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ABSTRACT: The design of various engineering structures, such as buildings, infrastructure, aircraft, 
ships, as well as microelectronic components and medical implants, must ensure an extremely low prob-
ability of failure (such as 10 6) during their service lifetime. Such a low probability is beyond the means of 
histogram testing. Therefore, one must rely on some physically based probabilistic model for the statistics 
of structural lifetime. This study focuses on the structures consisting of quasibrittle materials, which are 
brittle materials with in homogeneities that are not negligible compared to structure size (exemplified by 
concrete, fiber composites, tough ceramics, rocks, sea ice, bone, wood, and many more at micro- or nano-
scale). This paper presents a new theory of the lifetime distribution of quasibrittle structures failing at 
the initiation of a macro crack from one representative volume element of material under cyclic fatigue. 
The formulation of this theory begins with the derivation of the probability distribution of critical stress 
amplitude by assuming that the number of cycles and the stress ratio are prescribed. The Paris law is 
then used to relate the probability distribution of critical stress amplitude to the probability distribution 
of fatigue lifetime. The theory naturally yields a power-law relation for the stress-life curve (S-N curve), 
which agrees well with Basquin’s law. The theory indicates that quasi-brittle structures must exhibit a 
marked size effect on the mean structural lifetime under cyclic fatigue and consequently a strong size 
effect on the S-N curve. It is shown that the theory matches the experimentally ob-served systematic devia-
tions of lifetime histograms of various engineering and dental ceramics from the Weibull distribution.

soils, grouted soils, rigid foams, sea ice, consolidated 
snow, wood, paper, carton and bone, as well as many 
high-tech, bio- and bio-inspired materials and most 
materials on the micro- and nano scales.

The non-negligible size of FPZ inevitably causes 
size dependent failure behavior. The smallest pos-
sible structures fail in a quasi-plastic manner and 
very large ones in a brittle manner (Bažant 2004). 
Previous studies (Bažant 2004, Bažant & Pang 
2006, Bažant & Pang 2007, Bažant, Le, & Bažant 
2009, Le, Bažant, & Bazant 2009) showed that, 
due to this size dependence, the type of cumulative 
distribution function (cdf) of monotonic strength 
of quasibrittle structures, as well as their static (or 
creep) lifetime, varies with the size of structure, 
and also its geometry. It is thus logical to expect the 
probability distribution of fatigue lifetime to be 
size dependent. To demonstrate it and develop the 
appropriate theory is the objective of this paper.

Attention will here be limited to a broad class of 
structures of the so-called positive geometry. They 
are those that fail (under controlled load) right at 
the initiation of a macrocrack from a damaged 

1 INTRODUCTION

For many structures, such as aircraft, ships, bridges 
and biomedical implants, the fatigue lifetime is 
an important aspect of design. However, when a 
long life-time is required, it is next to impossible to 
obtain the lifetime histogram purely experimentally, 
by waiting until the structure or material specimen 
fails. Therefore, one must rely on a realistic theory 
of failure probability that can be calibrated and ver-
ified indirectly through its predictions other than 
the histograms of fatigue lifetime. The same applies 
to the strength limit for failure probability 10 6.

This study is focused on structures consisting of 
quasibrittle materials, which are heterogenous mate-
rials with brittle constituents and material inhomoge-
neities that are not negligible compared to structure 
size or cross section dimension and, consequently, 
develop a non- negligible fracture process zone (FPZ). 
They are exemplified by concrete as the archetypical 
case, rocks, coarse-grained and toughened ceramics, 
dental ceramics, fiber composites, fiber—reinforced 
concretes, rocks, masonry, mortar, stiff cohesive 
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representative volume of material (RVE), which 
occurs when the derivative of the stress intensity 
factor with respect to crack length is initially posi-
tive. This class of structures is statistically equiva-
lent to a chain of RVEs, where the RVE is defined 
as the smallest material volume whose failure trig-
gers the failure of entire structure.

For very large structures, for which the RVE size, 
ns, is negligible compared to the structure size, the 
failure is perfectly brittle. Since the number, ns, of  
RVEs in the chain can be considered as infinite, the 
probability distribution of fatigue lifetime must then 
be the two-parameter Weibull distribution (Weibull 
1939). The reason is that the left tail is a power-law, 
as justified by recent theoretical arguments based on 
the activation energy of bond breakage (Bažant & 
Pang 2006, Bažant & Pang 2007, Bažant, Le, & 
Bazant 2009, Le & Bažant 2010b). The defining 
characteristic of quasibrittle structures is that the 
FPZ is not small enough, or ns is not large enough, to 
make the Weibull distribution applicable, as shown 
in the previous studies of statistics of monotonic 
strength and creep lifetime (Bažant, Le & Bazant 
2009, Le, Bažant, & Bazant 2009).

This paper will present a derivation of the prob-
ability distribution of fatigue strength, defined as 
the critical stress amplitude for a given number of 
cycles and a given minimum-to-maximum stress 
ratio. The probability distribution of fatigue life-
time will then be deduced from the cdf of fatigue 
strength and the law of fatigue crack growth.

2 STATISTICS OF FATIGUE STRENGTH 
ON THE NANOSCALE

A simple and clear physical basis for the probabil-
ity of fracture growth exists only on the atomic 
scale. The jumps of the front of an interatomic 
crack represent a quasi-steady process because, 
even at the rate of impact, the interatomic bonds 
break at roughly the rate of one per 105 thermal 
atomic vibrations. Consequently, on the atomic 
scale, the crack jump probability must be the same 
as the crack jump frequency. So, we begin by ana-
lyzing a nanoscale element.

Here we consider the structure to be subjected 
to a cyclic load, which can be characterized by two 
quantities: the stress amplitude   max min and 
the stress ratio R  min/ max. The corresponding 
stress history for a nanoscale element is hard to 
determine, especially for the first few cycles dur-
ing which the residual stress field builds up rapidly. 
However, when focused on the high cycle fatigue, 
the first few cycles are not of particular interest. 
After only a few cycles, the stress profile for the 
nanoscale element stabilizes. The stress amplitude 
on the nanoscale   max min and the nanoscale 

stress ratio R   min max can thus be related to the 
stress amplitude  and the stress ratio R on the 
macroscale:   c1  and R   c2R. Parameters 
c1 and c1 are empirical but could conceivably be 
determined through a detailed micro-mechanical 
analysis of the build-up of residual stresses.

The frequency of breakage of particle bonds in 
a disordered nano-element, or of atomic bonds in 
an atomic lattice block, can be determined from 
Kramers’ formula (Risken 1989) for the first-
passage time in the transition between two states 
(before and after the bond breakage):

f e V E kTT
Q kT

a1
2

1
0  (1)

where Q0  the dominant activation energy barrier 
on the free energy potential surface, k  Boltzmann 
constant, T   absolute temperature, T  kT/h, 
h  6.626  10 34 Js  Planck constant  (energy of 
a photon)/(frequency of its electromagnetic wave), 
Va  activation volume, and E1  elastic modulus of 
nano-structure.

Assuming that each crack jump is an independ-
ent process, the frequency of reaching the critical 
crack length at which the nano-element fails is the 
sum of the net frequencies of forward jumps over all 
these barriers. For the cyclic stress at the nanoscale, 
   (t), it may be assumed that the energy bias due to 

applied stress depends only on the current stress, but 
not on the stress history (Krausz & Krausz 1988). 
Therefore, for a given number of cycles N0, the fre-
quency of occurrence of a failure event is given by:
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where function f(R ) depends on the stress his-
tory. Since a quasi-steady state can be realistically 
assumed, the failure probability is proportional to 
the frequency of failure events. Therefore, the fail-
ure probability of the nano-element is:

P f R f R cf ( ) ( )( )2
1

2 (4)

Eq. 4 shows that the distribution of fatigue 
strength of a nano-element follows a power law 
with zero threshold.

3 MULTISCALE TRANSITION 
OF STATISTICS OF FATIGUE 
STRENGTH

To relate the probability distributions of fatigue 
strength at nano- and macro-scales, a certain 
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approximate statistical multiscale transition frame-
work is required. In the previous studies (Bažant & 
Pang 2006, Bažant & Pang 2007, the multiscale 
transition of strength distribution is represented 
by a hierarchical model (Fig. 4e of Bažant & Pang 
(2007)), which consists of series couplings (the 
chain model) and parallel couplings (the fiber 
bundle model). Physically, the parallel coupling 
represents the load re-distribution mechanisms at 
different scales as well as the condition of compati-
bility between one scale and its sub-scale. The series 
model represents (in the sense of the weakest-link 
model) the localization of damage at each scale.

3.1 Chain model
Consider a chain of elements (or links) subjected 
to cyclic loading with a prescribed number of 
cycles and stress ratio. The fatigue strength c 
of  the chain, i.e., the critical stress amplitude 
that leads to failure, is determined by the smallest 
fatigue strength of all the elements. Since the chain 
survives if  and only if  all its elements survive, one 
can calculate the survival probability of the chain, 
1 Pf, from the joint probability theorem. Assum-
ing that the random fatigue strengths of the ele-
ments are statistically independent, we can write 
the failure probability of the chain with nc elements 
as follows:

P Pf chain c i
n

i c
c( ) [ ( )]1 11  (5)

Based on this equation and by the same method 
as used by Bažant & Pang (2007) for static loads, 
it is easy to prove for cyclic loading two essential 
asymptotic properties of the chain model:
1. If  the cdf’s of fatigue strengths of all the ele-

ments have a power-law tail of exponent p, then 
the cdf of fatigue strength of the whole chain 
has also a power-law tail and its exponent is also 
p; and 

2. when nc is large enough, the cdf of fatigue 
strength of the chain approaches the Weibull 
distribution: P ef

n sc c
p

1 0( ) , where s0 is a 
scaling constant.

3.2 Bundle model
The bundle model consists parallel elements (often 
called fibers) spanning two rigid plates. After one 
element fails, the load will be redistributed among 
the surviving elements. When a certain portion of 
the elements fails, the bundle reaches the maxi-
mum load F (and fails if  the load is controlled). 
It fails totally if  and only if  all the elements fail 
(F 0). The failure statistics of the bundle has 
been extensively investigated for the static strength 

(e.g. (Daniels 1945, Phoenix 1978, Smith 1982, 
Bažant & Pang 2007, Le & Bažant 2010b)).

In this study, we are interested in the cdf 
of  the fatigue strength b of  the bundle for a 
prescribed stress ratio R and a given number 
of  cycles N0. We will analyze some asymptotic 
properties of  this cdf  by considering a bundle 
with two elements having random strength and 
the same cross section, although the generaliza-
tion to any number of  elements in the bundle is 
straightforward.

Consider a bundle under cyclic loading with a 
prescribed stress ratio R. For a given stress ratio R 
and any number of cycles, the fatigue strength i 
(i  1,2) of the elements is assumed to be known. 
The elements are numbered so that 1  2. 
Fig. 1a-c shows the loading histories of both the 
bundle and its two elements. The bundle reaches 
its strength limit and fails at the N0th cycle. After 
the first N1 cycles, the first element fails and the 
second element carries the entire load for the rest 
of N0 N1 cycles.

The first element is subjected to a cyclic load 
with stress amplitude b and stress ratio R. Under 
cyclic load, some subcritical crack inside the ele-
ment grows from its original length a0 to a critical 
length ac at which the first element fails. The growth 
rate of the subcritical crack can be described by the 
Paris law (Paris & Erdogan 1963):

d
d
a
N

Ae KQ kT n0  (6)
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Figure 1. Loading histories of bundle and its elements.
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where K  amplitude of the stress intensity factor. 
A recent study (Le & Bažant 2010a) showed that 
the Paris law can be physically justified by consid-
ering that the macro-scale energy dissipation of the 
fracture process zone is equal to the energy dissipa-
tion of all the nano-cracks within that FPZ. The 
exponent of Paris law increases from 2 at the nano-
scale, to some larger number at the macroscale.

By separating the variables and integrating the 
Paris law from the original crack length to the 
length ac, one obtains:

b
n Q kTeN e I1 1

0  (7)

where ne   exponent of the Paris law for one ele-
ment, I A l ke

n a
e
ne c e

1
1

1
1 2

10
( )d , le1   charac-

teristic size of the first element,   a/le  relative 
crack length and ke1   dimensionless stress inten-
sity factor of the first element. It is clear that, for 
a particular element, I1 must be a constant for 
different cyclic loads as long as the stress ratio is 
kept constant. Therefore, one can easily obtain the 
critical number of cycles N1 of the first element in 
terms of its fatigue strength:

N N n
b
ne e

1 0 1  (8)

The second element experiences the same load 
history as the first element does for the first N1 
cycles. After the first element fails, the stress in the 
second element doubles, i.e., the stress amplitude 
becomes 2 b, because both elements have the 
same elastic stiffness and the same deformation. 
However, the stress ratio in the second element 
still remains to be R. The second element eventu-
ally fails at N0th cycle (Fig. 1c). Therefore, one can 
integrate the Paris law for the second element tak-
ing into account its increased stress amplitude:

b
n

b
n Q kTe eN N N e I1 0 1 22 0( ) ( )  (9)

where I A l ke
n

a
a

e
ne c e

2
1

2
1 2

20
( )d ; le2  char-

acteristic size of the second element, and ke2   
dimensionless stress intensity factor of the second 
element. Similar to the analysis for the first ele-
ment, one can replace e IQ kT0

2 of  the second ele-
ment by 2 0

neN . Therefore,

b
n

b
n ne e eN N N N1 0 1 2 02( ) ( )  (10)

Substituting Eq. 8 into Eq. 10, one can express 
the fatigue strength of the bundle as a function of 
the fatigue strengths of each element:

b
nn n n n ee e e e

1
1 21 1 2 2[ ( ) ]  (11)

If  the fatigue strength of the bundle does not 
exceed a certain value S, then the fatigue strengths 
of elements are bounded by the region 2(S) 
(described by Eq. 11). Assuming that the fatigue 
strengths of two elements are independent random 
variables, then the cdf of fatigue strength of the 
bundle is given by:

G S f f
S2 1 1 2 2 1 22

2
( ) ( ) ( )

( )
d d  (12)

where fi   probability density function (pdf) of the 
fatigue strength of the ith element (i  1,2).

The foregoing analysis can be readily extended 
to a bundle with nb elements. Eq. 11 can be gener-
alized as:

b

n

i

n

i e i
n

eb
en
1

1
[ ( ) ]  (13)

where i e b
n n

b b
n n

b
nn n i n n i ne e e e e( ) [( ) ( ) ] .1 1

One can easily show that i  1/nb for ne  1, and 
i  (nb i 1)/nb for ne ∞. The cdf of fatigue 

strength of the bundle can then be written as:

G S n fn b S
i

n

i i nb nb

b

b
( ) ( )

( ) 1
1 2d d d  

 
(14)

here nb S( ) is the feasible region of stresses in all 
the elements, which is defined by the following 
inequalities:

1

1

n

i

n

i e i
n

eb
en S( )

 
(15)

1 1 1n nb b 
(16)

Two important asymptotic properties of the cdf 
of fatigue strength of the bundle are of particu-
lar interests. The first is the type of cdf of fatigue 
strength of large bundles. Consider the following 
two extreme values of ne:
1. When ne  1, the fatigue strength of the bundle 

is simply the sum of the fatigue strengths of all 
the elements. This is the same as the mathemati-
cal representation of the cdf of strength of a 
plastic bundle, in which each element deforms at 
constant stress after its strength limit is reached. 
By virtue of the Central Limit Theorem, the cdf 
of fatigue strength must follow the Gaussian 
distribution except for its far left tail.

2. When ne ∞, the fatigue strength of the bundle 
may be written as:
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b

b

b b
n

n
n n b

max 1 2
1 1  (17)

 where 1 2 nb
 are the fatigue strengths 

of the elements ordered by the sequence of their 
breaking, i.e., according to increasing strength. 
This is the same as the mathematical formula-
tion of the cdf of strength of a brittle bundle. 
The strength distribution of a brittle bundle can 
be described by the recursive equation of Dan-
iels (1945), who further showed that the strength 
distribution of brittle bundles approaches the 
Gaussian distribution as the number of ele-
ments tends to infinity.
Therefore, one may expect that the cdf of 

fatigue strength of large bundles should approach 
the Gaussian distribution for any value of ne ≥ 1.

Another important property is the tail of the cdf 
of fatigue strength of the bundle. Let us assume 
that the fatigue strength of each element has a cdf 
with a power-law tail, i.e., P si

pi( ) ( )0 . Con-
sidering the transformation yi  i/S, we can re-
write Eq. 14 as

G S n S p y
s

y yn b
p

i

n
i i

p

p nb
i i

nb

b i

i b
( )

( )1 1

1

0
1d d  (18)

where nb ( )1  is the corresponding feasible region of 
the normalized fatigue strength. Thus it is proven 
that, if  the fatigue strength of each element has a 
cdf with a power-law tail, then the cdf of fatigue 
strength of the bundle will also have a power-law 
tail, and the power-law exponent will be the sum 
of the exponents of the power-law tails of the cdf’s 
of fatigue strength of all the elements in the bun-
dle. As shown in previous work (Bažant and Pang 
2007, Le and Bažant 2010), this property of the tail 
probability distribution also holds for the cdf of 
monotonic strength of bundles consisting of ele-
ments with arbitrary load-sharing rules.

3.3 Probability distribution of fatigue strength 
of one RVE

Since the chain models for fatigue strength and 
monotonic strength share the same equation, the 
formulations of the bundle models for the fatigue 
strength and the monotonic strength ought to be 
similar. Because of the hierarchical model (Fig. 4e 
in Bažant & Pang (2007)) to calculate the cdf of 
fatigue strength of one RVE, one may expect that 
the cdf of fatigue strength of one RVE is similar to 
the cdf of static strength of one RVE. Based on the 
previous studies of the statistics of static strength 
of one RVE (Bažant & Pang 2007, Le & Bažant 

2010b), the cdf of fatigue strength of one RVE can 
thus be approximately described by the Gaussian 
distribution with a Weibull tail grafted on the left 
at the probability of about 10 4 10 3. Mathemati-
cally this is similar to Eq. 52 in (Bažant & Pang 
2007).

4 PROBABILITY DISTRIBUTION OF 
FATIGUE LIFETIME

Now consider the tests of fatigue strength and 
fatigue lifetime conducted on the same RVE. In 
the fatigue strength test, the RVE is subjected to 
a cyclic load with a prescribed number of cycles 
N0 and a given stress ratio R, and the critical load 
amplitude (i.e., the fatigue strength Pm), at which 
the RVE fails, is recorded. In the fatigue lifetime 
test, the load amplitude P0 and the stress ratio R 
are prescribed, and what is recorded is the critical 
number of cycles Nf at which the RVE fails.

An RVE fails under cyclic load when the domi-
nant subcritical crack grows from its original length 
a0 to a certain critical length ac. The growth rate of 
this subcritical crack follows the Paris law (Eq. 6). 
By separation of variables,

n
n nN

Ak l
c

0 0
1

d
( )

 (19)

where   (Pmax Pmin)/bl0   nominal stress ampli-
tude,   a/l0   dimensionless crack size, k( )   
dimensionless stress intensity factor of the RVE, 
and l0  RVE size. Applying Eq. 19 to the tests of 
both fatigue strength and fatigue lifetime, one can 
relate the fatigue strength for the given number of 
cycles to the fatigue lifetime Nf for the given load 
amplitude:

f f
nN N0 0

1( )  (20)

Substituting Eq. 20 into the cdf of fatigue 
strength, one obtains the probability distribution 
of fatigue lifetime of one RVE:

for Nf  Ngr:

P N N sf f N
m

1 1( ) exp[ ( ) ] (21)

for Nf $ Ngr:

P N P
r

e Nf gr
f

G
N

N N

gr
n
f
n

G G
1

2

2 1

1 2 2
( ) ( ) d  (22)

where 0 0
1N n, N s Ngr gr

n n( )0 0
1

0 sN = 
N0

–n and m m n. Similar to the cdf of fatigue 
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strength, the probability distribution of fatigue life-
time follows the Weibull distribution, which has a 
power-law tail. The core of cdf of fatigue lifetime, 
which is expressed by Eq. 22, does not follow the 
Gaussian distribution.

For structures that fail at the initiation of a mac-
ro-crack from one RVE, the RVE must be defined 
as the smallest material volume whose failure trig-
gers the failure of the structure. Statistically, such 
structures can be modeled as a chain of RVEs. 
According to the joint probability theorem and the 
assumption that the fatigue lifetimes of RVEs are 
independent random variables, the cdf of structure 
lifetime under a prescribed cyclic load can be writ-
ten as:

P N P N s xf f
i

n

f i

s

( ) ( ( ))0
1

1 01 1  (23)

where ns  number of RVEs in the structure, 
0S(xi)  amplitude of maximum principal 

stress at the center of the ith RVE, 0   ampli-
tude of maximum principal stress in the structure, 
and S(xi)   dimensionless stress field (such that 
max S(xi)  1). For sufficiently large structures, 
the tail part of the lifetime cdf of one RVE deter-
mines the failure of the entire structure. The cdf 
of fatigue lifetime of large-size structures follows 
the Weibull distribution. This distribution corre-
sponds to the perfectly brittle failure behavior, to 
which the extreme value statistics (or infinite weak-
est-link model) apply.

5 OPTIMUM FITS OF FATIGUE LIFETIME 
HISTOGRAMS

Experimental studies of statistics of fatigue lifetime 
have been pursued for decades. The two-parameter 
Weibull distribution has been widely used to fit the 
observed histograms (Studarta, Filser, Kochera & 
Gauckler 2007, Hoshide 1995), but significant 
deviations have consistently been found.

Fig. 2 presents the optimum fits of lifetime 
histograms of various quasibrittle structures, 
such as engineering and dental ceramics, by both 
the two-parameter Weibull distribution and the 
present theory. The experiments are summarized 
as follows: a)-c) Structural Alumina ceramics 
(99% Al2O3): round bar specimens were tested 
under fully reversed cyclic load by using a rotat-
ing bending machine (Sakai & Fujitani 1989, 
Sakai & Hoshide 1995). Three stress levels were 
used in the experiment and 20 specimens were 
tested for each stress-level. d) Dental ceramic 
composites: Glass infiltrated Al2O3-ZrO2 with 
feldspathic glass (Inc-VM7) (Fig. 2a) and yttria-

stabilized ZrO2 with feldspathic glass (TZP-CerS) 
(Fig. 2b). For each material, 30 specimens with 
size 4 mm  5 mm  50 mm were tested under 
fully reversed cyclic bending (Staudarata, Filser, 
Kochera, & Gauckler 2007).

As seen in Fig. 2, the lifetime histograms do not 
follow a straight line on the Weibull scale. Instead, 
they consist of two parts separated by a short kink. 
The lower part of the histogram follows a straight 
line whereas the upper part of the histogram 
diverges to the right from the straight line. Clearly, 
the two-parameter Weibull distribution cannot fit 
such histograms closely. On the other hand, the 
present theory gives an excellent fit for both parts 
of the histogram.

6 SIZE EFFECT ON STRESS-LIFE 
CURVE

The foregoing analysis (Eq. 23) shows that the cdf 
of fatigue lifetime depends on the structure size as 
well as the geometry (which is introduced through 
the stress distribution). Naturally, the mean fatigue 
lifetime fN , too, must depend on the structure 
size and geometry. According to the weakest-link 
model, f i

n
iN P s x N Ns

0 1 1 01[ ( ( ) )]d .
An analytical expression for Nf seems impos-

sible. However, similar to previous analysis of the 
size effect on the mean strength and the creep life-
time (Bažant, Le, & Bazant 2009), one may use the 
approximation:

f
a

m
bN

C
D

C
D

1

 (24)

ln
{l

n[
1/

(1
-P

f)]
}
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1
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1

d)

TZP-CerS

R=–1

max=65 MPa
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1
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Figure 2. Optimum fitting of lifetime histograms.
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where m   Weibull modulus of fatigue lifetime. 
The values of Ca, Cb and  ensue by matching three 
asymptotic conditions: [ ]f D lN 0

, [ ]d df D lN D
0
, 

and [ ]f
m

DN D1 .
In the derivation of the cdf of fatigue strength 

of one RVE, the Paris law was integrated to obtain 
a simple equation that relates the fatigue lifetime 
and the applied stress amplitude (Eq. 19). Con-
sider now that two cyclic load histories with the 
same stress ratio but different stress amplitudes 
( 01 and 02) are applied to the same RVE. Based 
on Eq. 19, one finds that the fatigue lifetimes of 
RVE for these two load histories are related by: 
N N

n

n2 1
01

02
. Similarly, consider further that two 

cyclic load histories that give the same nominal 
stress ratio ( 1,max/ 1min 2,max/ 2,min) but differ-
ent nominal stress amplitudes ( 1 and 2) are 
applied to the same structure. Since the stress in 
each RVE is proportional to the nominal stress, the 
ratio of stress amplitudes on each RVE for these 
two load cases is 1/ 2.

For the first loading history, in which the nomi-
nal stress amplitude is 1, the failure probability 
of the whole structure is P P Nf i

v
f1 11 1[ ( )].

The failure probability of the structure under 
the second load history, in which the nomi-
nal stress amplitude is 2, can be written as: 
P P Nf i

n n n
f

s1 11 1 1 2{ [( ) ]}. Therefore, the 
mean fatigue lifetimes for these two load histories 
are related by 1 1 2 2

n
c

n
cN N . This leads to a 

general relation between the mean fatigue lifetime 
and the nominal stress amplitude:

N Cf
n
0  (25)

where C   constant. This is the well-known power 
law form for the stress-life (S-N) curve (Basquin 
1910) for the fatigue loading, which is supported 
by numerous test data on quasibrittle materials 
such as ceramics (Suresh 1998, Kawakubo 1995) 
and cortical bones (Turner, Wang, & Burr 2001).

Because of the size effect on the mean fatigue 
lifetime (Eq. 24), constant C in Eq. 25 must depend 
on the structure size and geometry:

N C C
D

C
Df

n n a
m

b
0 0

1

 (26)

Eq. 26 implies that, in a bi-logarithmic plot, the 
S-N curve must shift horizontally to the left as the 
structure size increases, as shown in Fig. 3. Eq. 26 
is particularly important for the design process 
since it allows the mean lifetime of full-scale struc-
tures under a relatively low stress amplitude to be 

determined from the laboratory tests on prototypes 
under a relatively high stress amplitude.

7 CONCLUSIONS

This study shows that the type of probability distri-
bution of fatigue lifetime depends on structure size 
and geometry. Consequently, the stress-life curve 
(S-N curve) is also size-dependent. This has serious 
implications for the design and safety assessments 
of lifetime of large concrete structures, as well as 
large composite aircraft frames and ship hulls, 
microelectronic devices, bone implants, etc.
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