
1 INTRODUCTION       
Interpreting various experimental observations, 
some investigators recently suggest that the fracture 
energy, GF, of concrete is not a constant, but varies 
with the crack length and structure size. There are 
two objections to such an interpretation: 1) It de-
stroys the theory unless some rule for the variation 
of GF, involving another fundamental constant, is in-
troduced; and 2) it relies on a uniaxial definition of 
GF as the work of the cohesive stress on the crack 
face separation at a fixed point, whereas the correct 
definition of GF must be based on the J-integral, i.e., 
on the flux of energy into the fracture process zone 
propagating in a stationary way. 
    The condition of stationary propagation requires 
that the boundaries be sufficiently remote compared 
to the size of the fracture process zone and material 
inhomogeneities. This condition is always satisfied 
for normal-scale specimens of fine grained ceramics 
and metals, but not for concrete, for which the com-
parable specimen size would be prohibitively large 
(the maximum aggregate size times at least 10

2
, pos-

sibly 10
3
).  

    Therefore, GF must be defined either by extrapo-
lation to infinite structure size, or by fitting of the 
test data by a theory that automatically exhibits the 

size effect, e.g. by the nonlocal softening damage 
model, by the random lattice particle model or, in a 
simpler but more limited way, by the cohesive crack 
model. These models can explain the observations of 
apparent variation of fracture energy by a reduction 
of the fracture process zone size in areas adjacent to 
the body surface. In the case of no initial crack or 
notch, full explanation of such observations further 
requires taking into account the Weibull statistical 
size effect. 
     Further it must be noted that GF cannot be 
measured by uniaxial tensile tests assuming the 
crack face separation to be uniform across the 
specimen width, that the testing of the work-of-
fracture cannot capture the tail of the softening 
curve, and that the GF values estimated from the 
measured work of fracture have a very high statisti-
cal scatter.  
    For this reason, it is preferable to focus fracture 
testing on the initial fracture energy Gf (area under 
the initial slope of the cohesive softening curve). Gf

can be identified from size effect tests of typical 
laboratory specimens, is by definition size-
independent, and has a much smaller coefficient of 
variation than GF.
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    It is well established that concrete, an archetypi-
cal quasibrittle material, exhibits a transitional de-
terministic (energetic) size effect if a deep notch or a 
large traction-free crack exists (Bažant 1984). This 
is now called the Type 2 size effect. A different de-
terministic size effect, now called Type 1, was also 
identified in concrete structures with no notch 
(Bažant and Li 1995). Both size effects are auto-
matically exhibited by the cohesive crack model and 
crack band model. The former was proposed by 
Barenblatt (1959), finalized by Rice (1968) (who 
proved the equality of work of fracture to the energy 
flux into the fracture front), and pioneered for con-
crete by Hillerborg et al. (1976), Petersson (1981) 
and Hillerborg (1985) under the alternative name 
“fictitious crack model”. 

A bilinear softening curve has been widely 
adopted for a realistic and simple description of the 
relation of cohesive stress and the crack face separa-
tion. Its two key parameters are the total fracture en-
ergy GF and initial fracture energy Gf. GF is defined 
as the energy (per unit area) required for complete 
break, and represents the total area under the soften-
ing curve (Fig. 1a). The initial fracture energy Gf is 
defined as the area under the initial tangent of the bi-
linear softening curve; see Fig. 1a. 

According to its definition, the most straightfor-
ward way to identify GF is the work-of-fracture 
method. Ideally, GF is obtained as the area under the 
measured complete load-deflection curve in which a 
notched specimen is totally broken, divided by the 
total crack area (or ligament area). As simple as the 
concept seems, it nevertheless yields problematic re-
sults. It is found that the fracture energy GF of con-
crete measured by the work-of-fracture method is 
not a constant. Instead, it is also size dependent 
(Nallathambi et al. 1984, Wittmann et al. 1990, Hu 
and Wittmann 1992). Contrary to the nominal 
strength, the measured fracture energy increases 
with an increasing size. From the trend shown in the 
measured fracture energy versus size plot, it can be 
extrapolated that the measured fracture energy will 
reach a horizontal asymptote as size is large enough. 

One recent model that attempts to explain the ob-
servations is the boundary effect model (BEM) of 
Hu and Duan (Hu and Duan 2007, 2008, 2009). 
Here, a recent critical analysis of this model (Yu et 
al. 2010) and its comparison with the size-shape ef-
fect law (SEL), with experiments and with the cohe-
sive crack model will be summarized. Hopefully, 

this would yield a better understanding of the nature 
of the size effect and fracture energy, and thus lead 
to a better description of concrete fracture. 

2 SIZE-SHAPE EFFECT LAW (SEL) AND 
BOUNDARY EFFECT MODEL (BEM) 
The size effect law (SEL), also called the size-shape 
effect law because the geometry effects were in-
cluded in its 1990 generalization (Bažant and Ka-
zemi 1990), considers the deterministic size effect in 
concrete and other quasibrittle materials to be 
caused by the energy release due to stress redistribu-
tion by fracture growth. The SEL is of two basic 
types.  

Type 2. It applies to structures with a deep notch 
or large traction-free crack. It can be written as 
(Bažant 1984, 1997, 2004, 2005): 
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here P = peak load, D = characteristic size of a two-
dimensionally similar structure, b = width of struc-
ture, f't = tensile strength, E = Young’s elastic 
modulus; 0 = a0 / D = initial crack- or notch-to-
depth ratio; g( ) = dimensionless energy release 
function of linear elastic fracture mechanics 
(LEFM), which introduces the geometry effects; Gf

= initial fracture energy; and cf = material length 
constant representing the distance from crack tip to 
the resultant of tensile strength in the fracture proc-
ess zone (FPZ).

Type 1. It applies to structures of positive geome-
try (i.e. g'( ) > 0) failing at crack initiation from a 
smooth surface. It reads (Bažant and Li 1995, 
Bažant 2005): 

r
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,

)0,max(xx , and r = empirical parameter.  is a 
constant representing the large size asymptote, and 
Db  double the thickness of the boundary layer of 
cracking in beam flexure. According to Eq. (3), the 
size effect will vanish for large sizes because the 
boundary layer is negligible compared to the size D.
Due to the material randomness, the Weibull’s sta-
tistical size effect, which is much weaker than the 
deterministic size effect, must dominate for very 
large structures. The Type 1 SEL (Bažant & Xi 1995 
Bažant & Li 1995, Bažant & Novák 2000a,b) is then 
extended as: 

r

b
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where m = Weibull modulus and n = 1, 2, or 3 for 
one-, two-, and three-dimensional similarity of frac-
ture. For small sizes, Eq. (4) converges to Eq. (3) for 
deterministic Type 1 SEL; for large sizes, it ap-
proaches Weibull’s size effect, i.e., N ~ D

-n/m
.

Consequently, the variation of measured fracture 
energy near the notch tip, generally called the R-
curve (or resistance curve), can approximately be 

Fig. 1: a) Bilinear softening curve and its key pa-
rameters of cohesive crack model; b) linear 
stress profile assumed in BEM. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 

 

( ) s
s

s

vg
kc

c

c

vg
k

sc
G αααα +=,
1

                 (5) 

 
where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



determined from the SEL, using a constant fracture 
energy Gf:
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where G0 = Gf g( )/g( 0) and
~~

GEK c (Bažant 

and Kazemi 1990). 
Unlike SEL, BEM attributes the deterministic 

size effect to the interaction between the FPZ and 
the structural boundary. Therefore, the energy re-
lease due to stress redistribution is disregarded and 
the term “size” is used to refer to the crack length. 
By matching the transition between the asymptotic 
cases 1) of a  0 and 2) of a and (D - a) both being 
large, it is postulated that (Hu and Duan 2007, 2008, 
2009, Hu and Wittmann 2000): 
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where *a = lch/1.12
2

lch
2' )/( tIC fK = Irwin’s 

characteristic length (Irwin 1958); KIC = critical KI

(fracture toughness); and a is identical to a0 in SEL. 
In order to extend Eq. (7) to small ligaments for ex-
tremely deep notches (Duan and Hu 2004, Duan et 
al. 2006, Huan and Duan 2007, 2008, 2009), the  
nominal strength is redefined as n = N/A( ). Here 
A( ) is a geometry constant such that n represent 
the stress for peak load at the crack tip under the 
simplifying hypothesis of a linear stress distribution 
across the ligament, the crack tip stress singularity 
being ignored; see 1b. 

Furthermore, to explain the size dependence of 
fracture energy measured in tests, a concept of local 
fracture energy was proposed in BEM. Hu (2002) 
and Duan et al. (2006) considered the fracture 
toughness and fracture energy to be variable pa-
rameters. Based on Eq. (7), the variable fracture 
toughness and fracture energy are expressed as 
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3 INTERPRETATION OF VARIATION OF 
FRACTURE ENERGY 
Rigorously, every physical theory should be formu-
lated in such a way that its constants are actually 
constant (within the intended scope). If these  

constants (like fG
~

and v

fG ) are found to vary, then 

the theory should be reformulated so that the con-

stant parameters of this variation (here Gf) serve as 

the new constants. Otherwise, it will destroy the 

whole theory. 
Theoretically, it is unnecessary to use local or 

variable material properties to interpret the variation 
of fracture energy observed in tests. What is variable 

is not the true fracture energy GF but the apparent

fracture energy fG
~

 evaluated by classical work-of- 

fracture method that does not take into account the 
finiteness of the FPZ caused by material heterogene-
ity (Bažant 1996, Bažant and Yu 2004).  

As shown by Rice in 1968 (Rice 1968), the work  

integral
0

)(
w

F dwwG defining the fracture  

energy of a cohesive crack is equal to the flux of en-
ergy into the FPZ of a propagating crack, given by 
the J-integral. However, this is true only for quasi-
steady crack propagation, during which the stress 
and strain fields immediately surrounding the FPZ 
do not change. Near the tip of notch or initial stress-
free (fatigued) crack and near the opposite boundary, 
the propagation is not steady, and the energy flux J
required to propagate the crack is smaller than GF; in 
detail see Bažant and Yu (2004). When the testing 
method gives J, or the average J over the ligament 
(Nakayama 1966, Hillerborg 1985, RILEM 1985), it 
is not surprising that the fracture energy appears to 
be variable. So, the idea of a size-dependent fracture 
energy is an artificial and unnecessary complication. 
By using a constant Gf, it can also yield the depend-
ence of the R-curve and the apparent fracture energy 
on the specimen size; see Eqs. (5) and (6). 

For accurate measurement of GF, the unstable 
crack propagation must happen in a negligible frac-
tion of the specimen size. Therefore the specimen 
size will be prohibitively large. One has to extrapo-
late the fracture energy obtained from tests to infi-
nite structure size. This requires a theory that auto-
matically exhibits the size effect, such as the 
nonlocal softening damage model, the random lattice 
particle model or, to a limited extent, the cohesive 
crack model. Jirásek (2003) showed that the varia-
tion of apparent fracture energy can be matched by a 
nonlocal continuum damage model in which the 
characteristic softening curve is kept fixed. By 
modifying the tail of cohesive crack model in the 
unstable cracking zone, Bažant and Yu (2004) also 
showed that a good agreement could be achieved for 
Wittmann et al.’s fracture tests (1990). Of course, 
the nonlocal model is a more general and more fun-
damental characterization of fracture than the cohe-
sive crack model.  

Compared to the total fracture energy GF, the ini-
tial fracture parameter Gf, which is not defined in 
BEM, is more frequently used in SEL. The advan-
tages of the use of Gf over GF are that 1) it is size-
independent, thus it can be obtained by size effect 
tests of normal size specimens; 2) it is statistically 
much less scatter than GF. Investigation of experi-
mental data reveals that the coefficient of variation 
of GF is almost twice as large as that of Gf (Bažant 
and Becq-Giraudon 2002, Bažant et al. 2002). 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
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etc.). In the literature various formulations can be 
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paper the semi-empirical expression proposed by 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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fill all pores (both capillary pores and gel pores), one 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 
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where q is the heat flux, T is the absolute 
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4 SIZE EFFECT TEST SUPPLEMENTED BY 
LOAD-CMOD CURVE 
Direct determination of the stress-separation soften-
ing function (w) of cohesive crack model by ex-
periment is next to impossible. Instead, a reverse 
analysis of test data is generally required to identify 
the essential aspects of (w). As is well known, the 
post-peak response of concrete can be represented 
realistically if a bilinear softening function (w) is 
selected for cohesive crack model. The question now 
is how to obtain the parameters of this bilinear sof-
tening function from the test data, which generally 
cover only a limited size range and scope. 
    For the size range used in laboratory, the cohe-
sive stress in the FPZ at peak load still lies com-
pletely within the initial steeply descending linear 
portion of (w) curve. So, the tail of the softening 

(w) cannot play a role in the maximum load. 
Therefore no information about the tail, which is 
important to determine the total fracture energy GF,
can be obtained by analyzing the peak load alone, 
unless extremely large size concrete specimens (i.e., 
D > 5 m) are tested. This limitation applies to all the 
size effect testing, including both SEL and BEM, in 
which only the peak load is measured. It means that, 
to obtain information of the tail, the size effect tests 
must be supplemented by knowledge of the com-
plete load-deflection curve. Unfortunately, only very 
limited size effect test data that include the post-
peak deflections are available in the literature. 

Therefore, new concrete fracture tests on three-
point bend beams have been carried out at North-
western University. In these tests, ready-mixed con-
crete was procured from Ozinga, Inc., Chicago (470 
lb. of Type I cement, 1.20 lb. fly ash, 1680 lb. coarse 
aggregate of maximum size 9.5 mm, 1540 lb. fine 
aggregate, and 207 lb. water per cubic yard of con-
crete were used). The specimens were demolded 1 
day after casting and then stored in a standard curing 
room for 68 days. The notches were cut by a dia-
mond saw 1 month after the casting. Except for a 
constant width of b = 40 mm, the specimens were 
geometrically scaled; see Fig. 2a. Since larger scat-
ter was expected in the small size range, more small-
size than large-size specimens were cast. Tested 
within 4 days were 10 specimens of D = 40 mm, 
giving the peak loads of 1967, 2007, 2261, 2037, 
2008, 2273, 2456, 1922, 2361, and 2185 N; 7 speci-
mens of D = 93 mm, giving the peak loads of 3988, 
3942, 3683, 3932, 4069, 4249, and 4214 N; and 4 
specimens of D = 215, giving the peak loads of 
6290, 7253, 6965 and 6609 N. The mean Young’s 
modulus E = 30 GPa and mean compressive strength 
f'c = 41 MPa were obtained by testing on 3 standard 
cylinders of the same concrete. 

A relatively low notch-depth ratio =0.15 was 
selected for the specimens. It led to longer liga-
ments, which minimized the possible interaction of 
the crack with the opposite boundary (invoked by 
BEM). The specimens were tested under crack 
mouth opening displacement (CMOD) control and 

complete softening curves were recorded for speci-
mens of D = 215 mm. As for D = 40 and 93 mm, the 
entire softening curves were not captured because 1) 
the loading frame was too soft compared to that used 
for the biggest specimens; and 2) the aggregates 
traversed by the crack caused in small specimens 
relatively longer crack jumps.  

A finite element code with cohesive crack model 
was used to fit the measured maximum loads for all 
sizes. From the measured complete load-CMOD 
curves, the following (w) parameters, defined in 
Fig.1, were identified: f't = 4.80 MPa, wc = 0.08 mm, 

1 =0.2 f't = 0.96 MPa, and w1 = 0.0107 mm. The va-
lidity of the selected parameters is documented by 
the excellent fit of both the complete load-CMOD 
curves for D = 215 mm and the maximum loads P
for all the sizes; see Fig. 2b,c.  

The bilinear (w) is fixed by the position of the 
knee point (w1, 1) and the ratio GF / Gf. If the tail is 
dropped (linear cohesive law) or its slope is reduced 
(GF increased), the N values for the three sizes can 
still be matched, but the load-CMOD curve will de-
viate substantially; see Fig. 2b. The explanation is 
that the cohesive stresses in the FPZ do not enter the 
tail within the normal size range of tests; see Fig. 3. 
If the stress profile along the ligament at peak load is 
plotted, it can be seen in Fig. 3 that the FPZ is lo-
cated far away from the boundaries. Note the split-
ting tensile strength obtained by splitting cylinder 
test (Brazilian test) may not be a realistic representa-
tion of the material tensile strength. The reason is 
that the splitting tensile strength of Brazilian test 
also exhibits strong size effect. 

5 IDENTIFICATION OF COHESIVE 
SOFTENING FROM SIZE EFFECT DATA 
Compared to the Brazilian tests, the material tensile 

Fig. 2: a) Geometry of tested beams at North-
western; b) simulation compared to recorded 
load-CMOD curves; c) simulation compared 
with recorded peak loads for all sizes; d) normal 
stress profile in small and large unnotched beams 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



strength can be more accurately determined from 
size effect tests by exploiting Irwin's relation: 

/,/ 11

'

fft cllEGf                      (9) 

To obtain f't, one must determine parameter  and 
decide whether to use the initial fracture energy Gf

or the total one, GF, the latter being more difficult to 
identify accurately. This problem has been illumi-
nated by cohesive crack simulations of Bažant et al. 
(2002) and especially Cusatis and Schauffert (2009), 
who showed that  = 0.44 for the linear softening 
(and  = 2.31 for bilinear softening and GF replacing 
Gf). However, these values are only approached for 
D . For decreasing D, the cohesive crack results 
deviate from the Type 2 SEL linear regression line 
appreciably. Therefore, correction must be under-
taken.

If the total fracture energy GF of bilinear soften-
ing is considered, the regression line will approach 
its asymptote closely only for specimen sizes far be-
yond the laboratory range, precisely for Dl > 10 
where Dl is dimensionless shape-independent size, 

equal to Dg0/ lch g'0 (lch = EGF/ f't
2
). If the tail is 

dropped and only the initial softening slope is con-
sidered, the asymptote will become steeper and will 
be approached closely for sizes an order of magni-
tude smaller. Cusatis and Schauffert (2009) find that 
the asymptotic slope corresponding to Gf is best ob-
tained by tests within the range 0.2 < Dl < 0.7 for bi-
linear softening.  

However, Cusatis and Schauffert obtained this re-
sult by positing the knee point of bilinear softening 
curve at '

1 25.0 tf . They did not investigate the ef-
fect of 1 on the optimal size range for Gf. By keep-
ing Gf, GF and f't constant while moving 1 up and 
down in the bilinear softening curve, it is found in 
this study that the optimal size range (0.2 < Dl < 0.7) 
will not change significantly for typical geometry 
used in 3-point bend tests when '

1 25.0 tf . When 
the knee point is higher than 0.25 f't, the optimal Dl

will shift to smaller sizes. The reason is that, for a 
higher 1, the cohesive strength in the FPZ enters 
the tail for smaller sizes. Fortunately, for normal 
concrete, the knee point is usually lower than 0.25 f't
(CEB 1991), therefore this optimal size range can 
generally be used in data analysis. Since this optimal 
size range depends mainly on Gf, it is better to 
change the definition of the dimensionless shape-
independent size to Ð = Dg0/ l1 g'0 (l1 = EGf/

2'

tf ).
Then the optimal size range will be 0.4 < Ð < 1.4 
and it will be almost independent of the ratio GF/Gf.

It should be pointed out that this optimal size 
range, obtained by cohesive crack model only, may 
be statistically insufficient if the inevitable random-
ness of test is considered. To minimize the effect of 
random scatter on the data fitting, it is statistically 
preferable that the size range be at least 1:8 (Bažant 
and Planas 1998). Therefore, it is desirable to extend 
this size range at least to Ð in (0.2, 1.8). 

To investigate the possibility of extending the 
testing range, the program for the cohesive crack 
model was run for specimens of = 0.15, 0.4 and 
0.6, span-to-depth ratio S/D = 2.4, 4, and 8, and size 
D from 40 to 1000 mm. This covers all the shapes 
typically used in three-point bend tests. Various lin-
ear size effect regressions for various  and S/D
were conducted. The parameters obtained are listed 
in Table 1. 

As stated by Cusatis and Schauffert (2009), if 
(w) is linear, the asymptote gives  = 0.44. But to 

achieve this asymptote requires an unacceptably 
large size (Ð > 10). Fortunately, it turns out that test-
ing extremely large specimens is not necessary when 
a bilinear (w) is used. By virtue of the transition to 
the second asymptote corresponding to the (w) tail, 
it luckily happens that, in the normal size range (0.4 
< Ð < 1.4), the curve in Fig.4 computed from the 
cohesive crack model is almost parallel to the as-
ymptote for the linear softening that gives Gf. The 
downward shift from this asymptote actually repre-
sents the intermediate asymptote in the sense of 

Fig. 3: The FPZ and cohesive stress at notch tip 
at peak load for beams of different sizes. 

Fig. 4: Dimensionless plots of size effect simu-
lations by cohesive crack model and their as-
ymptotes. 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 
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where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



Barenblatt (1996, 2003). The values for  other than 
0.44 are listed in Table 1 according to the shape and 
size range. It is for this reason that the SEL regres-
sion of N data from the cohesive crack model yields 
excellent agreement for Gf, as well as l1 and f't.

If the size range of specimens is extended to Ð in 
(0.2, 1.8), which helps to minimize the scatter of the 
regression slope of test data, the results of regression 
for Gf are almost same. But for cf and f't it is then 
better to reduce  from 0.29 to 0.28, in order to com-
pensate for the small downward shift of the regres-
sion line due to the curvature of the plot outside the 
interval (0.4, 1.4). A proper adjustment of  would 
permit even broader size ranges, such as 1:16. 

For bilinear softening, the size range for accept-
able estimation of Gf is 0.2 < Ð < 1.8 (after exten-
sion), which most of the laboratory specimens fall 
in. Therefore, for most size effect tests, the Gf ob-
tained from regression according to SEL is in good 
agreement with the cohesive crack model, while the
f't is much larger. This is due to the cf obtained is far 
less than the real cf. Fortunately, by using the correc-
tion listed in Table 1, an accurate estimate of '

tf is
obtainable.

After Gf and '

tf are determined by size effect test 
data, GF and the knee position can be identified by 
matching the measured load-CMOD curves.    

6 QUESTIONALBLE ASPECTS IN BEM 
Besides the misleading interpretation of the variation 
of the apparent fracture energy, a careful study 
shows there are other fundamental flaws in BEM. 

1. Incorrect hypothesis about the size effect 
mechanism and FPZ/boundary interactions. In 
BEM, it is asserted (Hu and Duan 2008) that the 
size-dependence of quasibrittle fracture transition is 
actually due to the interaction of FPZ with the near-
est structure boundary and the SEL is only a special 
case for quasibrittle fracture controlled by the FPZ 
and boundary interaction. This assertion is untrue. 
When the ligament length (D-a) and the crack length 
a are both much larger than the FPZ length, one ob-
tains the strongest size effect possible – the size ef-
fect of the LEFM. Yet in that case there is no inter-
action with the boundary because the FPZ is 
surrounded by the LEFM near-tip stress field, which 
is independent of the boundary geometry. 

2. Disregard of energy balance condition. If N

and the structure geometry are kept constant, the cal-
culated rate of energy release from the structure in-
creases with structure size D. To ensure that it re-

main equal to the rate of energy dissipation in the 
FPZ of a crack, N must decrease with increasing D
(Bažant 1984, 2004, 2005). The derivation of BEM 
ignores this undeniable source of size effect. 

3. Ambiguity of stress profile definition and of n.

The definition of n and of the stress profile across 
the ligament becomes ambiguous when extended 
beyond a few basic types of Mode I fracture speci-
mens. When applied to mixed mode or complex ge-
ometries, it is non-unique and dubious; see Fig. 5. 
On the other hand, function g( ) on which the SEL 
is based can be unambiguously calculated for all 
these cases. 

4. Incorrectness of linear stress profile in asymp-
totic cases. When the size D is small or the ligament 
is small, a linear stress profile proposed in BEM is 
not realistic. Instead, a rectangular stress profile 
must be asymptotically approached. 

5. Problematic definition of ae. In BEM, the as-
ymptotic cases of crack initiation from the surface 
and of vanishing ligament (extremely deep notch) 
are amalgamated by the hypothesis of an equivalent 
crack length ae (Duan et al. 2006). However, this 
hypothesis is based on an unjustified assumption of 
a linear stress profile. 

6. No mathematical basis for asymptotic match-
ing. Unlike the rigorous mathematic derivation in 
SEL to match, up to the second-order, the asymp-
totic properties, the procedure to set up Eq. (7) is in-
tuitive. The mathematic basis of the selection of Eq. 
(7) is not documented. 

7. Limited range and scope of application. By
taking advantage of selecting the same transition as 
SEL between the asymptotic cases, BEM generates 
realistic Gf values (in BEM it is treated as total frac-
ture energy) for normal notch ratios and large 
enough structures, provided they fail in a simple 
fracture mode. However, due to its unrealistic hy-
potheses, the BEM gives poor predictions for small 
sizes, shallow notches and short ligaments, and also 
for material tensile strength f't (peak cohesive 
stress).

8. Unrealistic hypothesis of proportionality of 
flaw size to structure size. To extend Eq. (7) to the 
extreme case  = 0 (Type 1 in SEL), BEM assumes 
that the size of the largest flaw, which is treated as 

S/D = 2.4 S/D = 4 S/D = 8 

0.4-

1.4

0.2-

1.8

0.4-

1.4

0.2-

1.8

0.4-

1.4

0.2-

1.8

Slope 0.99 0.99 1.02 1.01 1.04 1.03 

0.286 0.276 0.290 0.281 0.292 0.286 

Table 1: Slope and intercept of regression line. 

Fig. 5: Examples of specimens and structures 
for which BEM cannot be used but SEL can. 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



the pre-existing crack, is proportional to the struc-
ture size. However, the flaw size distribution is 
strictly a material property and thus cannot be a 
function of the structure size. Otherwise, Freuden-
thal-type (1968) analysis relating the flaw size dis-
tribution to the statistical size effect in structures 
would yield a Weibull statistical distribution in 
which the shape and scale parameters would be size 
dependent. Yet they are not. 

9. Incorrect large-size asymptote for failures at 
crack initiation. In Eq. (7), same large-size asymp-
totic slope –1/2 (LEFM) is given for both unnotched 
and notched specimens. This differs from the results 
obtained by tests and by cohesive crack simulations. 

10. Absence of a statistical part of size effect at 
crack initiation. In Eq. (4) of SEL, statistical size ef-
fect is amalgamated with the deterministic size ef-
fect. However, in BEM, this part is missing. 

11. Incorrect material strength identified by 
BEM. In BEM, n is directly related to f't by the lin-
ear stress profile, and the tensile strength can thus be 
obtained directly by linear regression of test data. 
However the resulting tensile strength severely dis-
agrees with the cohesive crack simulations. 

7 COMPARING SEL AND BEM BY 
EXTENDING TESTS THROUGH COHESIVE 
CRACK MODEL 
To compare SEL and BEM thoroughly, simulation 
results of beams of S/D = 2.4 and of variable notch 
to depth ratios, which include a smooth surface ( 0

= 0) and an extremely deep notch ( 0 = 0.9), are in-
vestigated. The cohesive softening curve obtained 
from the tests at Northwestern is used in all the 
simulations. 

Unnotched beams of the same shape as the tested 
specimens are first numerically simulated. Here the 
largest size of beam is extended up to D = 1 m. The 
error of BEM, which is obscured by an insufficient 
size range and inevitable test randomness in data fit-
ting, is now strikingly exposed. If BEM were true, a 
linear regression of the data should conform to a lin-
ear plot of 1 / 

2
N versus D. But Fig. 6 documents a 

very poor fit (solid line), with 
2
 = 0.67 

( correlation coefficient). By contrast, the SEL 
Type 1 gives an excellent fit, with 

2
 = 0.99 (dashed 

curve). The simulated size effect curves for notches 
ranging from 0 = 0 to 0 = 0.9 and D up to 1 m are 
shown in the logarithmic scale in Fig. 6. It can be 
clearly seen that the size effect trend of unnotched 
beams closely approaches a horizontal asymptote, 
agreeing with the deterministic Type 1 SEL but con-
tradicting the slope –1/2 dictated by BEM. In Fig.2d 
the stress profiles at peak loads for notchless beams 
of D = 40 and 1000 mm are compared. For size D = 
1000 mm, the stress profile is almost linear, which 
implies that the deterministic size effect must disap-
pear for larger sizes. Obviously, the BEM is unreal-
istic. 

The parameters of SEL (Type 2) and BEM, ob-
tained by linear regression, are listed in Table 2 and 
compared in Fig. 7. But no SEL parameters are 
listed for 0 < 0.04 because SEL is not applicable 
for such shallow notches. For notchless beams, an 
imaginary notch 0 = 0.02, based on the ratio of 
maximum aggregate size to D = 500 mm, is assumed 
for BEM calculations. From Table 1, it can be seen 
that  = 0.286 for Ð in (0.4, 1.4) and S/D = 2.4. 
Computer simulations show that  = 0.29 gives good 
results (much better than BEM) for all three-point 
bend beams with typical S/D (2.4 to 8) and medium 
notch depths (0.15 < 0 < 0.6); see Table 1. 

As seen in Table 2, the scatter of f't values over 
the full range of 0 is significant for the BEM, even 
though it claims to cover all notch depths. The FPZ 
in Fig. 3, which is far away from the boundaries, fur-
ther invalidates the BEM hypothesis about the inter-
action between FPZ and the boundary. On the other 
hand, the SEL based testing of Gf, cf and f't gives ac-
ceptable results for 0.15 < 0 < 0.6, which is in the 
recommended testing range. For 0 = 0.04 and 0.9, 
which are not within the recommended range of SEL 
testing, the regression results deviate from cohesive 
crack model considerably. 

Fig. 7: Comparison of the results of SEL and 
BEM with cohesive crack model. 

Fig. 6: Left: Nominal strength values obtained 
by cohesive crack model for various 0; right: 
linear regression according to BEM for no 
notch ( 0 = 0) of computer results by cohesive 
crack model. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  

 

( )
1

1
10

1
10

1
1

22.0188.0
0

,
1

−
⎟
⎠

⎞
⎜
⎝

⎛
−∞

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−∞

−−+−

=

h
cc

g
e

h
cc

g
eGs

s
s
c

w

sc
K

αα

αα

αα

αα

 

(6)

 
 
The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



One advantage over SEL claimed by BEM is that 
BEM obtains KIC and f't by testing various 0 for one 
size only. So, not surprisingly, the scatter seen in 
Table 2 is much larger than it is for the SEL. This is 
a serious deficiency of the BEM testing method. 
Contrary to the opinion of Hu and Duan, testing at 
different sizes cannot be avoided, as already con-
cluded in Tang et al. (1996). The reason is that a suf-
ficient range of brittleness numbers can never be at-
tained by merely varying the notch depth at constant 
size (Tang et al. 1996). The f't values obtained by 
BEM severely disagree with the cohesive crack 
model for every notch depth (Table 2). For the extre 
mes 0 = 0 and 0.9, they are 6.96 MPa and 10.0 
MPa, although the essential hypothesis of the BEM 
is that extremely shallow and extremely deep 
notches should have the same asymptote, with n

f't. The BEM generally overestimates f't by about 
70%. This observation also strengthens the objection 
that the small-size asymptote of the BEM based on a 
linear stress profile across the ligament is fundamen-
tally unjustifiable. Thus it must be concluded that 
while the BEM testing method does directly give the 
tensile strength, its values are quite unrealistic. 

To generate a constant tensile strength, the BEM 
would have to use test specimen sizes falling in the 
optimal range 0.2< Ð <1.8, which cannot be 
achieved by varying the crack length only. When the 
size is within the optimal range, the BEM will gen-
erate a consistent f't  8.2 MPa for notched beams. 
However this value is very different from the cohe-
sive tensile strength identified by matching the load-
CMOD curves and the peak loads of all specimens. 
Asymptotically for vanishing sizes, the cohesive 
crack is equivalent to a plastic glue with yield 
strength f't (Bažant et al. 2002). Hence, for a three-
point bend beam, one obtains B = 2D(1- 0)

2
/S. Us-

ing cohesive crack model to simulate an extremely 
small specimen to obtain the N, i.e., N = 2.7 MPa 
for D = 0.1 mm and 0 = 0.15, one can calculate '

tf =
4.5 MPa, close to the cohesive tensile strength. 

8 UNIQUENESS OF COHESIVE SOFTENING 
OBTAINED BY WORK-OF-FRACTURE TEST 
A problem related to the comparison of SEL and 
BEM is the uniqueness of the bilinear softening 
curve identified by matching the measured load-
CMOD curve. As recently found, it is not sufficient 
to determine the tensile strength f't and initial frac-

ture energy Gf by fitting the load-CMOD curve for 
one size only. Fig. 8a shows four load-CMOD 
curves of a notched beam 215 mm deep obtained by 
four different sets of (w) parameters with f't ranging
from 4.4 to 8.2 MPa and Gf from 21 to 35 N/m while 
GF is fixed at 64 N/m. Although the aforementioned 
parameters of cohesive softening function (w) vary 
appreciably (Gf by 68%), the differences among the 
resulting load-CMOD curves are negligible com-
pared to the random scatter in testing.  

Therefore, testing the size effect is indispensable 
for a unique identification of the bilinear softening 
curve of cohesive crack model, and especially the 
determination of the initial fracture energy Gf. Fig. 
8b shows the same four different cohesive softening 
curves are applied to a small specimen of D = 40 
mm. It can now be clearly seen that, for this second 
size, the obtained peak loads and the load-CMOD 
curves are quite different. The peak load predicted 
by parameter set of f't = 8.2 and Gf = 21 N/m is about 
13% higher than that of parameter set of f't = 4.4 
MPa and Gf = 35 N/m. And this is for sizes in the ra-
tio of only 5.3 : 1. If the size ratio is increased, the 
differences will become larger. 

Therefore, in order to identify the bilinear cohe-
sive curve, the work of fracture test must be supple-
mented by size effect test, and the size range must be 
sufficiently large (probably  1:8). Only the cohe-
sive softening curve that yields a close match of 
both the load-deflection curve and the peak loads 
over a sufficient size range can be treated as the real-
istic representation of the fracture parameters. 

9 CONCLUDING REMARKS 
The size effect is a salient feature of quasibrittle 

Cohesive crack Model Size Effect Law Boundary Effect Model 
0

KIC Gf f't GF KIC Gf f't cf A( ) KIC f't
0 0.98 32 4.8 64 - - - - 0.96 1.53 6.96 

0.04 '' '' '' '' - - - - 0.92 0.88 7.28 

0.15 '' '' '' '' 0.996 33.1 5.0 11.1 0.72 0.996 7.88 

0.40 '' '' '' '' 1.01 33.8 4.68 12.96 0.36 1.01 8.15 

0.60 '' '' '' '' 0.969 31.3 4.98 10.58 0.16 0.969 8.58 

0.90 '' '' '' '' 0.869 25.2 5.98 5.91 0.01 0.869 9.99 

Fig. 8: Load-CMOD curves obtained by 4 dif-
ferent bilinear softening curves. 

Table 2: Material parameters obtained by SEL and BEM. 
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moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



fracture and inseparable from experimental identifi-
cation on its characteristics. Efforts to identify the 
quasibrittle fracture parameters by measuring the 
load-CMOD curve at one size are futile. So are the 
efforts to replace the tests of size effect on the nomi-
nal strength by strength tests at different crack 
lengths. The effect of the proximity of the boundary 
is not the cause of size effect and does not imply a 
variation of the total and initial fracture energies as 
parameters of a properly defined softening cohesive 
stress-separation law. These are apparent phenom-
ena explicable as consequences of this law. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 

 

nsc
w

s

e
w

c

e
w

h
h

D
t

h

h

e
w

&&& ++
∂

∂

∂

∂

=∇•∇+
∂

∂

∂

∂

− αα

αα

)(

    

(3)

 
 

where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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