
WAKE-UP CALL FOR CREEP, MYTH ABOUT SIZE EFFECT 
AND BLACK HOLES IN SAFETY: WHAT TO IMPROVE IN 
fib MODEL CODE DRAFT 

Abstract

Although the 2010 Draft of fib Model Code is overall an excellent document, it has some 
weaknesses which could, and should, be corrected. One is the material model for creep 
and shrinkage prediction, which not only is theoretically obsolete but also is indefensible 
in view of the wake-up call provided by recently collected long-term deflections of 56 
bridges. The second is a size effect formulation for shear strength whose justification is 
tantamount to a myth rather than reason. The third consists of the probability distribution of 
structural strength for failures occurring at macro-crack initiation. The distribution tail that 
matters, in the probability range of 10-6, is directly unobservable, just like a black hole. But 
indirect evidence from the size effect indicates that the distribution transits from Gaussian 
to Weibulian as the structure size increases. This transition may have a major effect on the 
safety factor. Moreover, dubious uses of the lognormal distribution and another black hole 
in the covert safety factors implied in the design formulas render a meaningful calculation 
of failure probability impossible. Some remedies are offered.
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In two recent studies [1, 2], the data on the collapse in 1996 of the Koror-Babeldaob (KB) Bridge 
in Palau, released in 2008, were analyzed. Built in 1977, this prestressed segmentally erected box 
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1	 Wake-up	call	from	excessive	long-term	deflections	of	56	bridges
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girder had the world-record span of 241 m. Within 18 years, it deflected by 1.61 m, compared to the design 
camber, and the average prestress loss in the tendons (bonded bars) was measured as 49% (Fig. 1). Re-
medial prestressing undertaken in 1996 caused, with a 3-month delay, a sudden collapse (with fatalities). 
This spectacular collapse was what triggered attention to the earlier huge creep deflections and to their 
similarities with other bridges.

Figure 1. a,b) Creep sag of 1.61 m at mid-span of KB Bridge in Palau in 1996; b) ACI authorized reprint 
of photo from the cover of ACI SP-194 (2000) taken by Adam Neville before retrofit. c,d) Deflections 

calculated by 3D finite elements using models CEB-fib, ACI-209, GL, JSCE and RILEM-B3 in linear (c) 
and logarithmic (d) time scales, compared to measurements (data points). d,e) Similar comparisons for 

prestress loss. 



Proceedings
ISBN 978-80-87158-29-6

fib Symposium PRAGUE 2011
Keynote Topic Lecture

Topic 3

733

A resolution of the 3rd Structural Engineers’ World Congress in 2007 (proposed by Bažant) labeled an engineer’s consent 
to the sealing of technical data from legal litigation of structural collapses and damages as a violation of engineering ethics 
[1]. Two months later (in 2008), the technical data from the collapse investigation and litigation were released to North-
western University (by Gary Klein of Wiss, Janney and Elstner, Highland Park, Illinois); also [3, 4, 5, 6, 7]. This made 
possible a three-dimensional (3D) finite-element step-by-step creep analysis, taking into account the effects of cracking, 
segmental erection, sequential prestressing, concrete aging, age differences, shear lags in slabs and walls, non-uniform 
shrinkage, nonuniform drying creep properties, temperature and gradual stress relaxation in prestressing steel.
 The results have shown that the excessive deflections and prestress loss can be explained and closely matched if 
the theoretically based model B3 [8, 9] (which became a 1995 RILEM Recommendation [8]) is used to characterize the 
creep and shrinkage properties, provided that this model is recalibrated by the 30-year laboratory creep tests of Brooks 
[10]; see the Set 2 curves in Fig. 1. Models other than RILEM-B3, which include the current ACI-209, CEB-fib, GL and 
JSCE models for creep and shrinkage prediction [11, 12, 13, 14, 15, 16, 17, 18], have a form that does not allow recali-
bration by laboratory data. The same finite element program for 3D creep analysis was also run for these models (Fig. 1) 
as well as for model RILEM-B3 as originally calibrated by a worldwide laboratory database (see Set 1 curves in Fig. 1). 
The 18-year mid-span deflections computed from the CEB-fib, ACI-209, and GL models and the non-recalibrated model 
RILEM-B3 (Set 1) were, respectively, 34%, 31%, 43% and 57% of the measured deflection, and the computed 18-year 
prestress losses were 48%, 44%, 54% and 80% of the mean measured loss.
 Through the courtesy of Yasumitsu Watanabe, chief engineer of Shimizu Co., Tokyo, detailed data have subse-
quently been received on four of the excessively deflecting segmental bridges of that company. Their analysis [1, 2] led to 
the same conclusions, which were as follows:

 Why have the recommendations on creep been misleading, for decades? Aside from dis-
regard of the theoretical basis and lax interpretation of the laboratory tests, the problem has also 
been the inevitable statistical bias of the world-wide laboratory database [25, 26]. In the latest and

1. The main cause of error lies in the creep and shrinkage model. All of the existing creep and shrinkage prediction models 
are unsatisfactory. Nonetheless, model RILEM-B3 gives significantly better predictions than the others and, if adjusted 
to fit the recently released 30-year laboratory data of Brooks [10], fits the measurements in Palau closely [1, 2].

Are the excessive deflections rare? They are not. A subsequent search of various papers, company reports and society re-
ports under the auspices of the newly founded RILEM Committee TC-MDC led to a wake-up call—see Fig. 2 document-
ing the deflection histories of 56 large-span bridge spans [19, 20, 21, 22, 23], most of them excessive (all are segmental 
box girders except for one arch, and the horizontal dashed lines show the maximum acceptable deflection, 1/800 of the 
span). Hard to obtain though such examples are, hundreds more probably exist. 
 Of course, segmental bridges that have not deflected excessively (such as the Pine Valley Creek Bridge in Cali-
fornia built in 1975) exist, too, but appear to be a minority. Even if a poor creep model is used, the deflections can be low 
if one adopts various precautionary measures listed at the end of [1, 2]. Some of them, though, are costly or span-limiting 
and detract from esthetic slenderness. 
 The logarithmic time plots in Fig. 2 also give no hint of an approach to an asymptotic bound, a feature incorrectly 
implied by all the society recommendations except model RILEM-B3 (and its predecessors since 1978). They document 
that the long-term creep is a logarithmic curve (as observed on the basis of laboratory data in [24].   

3. Secondary contributing causes are the use of obsolete beam-type creep analysis programs, neglect of differences in 
shrinkage and drying creep rates in slabs of different thicknesses and different thermal exposures, disregard of nonlin-
ear response due to cracking, gross underestimation of prestress losses, poor representation of segmental erection, of 
sequential prestressing and of concrete age differences and, as a minor contribution, also the cyclic creep due to traffic 
loads [2]. 

2. Hence, the creep specifications of fib [13, 14] (as well as ACI-209 [11, 12]) need to be revised.
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largest database, assembled at Northwestern in 2011, only 8% of creep test curves exceed 6 years, and 
only 5% 12 years. Also, the data readings are heavily biased for short times and ages. Even if the statistical 
bias is filtered by proper weighting [26], the multi-decade trend is not quite clear.

Excessive Deflections of 56 Segmental Bridge Spans  [(deflection/span)% vs. time in days]

Fig. 2 Deflection records on 56 prestressed segmentally built box girder bridges (as a function of time 
tc after span closing, in logarithmic scale). Note that the creep compliance curves show no sign of a 

horizontal asymptote implied by CEB-fib, ACI, GL and JSCE creep models. The horizontal lines shows 
allowable deflection (span / 800) (for further figures, see the short paper by Bažant et al. on the CD of 

the present proceedings volume).
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In this light, inverse interpretation of the bridge deflection histories in Fig. 2 appears to be essential. Ideally, 
one should conduct statistical inverse 3D finite element creep analysis of these bridges. But it has appeared im-
possible to obtain data that would suffice for finite element analysis of these 56 bridges, except for 6 of them. 
 Nonetheless, examination of the accurate solutions of the bridge in Palau and a few others showed that, 
for times t > tm  (where tm = tc + 1000 days, tc  = span closing time), the complex effects of nonuniform drying, 
segmental erection, sequential prestressing, concrete age differences and changes of structural system nearly 
die out. By comparisons with the accurate solutions for the KB Bridge it was thus shown that the subsequent 
deflection w(t) can be extrapolated from the measured 1000-day deflection w1000 with a surprisingly good 
accuracy by means of the formula:    

                                        w = w1000 [J(t, ta) - J(tc, ta)] / [J(tm, ta) - J(tc, ta)]                                        (1)
derived in 2010 by Bažant and verified in [27]; ta = average age of concrete at permanent load application; tm 
= tc + 1000 days, tc = time at span closing. Deflection w1000 at 1000 days after span closing cannot be predicted 
without detailed three-dimensional finite element creep analysis.  
 Although it turned out to be impossible to obtain the concrete strength and composition data for the 
56 bridges (except 6) in Fig. 2, the average concrete properties for 36 of them (Fig. 3) could be estimated and 
statistical analysis conducted [27]. As a result, it was concluded that the long-time creep parameters q3 and q4 
determined from concrete composition by the empirical formulas of model RILEM-B3 should be multiplied 
by correction factor r = 1.6. With this factor, the mean prediction of model RILEM-B3 for the terminal slopes 
becomes correct (Fig. 3) and the coefficient of variation of errors in the terminal slope gets greatly reduced 
[27].
 For the creep and shrinkage model of fib (as well as ACI-209), similar corrections cannot be imple-
mented because many of its aspects are theoretically incorrect. Aside from the incorrect form of Eq. 5.1-69, 
which implies an asymptotic bound and gives a time curve with a shape disagreeing with individual long-time 
creep tests (a fact that gets obfuscated when comparisons are made with the entire database), there are in Sec. 
5.1.9.4 of the 2010 fib Model Code Draft further weak points which need to be corrected. 
 E.g., the effect of drying on creep (Eq. 5.1-64) should not be represented by multiplicative factor φRH 
on the entire creep strain [28, 29]. Like model RILEM-B3, the drying creep should rather be a term additive to 
the basic creep, multiplicatively scaled according to the RH and shifted horizontally on top of the basic creep 
curve in log-time by a distance proportional to the square of thickness h = 2 Ac /u [28, 9]. 
 Another problem is that the compliance function, J(t,t’), of CEB-fib (as well as ACI-209) does not 
satisfy the condition of non-divergence of creep,                             [28], which causes that the principle of 
superposition can yield non-monotonic creep recovery curves (i.e., curves with recovery reversal). This is 
thermodynamically impossible according to Kelvin chain model [30].
 Also, the creep should not be defined by the creep coefficient φ (Eqs. 5.1-60 to 5.1-63), for two reasons: 
First, it tempts engineers to use the standard elastic modulus E, whose definition and measurement is incompat-
ible with the way the initial deformation (compliance) was measured. This typically causes an error that can 
be precluded by specifying the compliance function from which the creep coefficient can be calculated as φ = 
E(t0)J(t,t0) – 1. Second, the use of the conventional short-time modulus (rather than the asymptotic modulus in 
model RILEM-B3) forces the exponent in Eq. 5.1-69 to be too high, namely 0.3 (for short-time creep it should 
be about 0.1).
 The alleged asymptotic bound of fib creep formula is approached within 98% only after 70 years. The 
bound was much lower for the early models of Whitney, Glanville, Ross, Dischinger, Ulickii and Arutyunyan 
in the 1940s and 50s [28], and was approached closely in about 3 years. Accumulation of data over the years 
led to a gradual increase of the bound (a historical phenomenon that may be regarded as “creep inflation”). The 
engineers should finally abandon wishful thinking and admit that there is no evidence of a bound.

0'/)',(2 ≥∂∂∂ ttttJ
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Extrapolated Deflections of 36 Bridges [(deflection/span)% vs. time in days]

Fig. 3 Extrapolations w = C[J(t, ta) - J(tc, ta)] from measured 1000-day deflection w1000 for 36 sets of 
bridge deflection records for average concrete properties, obtained using models CEB-fib (          ), ACI-
209 (        ),  RILEM-B3 (       ), and RILEM-B3 model (         ) with terminal slope adjusted by r = 1.6.
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The simplest remedy for fib would be to replace the creep formulation with model RILEM-B3 [8, 9]. A still 
better remedy would be the improved model B3.1 under development in the Northwestern Infrastructure Tech-
nology Institute and in RILEM TC-MDC.
	 A	problem	related	to	creep	is	that	the	steel	relaxation	in	prestressing	tendons	is	generally	defined	only	
for a constant strain in steel. Analysis of the KB Bridge in Palau showed that the strain in steel can change by as 
much	as	30%	during	lifetime,	which	has	a	significant	effect	on	the	stress	relaxation	in	steel	as	well	as	prestress	
losses.	An	incremental	viscoplastic	model	for	prestressing	steel,	which	is	easy	to	use	in	time	steps	of	finite	ele-
ment creep analysis, has been developed [31] and should be introduced into the code.

2 Myth and reason in size effect
The size effect has been a contentious subject ever since the pioneering large beam tests of Kani in the 1960s 
[32], and the design codes have greatly lagged behind the theory. The 2010 fib Model Code Draft now proposes 
in Eqs. 7.3-18, 21, and 25 the beam shear model stemming from the work of Collins et al. in Toronto [33, 34, 
35]. Although this model is a progress compared to the previous empirical one in the 1990 CEB Model Code 
[13],	it	is	a	dubious	choice	since	there	exists	a	better	model,	with	a	deeper	and	broader	theoretical	justification.	
This model, developed at Northwestern (Eq. 4 in [36, 37]), was unanimously endorsed by ACI Committee 446, 
Fracture Mechanics (Eq. 2 in [38]). 
 In comparison to the ACI-445F database of 398 tests of shear failure of RC beams (Fig. 4a, [36]), both 
models look about equally good (or equally bad), but this is deceptive. The quality of model cannot be judged 
because of a limited size range of the database, and because of a huge scatter band width when tests from dif-
ferent labs, made with different concretes, different steel ratios ρ and different shear spans a/h, are combined 
in one database. If extrapolated to real structure sizes larger than those in the database, the difference between 
the	two	models	becomes	significant.
 One cannot validate a code equation solely by comparisons with a database that covers only a part of 
the size range of interest and has various kinds of statistical bias. A sound theoretical basis is required, too. But 
from the theoretical point of view, the procedure of derivation of the proposed fib Eqs. 7.3-18, 21, 25 is more 
a	myth	than	logic.	Briefly,	note	the	following	(and	for	a	deeper	critique,	see	pages	1892-1894	of	[36]):	

The average ultimate shear stress of the cross section is assumed to decrease with the beam depth (or size) 1. 
h as (1 + ch)-1 where c = constant. This kind of size effect means that the large size asymptote is propor-
tional to h-1, which is the Leonardo (da Vinci [39]) size effect law (contested by Galileo Galiei [40]). But 
this asymptote, which is also incorrectly exhibited by fib Eq. 7.3-40 for punching shear, is thermodynami-
cally impossible. The strongest possible size effect on nominal strength is proportional to h-1/2.
The model in 2. fib Eqs. 7.3-18, 21, 25 was derived [33, 34] under the tacit hypothesis that the diagonal 
shear crack would open along its entire length simultaneously, as for a limit load in plasticity. But this is 
impossible	in	a	quasibrittle	material	(the	crack	front	actually	propagates,	and	finite	element	simulations	
document that). 
An additional tacit hypothesis in the derivation [33, 34] was that the cohesive stress transmitted across the 3. 
diagonal shear crack would soften as (1 + kw)-1 where w is the crack opening displacement and k = con-
stant. This hypothesis, which is what led to (1 + ch)-1,	has	not	been	justified.	It	conflicts,	in	fact,	with	the	
cohesive softening law generally used in concrete fracture community, which is a bilinear law with a steep 
initial decline and a long tail [41]. If the line of reasoning in [33, 34] were accepted, this realistic cohesive 
softening law would lead to a very different size effect.
If, instead of (1 + 4. kw)-1, the cohesive stress across the diagonal shear cracks were assumed to 
soften as (1 + kw)-1/2 (which would be less unrealistic because the softening tail would be rela-
tively longer), the same (dubious) method of derivation [33, 34] of fib Eqs. 7.3-18, 21, 25 
would indicate that the average ultimate shear stress of the cross section decreases with the
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beam depth h as (1 + ch)-1/2, which is the (Bažant) Size Effect Law (SEL) [42], first proposed for beam 
shear in 1984 [43] and used in the recommendation unanimously adopted by ACI Committee 446, Frac-
ture Mechanics.

Fig. 4 a,b) Size effect curve for beam shear strength vc based draft fib Eqs. 7.3-18, 21, 25  (long dashes), and the 
same curve shifted up by 43 % (in log-scale) to represent the mean fit (short dashes), a) compared to (biased and 
unfiltered) ACI-445F database, and b) to Toronto size effect tests made for one concrete, one beam shape (bold 

diamonds). c,d) trends of vc dependence on longitudinal reinforcement ratio ρw and relative shear span a/h (where 
d=h), experimentally  revealed by the centroids of database strips that were filtered so as to make other influenc-

ing variables the same in all the intervals (fcm = mean cylindrical strength in psi (6895 Pa)).

a)

c)

b)

d)

5)  The model in fib Eqs. 7.3-18, 21, 25 was derived [33] by incorporating the crack softening law (1 
+ kw)-1 in the earlier ‘Modified Compression Field Theory’ (MCFT). This is, however, a stress-
based (non-energetic) plasticity-type theory. The undeclared hypothesis in this derivation, which is 
almost true for small beam sizes (as in the laboratory), is that the concrete cracking remains distrib-
uted, non-localized, that the failure is almost simultaneous, non-propagating, and that the material 
strength is, at maximum load, almost mobilized along the entire failure surface. But this derivation 
is incorrect for large beam sizes beyond the
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laboratory scale, in which the cracking localizes, the failure propagates. This means that while, in one part 
of the failure surface and at maximum load, the peak stress point has already been passed and the stress has 
already softened below the material strength limit, in another part of the failure surface the material strength 
limit has not yet been reached at maximum load (Fig. 4). In other words, the material strength along the fail-
ure surface in large structures cannot get mobilized simultaneously (Fig. 4), but in small structures can. This 
aspect is best handled by considering the energy release rate, as in fracture mechanics [41] and in the deriva-
tion of SEL. However, the derivation of fib Eqs. 7.3-18, 21, 25 involves no energy-based consideration, as 
well as no fracture-related characteristic length, while the presence of a material characteristic length is in 
the mechanics community generally accepted as the ultimate cause of all non-statistical size effects.

6.   The model in fib Eqs. 7.3-18, 21, 25 [33] may be applied to the diagonal crack initiation which, however, 
occurs long before the ultimate load is reached. 

7.    The implied assumption that the shear transmission across the developing diagonal crack controls the shear 
force capacity of the beam is an old, and false, myth. Detailed finite element analyses with an experimen-
tally calibrated finite element fracture program [37] showed that the diagonal shear crack (Fig. 4) transmits 
40% of the total shear force when the beam depth h is 0.3m, 17% when it is 2.0 m, and only 9% when it is 
6.0 m. What controls the maximum load is the propagation of compression-shear crushing across the liga-
ment above the diagonal crack tip (Fig. 4). And what explains the size effect is that, at maximum load, the 
compressive stress distribution across this ligament is in small beams nearly uniform, equal to concrete 
compression strength fcm,, whereas in large beams it is highly localized (Fig. 4). While one portion of the 
ligament in large beams has not yet reached the concrete strength, another portion has already entered the 
post-peak regime and has softened to small stress (Fig. 8c,d [36]).

8.   The aggregate interlock stresses sketched in fib Fig. 7.3-4 may characterize the situation at diagonal crack 
initiation and, if the beam is small, partly also the situation at maximum load.  But this traditional sketch, 
featured in old textbooks, is in the case of maximum load in large beams misleading because the stress along 
the diagonal crack does not get mobilized simultaneously along the entire crack length. Fig. 3e,f shows 
localized tensile and shear stress distribution along the diagonal crack and localized compressive stress 
distribution across the ligament above the tip of the diagonal crack, computed by a finite element program 
with the microplane model and crack band model for nonlocal damage [37].

9.   The SEL [42] for structures reaching the maximum load only after the formation of a large crack has been 
validated for all kinds of quasibrittle failure of concrete structures, including anchors, beam torsion, slab 
punching, pipes and, in reduced-scale tests and in a slightly modified form, slender columns, and serves 
as standard fracture test basis. It has also been validated and widely accepted for all other quasibrittle ma-
terials, including sea ice, fiber composites, coarse-grained or toughened ceramics, wood, inhomogeneous 
rocks, stiff soils, bones, rigid foams, dry snow slabs, carton, etc. Why should then the size effect for shear 
of concrete beams be different?  

10. The model in fib Eqs. 7.3-18, 21, 25 (as well as ACI) ignores the effects of longitudinal reinforcement 
ratio ρ and of relative shear span a/h, which are quite significant; see Fig. 3 c,d (and also Fig. 4c,d and 
Eq. 4 in [37]).  The existing worldwide database of 398 tests (Fig. 3a) is statistically biased in that the 
means of ρ and of a/h in subsequent size intervals vary with the beam size (or depth) h. Vice versa, the 
mean of size h in subsequent intervals varies with ρ and a/h (Fig. 4c,d). To extract the trends, the da-
tabase must be filtered. A computer program has been developed to filter the worldwide database by 
progressively deleting marginal points from the database such that the means of h and of a/d be very 
nearly the same in all the intervals, as shown by the values in Fig. 4c (and likewise in Fig. 4d) [44]. 
The data points deleted from the margins by the filtering program are shown in Fig. 4c as the tiny 
dots, and the data retained as the circles. Fig. 4c shows the centroids of the data remaining in each in-
terval of ρ by the bold diamonds (and likewise Fig. 4d for the intervals of a/d. Fig. 4c documents
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that the beam shear strength vc depends strongly on reinforcement ratio ρ (e.g., for ρ > 3.9 the vc value is 2.9 
times larger than it is for ρ < 0.63 if h and a/d are kept constant). Fig. 4d documents similarly that the de-
pendence of vc on a/d is significant, too. Both these effects are included in the beam shear equation in [38], 
calibrated by nonlinear regression, but are not revealed by the way of argument in MCFT. They should not 
be ignored in the future fib Model Code (as well as ACI Code).

11. Finally, it is not correct for fib (as well as ACI) to assume that minimum stirrups, or any stirrups, eliminate 
the size effect [45]. They merely mitigate it, pushing it into much larger beam sizes; see [46] and Fig. 5. 
Although the database with 183 data in Fig. 5 is too scattered to show a clear trend (mainly because it 
combines many different concretes), the size effect trend is clearly revealed by computations with the crack 
band model [46] and is experimentally evidenced by the data of Bhal [47] for one and the same concrete, 
shown by bold diamonds in Fig. 5.  In the presence of stirrups, the size effect can be ignored only for 
beam depths up to about 1 m, but for the depth of 6 m, typical, e.g., of the outriggers of modern super-tall 
buildings, the size effect reduces the shear capacity by roughly 40%, and for the depth of KB Bridge girder 
(14.2m) by roughly 50% [46]. As shown in Fig. 5, the failure probability is 10-6 for beam depth 0.3 m, as 
required, but increases to the unacceptable value of 10-3 for beam depth 6 m (the strength distribution is 
here assumed to be lognormal, rather than Gauss-Weibull, because the database compares many different 
concretes, which means that this is the strength probability when no tests for the given concrete have been 
made). 

The simplest remedy to the size effect formulation in [14] would be to adopt the size effect equations adopted 
by ACI Committee 446, Fracture Mechanics [38], although they could be refined further.
      There are other claims about the size effect, which are myth or fib (cf., e.g., [48]). They can be left aside.

3      Black holes in safety specifications

3.1    Black hole in probability distributions tails

In the mostly excellent chapters 4.5 and 4.6 on the safety formats [14], a glaring weakness is that all the prob-
ability density functions (pdf) of strength are tacitly assumed to be Gaussian (or normal). This is correct for 
ductile (or plastic) failures (because the Central Limit Theorem applies). But it is incorrect for brittle or quasi-
brittle failures occurring at macro-fracture initiation from a small representative volume element (RVE) of 
material, which is what occurs in unreinforced structures (arch dams, foundation plinths, retaining walls, etc.), 
though not in most reinforced ones. For brittle failures, the pdf cannot be anything but Weibullian because the 
weakest link model for a chain with an infinite number of links [49] applies [50, 51]. It is well established that, 
for small sizes, the cracking remains distributed, which leads to a ductile (or quasi-plastic) failure, whereas for 
large sizes the cracking localizes, which leads to brittle failure. So it is logical to expect, and has been proven 
in various ways [50, 51, 52], that the pdf must gradually change from Gaussian to Weibullian as the structure 
size increases. And that is where the black hole resides.
     It is generally agreed [53, 54, 55] that engineering structures must be designed for failure probability Pf 
<10-6, and so the tail of the pdf of strength needs to be known within the range 10-5—10-6 (which is what matters 
for the convolution integral with the pdf of load). Now, for the Weibull pdf, the distance from the mean to the 
tail point of 10-6 is almost twice as large, in terms of standard deviations, as it is for the Gaussian pdf (Fig. 4), 
and this has a big effect on the required (partial) safety factor. But such a far out-tail is like a black hole—it is 
not directly observable by histogram testing (since >108 structure test repetitions would be needed!). Yet, like 
a black hole, the tail can be observed indirectly — through the size effect (of type 1 [56]), which is dominated 
by the tail [51]. 
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Fig. 5   Size effect on shear strength of RC beams with stirrups, compared to the database of 183 tests [46] for 
many different concretes, and lognormal strength distributions assumed to be, for all the sizes d (d=h), the same 
as in the small size interval with many data. The bold diamonds represent the tests of Bhal on one and the same 

concrete a) The increasing probability cutoff indicates the decrease of safety margin with increasing size. b) Com-
parison with typical maximum design load distributions, and failure probabilities for various sizes obtained by 

convolution with strength distribution according to Freudenthal reliability integral.

     This scaling behavior has recently been researched and experimentally demonstrated in theoretical 
literature [50, 51, 52], but it will take some effort to build it into the system of partial safety factors for 
concrete structures. Until this is done, it is an illusion to think that the failure probability could be calcu-
lated for large concrete structures failing at macro-crack initiation. 
Another problem with a black hole in the tail arises from the use of lognormal distribution in Eq. 
4.5-9b [14] for the updated design value xd of structural resistance X .The lognormal distribution 
is appropriate to characterize the statistical variability arising when different concretes are consid-
ered [44] (Fig. 5). This variability is huge and overrides the statistical variability of one concrete per 
se. However, to characterize the randomness of resistance of a structure made from one and the same  
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concrete, or the material strength of one and the same concrete, the lognormal distribution is incorrect, physically 
inconceivable. 

In ductile failure, the resistance X is a sum of weighted random contributions from many simultaneously 
failing material elements along the failure surface, with weights that can be determined, e.g., by a finite element 
code. Hence, according to the Central Limit Theorem, the structure strength distribution must be Gaussian — 
except, of course, the tail, including the far-left tail  reaching into negative values, which is always beyond the 
range of validity of the Gaussian pdf (note that even the sum of n positive independent identically distributed 
random variables, which can never be negative, converges to the Gaussian distribution as n→∞). 

The only way a lognormal distribution for one given material (i.e., one concrete) could physically arise is if 
the failure were a product, rather than a sum, of the random strength contributions of the material elements along 
the failure surface [52]. But such a product, which is implied by the lognormal distribution, is of course physi-
cally inconceivable, for both structure strength and material strength. Thus, provided that one given concrete 
is considered, the lognormal distribution in fib Eq. 4.5-9a should be replaced by the Gaussian pdf if the failure 
is ductile, by the Gauss-Weibull graft [52, 51] (which corresponds to a finite weakest-link model) if it is quasi-
brittle, and by the Weibull pdf (which corresponds to an infinite weakest-link model) if it is perfectly brittle. 

Note also that since the lognormal distribution has the opposite skewness than the Weibull distribution, it 
represents, for the variability of strength of one given concrete, the worst possible guess [52] for someone who 
is bothered by the infinite Gaussian tail reaching into negative values. The difference in the safety factor corre-
sponding to the tail at Pf  =10-6 is huge (Fig. 6).

The problem of a black hole in the tail extends to the use of reliability index β in fib subclause 3.2.5. That 
index, too, is predicated on the Gaussian distribution and thus cannot be applied if the structural failure is not 
ductile, lacking a long plastic plateau on the load-deflection diagram. This limitation should be kept in mind.

Fig. 6 Gaussian, Weibull, and Lognormal cumulative probability density functions with  the same mean, equal 
to 1, and the same typical coefficient of variation. Note the huge differences among the distances cG, cW and cL 

from the mean to the tail point with probability 10-6 (a point that matters for safe design).

3.2      Black holes in design formulas set at the margin of data

    Another aspect that confounds the calculation of failure probability on the basis of design formu-
las is the presence of the so-called covert safety factors [57]. In the fib Model Code Draft (as well as in 
ACI code), for example, the design equation (fib Eq. 7.3-8) for beam shear has not been set so as to
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represent the mean trend of the data, i.e., the regression curve. Rather, it has been set at about 43% below the 
regression curve. Because this fact is kept invisible in the code, the code formula is often taken as the mean 
prediction, which obviously leads to wrong estimates of failure probability. 
	 Again,	this	is	a	sort	of	a	black	hole,	though	an	easier	one.	It	would	suffice	for	the	designer	to	plot	the	
fib Eq. 7.3-8 against the database, carry out the nonlinear regression, and determine the probability cut-off 
for the offset of the design equation from the regression curve in the interval of interest. However, this is not 
what the designers are expected to do. The code should make it easy:  Declare in the code the probability cut-
off	of	the	recommended	design	equation,	the	coefficient	of	variation,	and	the	type	of	distribution.	Otherwise	
all the failure probability estimates are meaningless.
 This black hole, as well as that in tails, can, in principle, be avoided if the failure probability is cal-
culated	by	a	stochastic	nonlocal	(fracture-based)	finite	element	code	into	which	the	Gauss-Weibull	transition	
of pdf is incorporated. But this is a complex task, still in the research realm, and a practical way to deal with 
these black holes in the pdf tails does not yet exist.
   
3.3 False size effect hidden in excessive partial safety factor imposed on self-weight

For permanent actions, which include the self-weight, Section 4.5.2 of the fib	Model	Code	Draft	specifies	
the load factors of 1.05 – 1.1 in Table 4.5-4, 1.35 in section 4.5-5 for the case of “non-particular” actions, 
not involving geotechnical actions, and either 1.35 or 0.85 – 1.35 in Table 4.5-6 for alternative combination. 
Although the application is not completely clear from this Draft, it is clear, upon rigorous appraisal, that 1.1, 
and	especially	1.35,	are	irrational.	The	same	could	be	said	of	the	ACI	Standard	318,	which	specifies	for	dead	
load, including the self-weight, the factor of 1.4 when acting alone and 1.2 when in combination.  
 In a small bridge, the self-weight may represent only a few percent of the total load. But in a large 
bridge, more than 95% of the total load can be the self-weight of concrete. Errors larger than about 3% in the 
weight of concrete and reinforcement are inconceivable (except as carelessness or sabotage). Thus the factors 
of 1.1 and 1.35 represent a penalty on large structures, which represents a hidden size effect [58]. This size 
effect is invisible to the designer, like a black hole. 
 However, the self-weight factor is not a rational way to introduce the size effect. The shape of the 
size effect curve implied by these factors is incorrect [58]. Besides, prestressed structures, or structures made 
with high strength concrete, are lighter than the unprestressed ones or those made with normal strength con-
cretes, and thus the size effect hidden in excessive self-weight factor is weaker, yet in reality the size effect is 
stronger because such structures are more brittle. For large cable-stayed bridges, this hidden size effect also 
works the wrong way. 
   
4 Closing comment

Although a perfect design code is unattainable, and too much perfection would make the code too complex 
to use, some corrections outlined here are simple and easy to implement. They would improve the fib Model 
Code Draft substantially.
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M. Zich, J. Navrátil, M. Jirásek, B. Teplý, V. Červenka, D. Novák and M. Vořechovský for valuable help in 
obtaining various data and for many helpful comments.
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