with an average of the strain over a finite
domain about each point, the heterogeneity can be neglected, and the dispersion
wvhich occurs in inhomogeneous materials can be modelled without any artifices.

An obvious question which arises is why one would want to introduce this
complication in order to desl with strain-softening. The reason for this is
that when the constitutive equations are applied locally at points, then, as
will be described here, no dissipation of energy occurs in the strain-softening
process. Thus the material can fail without any permanent dissipation of
energy, which is physically quite unrealistic. By introducing a nonlocsal
character into the constitutive law, it is possible to restrict the local-
ization to a domain of finite size just as is observed experimentally, snd to
achieve a finite amount of energy dissipation in the strain-softening domain.

However, we found we could not simply extend the existing nonlocal models
to account for strain-softening [15,16]). The existing nonlocal laws are not
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even self-adjoint, so they did not lead to symmetric stiffness matrices. This
lack of symmetry was found to -be quite undesirable and was corrected by intro-
ducing an averaging operation over the stresses. More important, it was found
that the strain-softening could only be introduced in the non-local law in a
very subtle fashion, necessitating a split of the constitutive equation into a
local and nonlocal law, with the strain-softening included only in the nonlocal
portion. Numerical experiments indicated that without this particular combi-
nation, numerical solutions were invariably unstable.

The nonlocal law as introduced in Refs. (7,8] offers substantial promise
ia providing well-posed solutions for heterogeneous materials that are sub-
jected to damage and hence strain-softening. There are however, substantial
breakthroughs that yet need to be achieved: (1) efficient iaplementations of
nonlocal laws in the finite element method; (2) design of experimental methods
for identifying the local and nonlocal portions of constitutive laws and (3)
methods for reconciling the bifurcation between local damage, i.e., micro-
cracking, and large scale fracture of a cleavage type in heterogeneous
materials. However, the work reported here has shed light on the questions of
numerical modelling of structures in the failure regime when strain-softening
takes place and provides the basis for future work.

We have organized the material as follows: in Section 1 we describe
several of the generic one~dimensional problems which can be used to examine
the mathematical character of dynamic strain-softening solutions. In Section
2, some finite element solutions are presented to indicate that except in one
case, the solutions indicate a certain well behavedness. In Section 3, the
non-local continuum law will be described followed by conclusions in Section 4.

DYNAMIC STRAIN-SOFTENING SOLUTIONS

The problem by Sandler and Wright [4] is shown in Fig. 1. The essence of
their argument was that the solutions are very sensitive to the constant v ,
which gives the maximum prescribed velocity at the left hand boundary, for
certain values and that the solution changes markedly and so does not appear to
converge as the mesh is refined. Although the Sandler-Wright strese-strain law
is nice from the viewpoint that it provides a very continuous relationship
between stress and strain in the loading domain, it is not amenable to any
attempts at a closed form solution by d'Alembert methods because of the dis-
persive character of the wave solution even in the loading range. For this
reason, we have limited our studies to plecewise linear prescribed velocities
or stresses and stress-etrain laws of the type shown in Fig. 2. Note that the
stress goes to zero as the strain becomes large on the strain-softening sides
of the law (usually the tensile side).

The analytic solutions to this problem are developed next. The salient
characteristic of the analytic solution is the appearance of an infinite strain
on the boundary once the strain ¢ _ is exceeded. The construction of the
solution for this case will follo® that described by Bazant and Belytschko [6]
for a similar problem. As will be seen, when strain-softening occurs, then the
strain iamediately localizes and reaches infinity within a time interval that
approaches zero. Therefores, the solution can be generated by adding an image
wave which cancels the incident wave so that the strain~softening point 1is
instantaaneously converted to a free boundary.

The governing equations can be stated as follows

(1.1)

q -
'x T Py

Oy ™ E(c)u,x: - B(c)s.t (1.2)
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where o and € are the stress and strain, u the displacement and subscripts
preceded by commas denote differentiation; p 18 the density and E the tangent
modulus. We will consider two types of boundary conditions on the left-hand
side, x = 0: ’

velocity condition: u,t(O, t) = -v°< t > (1.3)
traction condition: o(0, t) = a°< t > (1.4)

where the symbol < f > designates fH(f), where H is the Heaviside step
function. The velocity boundary condition will be considered first. The
right~hand boundary is assumed to be sufficiently far so that the rod can be
considered semi-infinite.

Note that prior to the onset of strain-softening, the problem is governed
by the standard one-dimensional wave equation

Uy, " 2—2 Urgp (1.5)

E
¢ -k (1.6)

Once the strain-softening regime of the material is attained, then at those
points the governing equation is

2 Uy + Uy, = O (1.7)
2  E
¢ o (1.8)

and ¢ vanishes once €_ 1is attained. Equation (1.7) is elliptic in space-time,
which is quite peculixr in that no information can be transmitted from a point
which is strain-softening to adjacent points. Hadamard [17]) commented om this
in 1903 and he claimed that the negative character of the square of the wave-
speed precluded its applicability to real materials since the wave speed would
then be imaginary. However, the case of c = 0 has been treated extensively by
Taylor [18], who noted that for perfectly-plastic solids the deformation 1is
localized at the point of impact. Wu and Freund [19] have recently presented a
lucid description of these localization phenomena and investigated the effects
of strain-rate sensitivity and heat transfer on the localization. However, the
analyses vere limited to the case where in the limit ¢ = ¢ = 0.

We will here consider the strain-softening sftuation using the concepts
developed in [6). The present situation differs from [6] only in that the
stress wvave is a ramp rather than a step-wave, but it will be found that all of
the singularities associated with a step input remain.

The procedure of constructing a solution consists of three steps:

1) it is shown that the boundary between the strain-softening and elastic
domain cannot move, so the strain~softening domain is limited to a point;

2) this 1is shown to imply the strain and strain-rate in the strain-
softening points must be infinite;
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3) since the strain-rate is infinite, for the class of materials
considered here in which 0 + 0 as € + =, the stress can instantaneously be
considered to vanish at the points which strain-soften.

The last conclusion enables the solution to be easily coustructed by
d'Alembert methods by simply adding a wave to satisfy this zero stress !
condition.

For the prescribed velocity problem, let t, be the time when the left-hand
end, x = 0, reaches cp and begins to strain-soften; tl is given by

2ce
tl - ——Z (109)

\4
o

and the solution prior to the onset of strain-softening is given by

Vo x2
u= ‘-2-( (t‘z) > (1010)
v
o x
€= —<t-2> (1.11)

Strain-softening first occurs at x = 0. We now show that the boundary
between the elastic and the softening interface cannot move. For this purpose,
the usual formula for velocity V of discontinuities is used (a development 1is
given in [6])

o =a" =p Vet - &) (1.12)

where the superscript + and ~ designate the state varisbles to the right and
left of the discontinuity, respectively. If the material is gttaig-cot:ehing
b;hind_th. {nterface and not yet before it, it follows that € > € and 2
¢ > 0 . Substituting these inequalities into Eq. (1.12), it follows that V
must be negative or zero; since the former assumption would yield an imaginary
velocity for the discoatinuity, only V = 0 is tenable, and it can already be
concluded that

g =g (1.13)
To show that the strain and strain-rates must be infinite at a point which

strain-softens, a solution is constructed in the strain-softening domain, which
is considered to be 0 < x < g where s » 0. It can be seen that

u=u s [a (e - t) + ep]x (1.14a)
+_ Y x 2
u - (:1 'T-.') > (1.14b)

satisfies the governing equation in the strain=seftening domain, (1.7). This
solution, (1.14) is now matched to a solution in the elastic domain

v 2
u--59-<(c-{-)> + £(E) H (e - t)) (1.15)

6-:»-2-—t (1-16)

1

where the second term is a wave emanating in the strain-softening region which
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will be used to match the displacements and stress-conditions across the
interface. Note that from Eq. (l1.14a), it follows that

e” --g%- a(t - t) + € (1.17)

If the two displacement solutions, Eqs. (1.14a) and (1.15) are now matched
across the interface x = s, then

v 2
o+ [a(e - y) + :p]s =-gm< (e -%) > + £E) (1.18a)
= 8
Eliminating a from Eqs. (1.17) and (1.18) yields
-_1 T Yo s *
€ -:[f(z)--z—<t-:>-u] (1.19)

It can be+oeen that as s + 0, € + O instantaneously, which through Eq. (1.13)
implies 0 = 0. The function of £(§) is then foung by this condition. Using
the displacement field of Eq. (1.15) and letting ¢ , and hence € , vanish, we
find

f'(E) - cpc H(t - 5 --E) +v, <t-=- Y -%) (1.20a)
£(E) mecc<t - -“>+v°<(:- -")2> (1.20b)
S Y-e?trtr -z .

Hence the complete solutions 1is

v v 2
Q p. 9 X (2] x
u -2—<t -c~>+¢pc<t tl -c-)+-2—<(t tl-?))

(1.21a)

Uy, = -;33 (t --:-) +tpc H(t - tl -%) +v°< t - tl -%)
(1.21b)
This solution will subsequently be compared to finite element solutions.

The solution for the traction condition, Eq. (1.4), can be found by
replacing v_ by ¢ _c/E. However, in the stress boundary form of this problea
Eq. (1.4) the intPoduction of the image at the strain~softening point poses a
difficulty since the first point to strain-soften is on the boundary to begin
with. Thus, in one sense it can be said that this boundary must satisfy two
different boundary conditions: Eq. (1.4) and ¢ = O.

) This contradiction can only be reconciled by requiring the second type of
boundary condition (that the stress vanishes) to take precedence. This notion
of a boundary condition depending on the result of the solution is not totally
unexpected in an snalysis of a continuum which fails. For example, in a buck-
ling problem with unstable postbuckling behavior, the prescribed stress would
also be limited by the capacity of the structure. Yet the situation in the
buckling problem is not completely analogous: in a dynamic buckling problem,
any stress may be prescribed and the excess stress will generate acceleratious,
which depend on the magnitude of the stress, whereas in this problem, the



solution is completely independent of the value of the prescribed stress once
the failure stress is exceeded. Nevertheless, this model does appear to
represent a physically meaningful situation: the behavior of a rod in which the
material can sustain a limited tensile strain before it fails, and the solution
appears reasonable.

From a2 mathematical viewpoint, the character of the solution procedure
presents some other dilemmas, First of all, we consider As to be a segment ian
developments of Eq. (1.19), but it is only a point. Secoand, since the strain
softening portion is localized in a one dimensional solution to a point and
analogously, in a two dimensional solution, to a line, withian conventional
theories for partial differential equations, the body would no longer be
considered to be a single body: instead the effect of strain-softening is to
subdivide the initial body by introducing interior boundaries. Although
mathematical theories for such partial differeatial equations are not known to
us at the present time, there is no reason to arbitrarily exclude such
phenomenological models.

Another difficulty posed by this model is that the energy dissipated in
the formulation of the strain-softening region 1s not finite but instead
vanishes. This can be seen from the fact that the only irreversible energy
loss in the material shown in Fig. 2 occurs in the strain softening domain.
Because the strain-softening domain in a one dimensional problem becomes a
point, and since the energy dissipated per unit length is finite, the total
energy dissipated vanishes. This in fact is a more serious difficulty than the
mathematical difficulties, for the strain-softening constitutive equation is
often intended to represent microcracking, which is a dissipative process. It
will be seen that in spite of the mathematical questions, the behavior of
finite element solutions is not altogether pathological.

Other Remarks:

1) The solution is puzzling when the ramp loads Eqs. (1.3) and (l.4) are
replaced by step functions. According to the preseat analysis, if a, > € E,
then the boundary point should reach strain-softening instantaneously andPno
wave should reach the interior.

2) The solution does not depend on the specific functional dependence of
stress on strain in the strain-softening portion, provided that the stress
vanishes as the strain becomes large.

One conceptual difficulty of the Sandler-Wright problea is that strain
softening occurs only at the boundary, which confuses the role of the boundary
condition and the strain-softening. For this reason we have attempted to
construct problems in which the strain-softening occurs within the domain of
the problem.

The strictly one dimensional problems of this type are shown in Fig. 3 and
4. The first consists of an elastic rod joined to a rod with a strain-
softening material [5]. We will not give the closed-form solution but oaly
explain its major features. If the applied stress is sufficiently large, then
strain-softening is initiated at the interface between the two materials. The
strain localizes at this point, and as in the previous problem, the stress
vanighes instantaneocusly at the ianterface. The solution can thus be viewed as
a case in which a body separates into two.

The second problem, given in {6], consists entirely of a strain-softening
material. Equal and opposite velocities v_ (or forces) are applied to the two
ends of the bar, so that tensile waves are generated at the two ends. These
propagate to the center; when they meet at the center, the value of the stress
there becomes twice the applied stress, so strain-softening is possible at this
nidpoint even though it did not occur at the boundaries.

The solution is given in [6] for prescribed velocities that are step-
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functions in time. As in the previous case, localization occurs at the
midpoint where the strain becomes infinite. The salution is symmetric about
the midpoint, x = 0 and 18 given in [6]; for the left half (x < O and

0< t < 2L/c)

x+ L, _ _L-x
wmvyce-EEls oy e -B2X, (1.22a)
v
e-2[m(e-2EY -n(e-LoH ricer-1> 8]

(1.22b)
where §(x) is the Dirac delta function.

Another problem we have considered is a sphere loaded on its exterior
surface, see Fig. 5. This problem is not easily physically realizable with a
tensile load; however, it is physically meaningful with a compressive load
where strain-softening also occurs in some materials, (although the stress
usually does not vanish as the dilatation becomes large).

The interesting feature of this problem i{s that when the load is a ramp~
function in time, prior to the onset of strain-softening at an intepior
surface, a stress wave can have passed through this surface. Since the wave
which is beyond the strain-softening surface is amplified as it passes to the
center, the formation of additional strain-softening surfaces 1is possible. As
a result, this problea has considerably more structure than the one-dimensional
problens.

FINITE ELEMENT SOLUTIONS

Finite element solutions for the Sandler-Wright problem, Pig. 1, with the
material law given in Fig. 2 are shown in Fig. 6. Solutions were obtained with
meshes of 50, 100 and 200 elements. Linear displacement, constant strain
elements and lumped mass matrices were used. Time integration was performed
with the central difference method.

The finite element solutions are compared with the analytic solution given
in the previous section. It can be seen that the agreement is quite good and
improves with mesh refinement, although the instantaneous drop in the velocity
which is a result of the strain-localization caunnot be reproduced well even
with the finest mesh.

The rate of convergence is showm in Fig. 7. Here the error e is defined
by ’

B s I N

As can be seen from Fig. 7, the rate of convergence is approximately hl"; for
the velocity. This is only slightly less than the theoretical value of h
expected for linear solutions by these methods, so the sensitivity to meshing

which Sandler and Wright pointed out is not evident.

Figure 8 ghows the finite element solutions for the spherical wave problems
given in Pig. 5 with strain-softening. In this solution, the strain-softening
diagram in Fig. 2 pertains to the relation between pressure and dilatation.

The following constants were used; bulk modulus K = 1.0, density p = 1, shear
modulus G = 1,E-6, € = 1.0, €, = 5.0. Damping was added so that for the
coarsest mesh, the mix{zun element frequency was damped at 40% of critical. A
unit step function is prescridbed for the radial stress on the outside surface.



Although the classical nonlocal theory directly uses the stress ¢ in the
wmomentum equation, Eq. (1.1), the resulting form is not self-adjoint {15,16].
This leads to the existence of spurious, zero-energy modes of deformation for
certain weight functions w(x): deformations which are associlated with vanishing
strains € and hence do not generate any stresses. These spurious modes have
been found for constant weight functions w(x).

To remedy this difficulty the stress o is processed through an operator
identical to (3+1)

_ x+2/2 i
o(x) = | o(x + 8) w(a)ds ' (3.3)
x-£/2

and the resulting stress is used in the equation of motiom, Eq. (l.1). Once
Eq. (3.3) 1s added to the process, spurious modes are eliminated even for
constant weight functions, w(x).

Even with a self-adjoint form of the nonlocal laws, solutions are unstable
for strain-softening materials for constant weights w(x). So far, only by
combining a local and nonlocal law has stability been achieved {16, 7]. By
superimposing two distinct field systems, one local and without strain-
softening, the nonlocal ome with strain-softening, stability is achieved in a
model which exhibits a negative slope for a finite segment. This type of
composite local, nonlocal model has been termed an imbricate continuum by
Bazant [8] because it can be represented by an overlapping mesh of finite
elements.

The governing equations for this model can be summarized as follows

a,, = E E’t E can be negative (3.4)
G, =Ee,, E>O0 (3.5)
Eq. (3.3) : 0+ g (3.6)
S=(l-Yo+yr 0¢y<1 (3.7)
S.x il P (3.8)

Figure 9 gives an indication of the rate of convergence for the nonlocal
model with strain-softening for the problem in Fig. 1. Here v = 0.1, and ¢
is 0.2 of the total length of the bar. Results are shown for the cases where
the number of elements N = 5, 15, 45, and 95 at six different times. It can be
seen that for more than 15 elements, there is little change in the distribution
of the mean strain € at various times. The local strain converges less rapidly
but is not ill-behaved. By contrast, in the local formulation, the strain
becomes larger and larger at the midpoint as the mesh is refined.

The solutions presented in Fig. 9 are taken from Ref. [7] and were
obtained by taking a discrete form of the nonlocal continuum, which consists of
several overlapping series of elements. This process has not yet been
attempted in multi-dimensional probleas.

CONCLUSIONS

The following are the major conclusions of the work summarized here:

1. Analytic solutions can be established for certain simple problems which
include strain-softening materials. The solutions exhibit singular strain
distributions but the rate of convergence of finite element solutions is quite
rapid.
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2. 1In the spherical wave problem, numerical solutions of strain-softening
models exhibit severe dependence on element mesh size. This is particularly
true of field variables inside the surface of initial strain-softening.
Nonlocal models provide rapidly converging solutions to this problem.

3. A major difficulty of local laws with strain-softening is that the energy
dissipation vanishes. Thus, the failure process is not accompanied by energy
dissipation, which is physically unrealistic.

4. Nonlocal laws provide a means for obtaining rapid convergence and finite
energy dissipation in failure. However, the technology for efficiently
implementing these techniques in large-scale, multi-dimensional problems
remains to be developed.
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Figure 1. Sandler-Wright Problem [4]; stress-strain law in [4] is
o= EO: exp(-c/eo), € = 0.002;
U, (0, t) = vy [1 - cos(xt/t ))/2 for t<t_,

u.t(o, t) = Yo for t > to' to =2 x 107 sec.

Figure 2. Stress-strain law with strain-softening and nomenclature.
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ELASTIC SOFTENING

Figure 3. Problem with strain-softening at interface between elastic and
softening domain [5].

Figure 4. One dimensional problem in which strain-softenihg occurs
at x = 0 [6].
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traction

Figure 5. Spherical wave problem.
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Figure 6. Velocity distribution for problem in Fig. 1 at x = L/4; € = 0.01,
ep = 0.05, L = 100, ¢ = 10%.
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Figure 7. Rate of convergence of velocity for the Sandler-Wright problem,
Fig. 1.
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