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ABSTRACT: Applications of the nonlocal models are hampered by unresolved problems in the treatment of 
boundary conditions.  There are many competing variants such as deleting the outside protruding part of 
nonlocal integral, with rescaling on the interior part, or moving the outside protruding part into a Dirac delta 
function at the boundary or at the center points of nonlocal domain. The proper boundary conditions are also 
unclear for the gradient models, including the strongly nonlocal implicit gradient model of Peerlings and de 
Borst leading to the Helmholtz equation for nonlocal strain. All these models are phenomenological, give 
very different results, and there are no fundamental criteria for choosing the correct variant. Modeling of the 
statistical size effect on the nominal strength of structure according to the weakest-link model inspires a new, 
more physical approach. The weakest-link model (for a structure of positive geometry) requires subdividing 
the structure volume into elements roughly equal to the representative volume element of material (RVE), 
whose size corresponds to the diameter of the nonlocal averaging domain (and also to the autocorrelation 
length). The layer of RVEs along the surface is logically treated as a boundary layer whose deformation de-
pends only on the average continuum strain or stress over the thickness, approximated by values at the center-
line (or center surface) of the layer. In the interior excluding the boundary layer, the nonlocal averaging of the 
contributions to failure probability may be applied without problems since the nonlocal integral domain does 
not protrude outside the boundary of the body. The results of the nonlocal boundary layer (NBL) model agree 
closely with direct calculations of failure probability according to the weakest-link model. Subsequently, the 
boundary layer approach is extended to the deterministic analysis of the mean response of structures with dis-
tributed softening damage. The notorious problems with the formulation of boundary conditions for the 
nonlocal approach are eliminated because no nonlocal integral domain can protrude beyond the boundary. 
Demonstration is given for the gradient models, while for integral-type models it is still in progress at the 
time of writing 

1 INTRODUCTION 

Quasibrittle structures, which consist of quasibrittle 
(or brittle heterogeneous) materials having a soften-
ing fracture process zone that is non-negligible com-
pared to structure dimensions. They are exemplified 
by concrete, fiber composites, tough ceramics, sea 
ice, rock, bone and nano-composites, etc. They gen-
erally exhibit softening behavior due to the distrib-
uted damage such as micro-cracking, void forma-
tion, and softening frictional slip, which necessitates 
strain-softening constitutive models.  

Proposed in 1984, the nonlocal damage contin-
uum concept has become widely accepted as an ef-
fective means to regularize the boundary value prob-
lem with strain softening, to overcome the spurious 
mesh sensitivity and to capture the size effect.  

The concept of nonlocal continuum models for 
heterogeneous materials was originally proposed 

and extensively studied for elastic materials (Erin-
gen 1965, 1966, Kröner 1967) and plastic hardening 
materials, where its purpose is completely different. 
The earliest extension of this concept to softening 
materials was the weakly nonlocal explicit gradient 
model (Bažant, 1984, Aifantis, 1984, Triantafyllidis 
& Aifantis, 1986), in which the stress at a given 
point is expressed in terms of the second gradient of 
the strain tensor at that point. However, the explicit 
gradient model is weakly nonlocal and does not pre-
serve the true strongly nonlocal character since the 
gradients can take into account only the infinitely 
close neighborhood of the continuum point (Peer-
lings et al 2001, Bažant & Jirásek 2002). Pijaudier-
Cabot and Bažant (1987, 1988) improved the nonlo-
cal concept by developing the nonlocal generaliza-
tion of continuum damage mechanics, using the in-
tegral-type nonlocal concept, which is strongly 
nonlocal. This form has been successfully adopted in 
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many constitutive models for softening materials 
such as smeared crack model (Bažant and Lin 1988), 
microplane model (Bažant and Ožbolt 1990, Bažant 
and Di Luzio 2004), and damage plasticity model 
(Grassl and Jirásek, 2006). Based on the integral 
type nonlocal model, Peerlings et al. (1996a,b) pro-
posed a strongly nonlocal implicit gradient model 
leading to the Helmholtz equation. The implicit gra-
dient model has been shown to be one special class 
of integral-type (strongly nonlocal) nonlocal models 
(Peerlings et al. 2001).   

A major problem with the nonlocal models is the 
treatment of the boundary when the nonlocal domain 
protrudes out. In such circumstances, one must de-
lete the protruding domain and adjust the weighting 
function of the nonlocal integral so that a uniform 
field would not get altered. There are many different 
ways to modify the weighting function to compen-
sate for the deleted domain. One may, e.g.,  rescale 
weighting function within the body (Bažant and 
Jirásek 2002), or place a Dirac delta function either  
along the structural boundary, or at the center point 
of the nonlocal integral (Borino, et al. 2003). Never-
theless, there is no sound physical reasoning for any-
one of these approaches.  

In the case of the implicit gradient model, the 
treatment of boundary is also problematic. A natural 
boundary condition is typically introduced for the 
Helmholtz differential equation of this model, but 
there is no good reason for it except simplicity.  

The paper presents a nonlocal boundary layer 
(NBL) model, which is inspired by the weakest-link 
model for the strength statistics. The approach re-
moves the ambiguity of the treatment of boundaries 
for both the implicit gradient model and the nonlocal 
integral models. Both statistical and deterministic 
simulations show that the proposed model can well 
capture the response of quasibrittle structures. 

2 NONLOCAL BOUNDARY LAYER MODEL 
FOR STRENGTH STATISTICS  

A probabilistic theory has been recently developed for 
the strength statistics of quasibrittle structures of posi-
tive geometry, which fail at the macro-crack initiation 
from a smooth surface (Bažant and Pang 2006, 2007, 
Bažant et al. 2009). For the strength statistics, a struc-
ture of this kind can be modeled as a chain of repre-
sentative volume elements (RVE). The RVE is de-
fined as the smallest material volume whose failure 
causes the failure of the entire structure. The failure 
probability, Pf, of such a structure can then be calcu-
lated from the joint probability theorem: 
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By taking the logarithms and, noting that ln(1–x) 
≈ –x for small x, one may check that, for small P1 
and Pf, Eq. 1 is approximately equivalent to 
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since both P1 and Pf are much less than 1 in practice. 
Where σN = nominal strength of the structure = 
P/bD or P/D

2
 for two- or three- dimension scaling (P 

= maximum load of the structure or a load parame-
ter, b = structure thickness in the third dimension, D 
= characteristic structure dimension or size), s(xi) = 
dimensionless stress field describing the stress dis-
tribution such that s(xi)σN equals the maximum prin-
ciple stress at the center of ith RVE with the coordi-
nate xi; x  = max(x,0); n = number of RVEs in the 
structure; and P1 = strength distribution of one RVE, 
assumed to be independent of the neighbors. The 
strength distribution of one RVE can be derived on 
the basis of fracture mechanics of nanocracks propa-
gating by activation energy controlled small jumps 
through the atomic lattice, and of an analytical 
model for the multi-scale transition of strength sta-
tistics (Bažant et al. 2009). It has been shown that 
the strength of one RVE, P1(σ), can be approxi-
mately modeled as a Gaussian distribution onto 
which a remote power-law tail is grafted at Pf ≈ 
10

−4
−10

−3
 (Eqs. 50 and 51 in Bažant and Pang 

2007). 
To calculate the failure probability of a structure 

of any size from Eq. 1, one needs to subdivide the 
structure into equal-size elements where each ele-
ment represents one RVE. The subdivision of a 
structure into the RVEs is generally non-unique and 
subjective and, for irregular structure geometry, 
equal size RVEs are impossible. This leads to incon-
sistent estimation of Pf.  

To avoid the discrete subdivision, one choice is to 
replace the finite sum in the logarithm of Eq. 1 for   
weakest link model by a nonlocal integral (Bažant 
and Novák 2000a):  

 

{ }∫ −=−

V

f
V

V(x)
xPP

0

1

d
)]([1ln)1ln( σ          (2 ) 

 
where V0 = l0

3
 (l0 = RVE size), and )(xσ is the 

nonlocal stress, which can be calculated as εσ E=  
(E = elastic modulus) (Bažant and Novák 2000a), 
and the nonlocal strainε can be expressed as (Bažant 
and Jirásek 2002): 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



Although there are many choices for the weight 
function α(x−x’), the results are not too dependent 
on the choice (Bažant & Novák 2000a). In this 
study, we consider the fourth order polynomial  
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where ρ is a coefficient chosen in such a manner that 
a uniform local strain field is transformed into an 
identical uniform nonlocal strain field. One finds 
that ρ = 15/16 for one dimension, ρ = (3/4)

1/2
 for two 

dimensions and  ρ = (105/192)
1/3

 for three dimen-
sions.  

The main obstacle, however, is the treatment of 
the weight function when the nonlocal domain pro-
trudes through the structure boundary. To overcome 
this difficulty, the nonlocal boundary layer (NBL) 
method is now proposed. 

 

 
 

Figure 1. Concept of boundary layer approach. 

 
In the NBL method, the structure domain is di-

vided into two parts: a boundary layer Vb with thick-
ness h = l0 along all the surfaces (including the crack 
faces), and an interior domain (Fig. 1). For the inte-
rior domain VI, one can use the conventional nonlo-
cal model to evaluate the nonlocal stress. Since the 
boundary of interior domain it at distance l0 away 
from the structure boundary, the nonlocal domain 
will not protrude through the boundary. For the 
boundary layer itself, only the stresses and strains at 
the points at the middle surface Ωm of the layer are 
used to calculate the failure probability. Therefore, 
one may rewrite Equation 2 as: 
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As the structure size increases, the nonlocal stress 

approaches the local stress, the boundary layer be-
comes negligible compared to the structure size, and  
Equation 6 converges to Equation 2. 

To give a simple example, consider a rectangular 
beam of span -to-depth ratio 3, subjected to pure 
bending. The stress and strain fields are obtained by 
the engineering beam theory. We define the nominal 
strength σN = 6M/bD

2
, where M = maximum mo-

ment, D = depth of beam, and b = width of beam. To 
calculate the failure probability of the beam, five 
methods are considered here: 

1) Divide the beam into a number of RVEs and cal-
culate the failure probability by Equation 1. This is the 
original method based on the weakest link model, 
which is considered as the benchmark solution. 

2) The NBL method as proposed. (Eqs 3-6). 
3) Conventional nonlocal approach (Eqs 2-5), 

where the weighting function is automatically re-
scaled when the nonlocal domain protrudes through 
the structure boundary.  

4) Nonlocal approach with the boundary-correction 
weighting function proposed by Borino et al. (2003), 
in which the nonlocal strain is expressed as: 
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Here 

∞
α = value of )(xα if the nonlocal domain 

does not protrude through the boundary.  
5) Nonlocal approach in which a Dirac delta 

function is introduced at the structure boundary to 
compensate for the protruding part of the weight 
function; 
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where Γ denotes the structure boundary where the 
nonlocal domain protrudes. 

Figure 2 shows the size effects on the mean 
strength of the beam calculated by these five meth-
ods. Note that the NBL method agrees well with 
the benchmark solution for the entire size range. 
However, the other three methods (methods 3–5) 
greatly underestimate the mean strength for small 
size beams. This is due to the fact that, for small 
size beams, the boundary layer occupies a large 
portion of the structure and thus has a significant 
contribution to the failure probability. Compared 
to the NBL method, methods 3–5 give higher 
nonlocal stress due to various corrections of the 
weighting functions. The NBL method slightly 
overestimates the mean strength because it gives a 
lower stress for the boundary elements at two cor-
ners compared to the benchmark solution. When 
the structure size increases, the boundary 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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assume that the evaporable water is a function of 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



 
Figure 2. Mean size effect on flexural strength. 

 
layer becomes negligible and the nonlocal strain ap-
proaches the local strain. Therefore, all these meth-
ods eventually give the same result for large size 
beams.  

3 BOUNDARY LAYER APPROACH FOR 
GRADIENT MODEL 

Inspired by the NBL method for the strength statis-
tics, now we apply this concept to the deterministic 
nonlocal model. In this section, we present the ap-
plication of the NBL method to the implicit gradient 
model proposed by Peerlings et al. (1996a,b, 2001), 
in which the nonlocal quantity is calculated from the 
Helmholtz equation (Peerlings et al. 1996 a,b, 2001). 

First let us compare the NBL with the original 
implicit gradient model by analyzing a bar under 
uniaxial tension and a beam under three-point bend-
ing. For the constitutive law, we adopt a simple 
nonlocal isotropic damage law, which can be de-
scribed as: 
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where σij = Cauchy stress tensor, εkl = strain tensor, 
Cijkl = elastic constant, ω = damage parameter. The 

damage parameter can be expressed as a function of  
history parameter κ, which represents the most se-
vere deformation the material has experienced. Two 
commonly used functions are the linear and expo-
nential damage laws: 
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exponential:

 
⎪
⎩

⎪
⎨

⎧

>
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
−−

≤

=
)(exp1

)(0

)(
0

0

00

0

εκ

εε

εκ

κ

ε

εκ

κω

f

(10b)

 
 

where ε0 = ft/E = the strain at peak stress under uni-
axial tension, and εf controls the slope of the soften-
ing part of the uniaxial stress-strain curve. Parameter 
εf can be determined from the area under the uniax-
ial stress-strain curve, which is equal to the energy 
dissipated by the failure process per unit volume.  

A scalar equivalent strain εeq is used as a measure 
of the deformation (Mazars and Pijaudier-Cabot 
1989): 
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In the nonlocal version of the damage mechanics, 

the damage loading function κε −=
eq

f  satisfies the 
following loading conditions: 
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where eq
ε is the nonlocal equivalent strain, which 

can be calculated from the Helmholtz equation: 
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(Peerlings et al. 1996a,b, 2001). Parameter c is re-

lated to the size of the nonlocal influence zone for 
the integral type nonlocal model as (Bažant 1984, 
Bažant and Planas 1998): 
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If we use the fourth order polynomial as the 

weight function (Eq. 5), then we obtain c = 0.271l0.  
To solve Eq. 13, we need boundary conditions. 

Peerlings et al. (1996a,b, 2001) suggested using the 
natural boundary condition 0/ =∂∂ n

eq
ε , where n 

= unit normal at the boundary. For the FEM imple-
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



mentation, it was proposed to solve the weak forms 
of equilibrium equation and the Helmholtz equation 
jointly (de Borst and Mühlhaus 1992, Peerlings et al. 
1996a). The physical interpretation of the natural 
boundary condition still remains unclarified, which 
appears to be the major drawback of the gradient 
model. (Peerlings et al 1996a, 2001).   

When the NBL for the implicit gradient model is 
adopted, the Helmholtz equation needs to be solved 
for the interior domain only. The boundary condition 
along the interface between the interior domain and 
the boundary layer involves both the force and natu-
ral boundary conditions: 
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where εeq,b = equivalent strain at middle surface of 
the boundary layer, and n = unit normal of the inter-
face. Eq. 14 ha a clear physical meaning —
continuity of the nonlocal equivalent strain field 
across the interface between the interior domain and 
the boundary layer.  

First studied is a bar under uniaxial tension 
shown as Figure 3(top), the same bar as studied by 
Peerlings et al. (1996a,b, 2001). To initiate the dam-
age, the center part of the bar is assumed to have a 
10% reduction in its cross-section. A linear damage 
law (Eq. 10a) is used in the simulation. Model pa-
rameters are: E = 20 GPa, ε0 = 10

-4
, εf = 0.0125, c=1 

mm.  
 

 
 

Figure 3. Bar under uniaxial tension. 

Figure 3 (bottom) shows the calculated load-
displacement curve of the bar. The NBL method 
predicts the same peak load as the implicit gradient 
model, which is expected since the damage zone is 
far away from the structural boundary. Nevertheless, 
these two models start to deviate when the applied 
displacement becomes sufficiently large. This is be-
cause, for the large displacement, the damage zone 
begins to propagate, causing that the boundary con-
dition on the Helmholtz equation affects the damage 
distribution. The NBL model does not capture the 
snapback behavior because the Newton-Raphson 
method was used for the FEM implementation. This 
is merely a numerical example without comparison 
to any experimental observations. 

The second example is to use both implicit gradi-
ent model and the NBL method to simulate the size 
effect on the modulus of rupture of plain concrete 
beams, which has been experimentally studied by 
Rocco (1995). It has been clearly understood that the 
size effect on the modulus of rupture is primarily de-
terministic (or energetic) except that the statistical 
size effect (Weibull theory) prevails for very large 
beams (Bažant and Li 1995, Bažant, 2005).   

The peak load of plain concrete beams is attained 
at the initiation of macro-cracks. This occurs right 
after a boundary layer of distributed cracking devel-
ops at the tensile face of beam. For beams of differ-
ent sizes made of the same concrete, the boundary 
layer thickness should be about the same since it is 
determined by the maximum aggregate size (Bažant 
and Novák, 2000a). The formation of this boundary 
layer, which also represents the fracture process 
zone, is the essential source of the size effect on the 
modulus of rupture. For very large beams, the 
boundary layer occupies a negligible portion of their 
cross section, which causes the energetic size effect 
to vanish and the statistical one to govern (for the 
combined energetic-statistical size effect on the 
flexural strength, or modulus of rupture, see Bažant 
2004, 2005).  

In the Rocco’s study (1995), geometrically simi-
lar beams of five sizes are tested. They have the fol-
lowing dimensions: spans L = 0.068, 0.148, 0.3, 0.6, 
1.2 m, span-to-depth ratio = 4, beam width = 0.5 m, 
and beam depths D = 17, 37, 75, 150, 300 mm.  
The direct tensile strength was estimated to be 4.6 
MPa (Bažant and Novák, 2000b); the elastic 
modulus = 29.10 GPa, the maximum aggregate size 
da = 5 mm. The exponential damage law is used here 
(Eq. 10b). Bažant and Novák (2000b) estimated the 
softening modulus of the stress-strain curve to be 20 
GPa. Based on that, the model parameters of the 
damage law are calculated as ε0 = 1.58×10

-4
 and εf = 

3.88×10
-4

. The size of nonlocal zone l0 is assumed to 
be about 2.5da. By Eq. 14, parameter c = 3.39 mm.  
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



 
 

Figure 4. FEM mesh for NBL method. 

 
For the NBL method, the boundary layer thick-

ness is a fixed quantity, which is equal to the size of 
RVE, l0. Hence, either the width or the length of the 
element for the boundary layer must be l0 (Fig. 4). 
For the interior part, one can use smaller elements to 
increase the accuracy (for sufficient number of ele-
ments, the result is mesh-independent). For the 
boundary layer at the tension face of the beam, the 
width of elements is equal to the width of the ele-
ment for the interior part, which need not be equal to 
l0. To preserve the fracture energy, the parameter εf 
in the damage law must be adjusted (Jirásek & 
Grassl 2008): 
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where h = element width, and GF = fracture energy = 
l0 × the area under the uniaxial stress-strain curve 
based on ε0 andεf .  

In the FEM implementation, the weak form of the 
equilibrium equation can be linearized as: 
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where B = spatial derivative of the shape function, 
ui−1 = displacement field at step i−1, and δu = cur-
rent displacement increment. The incremental 
nonlocal equivalent strain 

eq
εδ  is solved from the 

Helmholtz equation (Eq. 13). In the original gradient 
method, the Helmholtz equation is solved by FEM, 
which is coupled with Eq. 16 (de Borst and Mühl-
haus 1992, and Peerlings et al. 1996a,b). This tre-
mendously increases the number of degree of free-
dom.  

This study did not use de Borst and Peerlings’ 
approach because that approach requires tremendous 
computational power for the large beam. Instead, an 
alternative approach was used, in which the Helm-
holtz equation was solved by the finite difference 
method, which allows the nonlocal equivalent strain 

to be directly expressed in terms of the local equiva-
lent strain at the center of each element:  
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where A = matrix consisting of coefficients of the fi-
nite difference method. One can further write

eq
δε  

in terms of δu: 
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where C is a constant matrix. By substituting Eqs. 
17 and 18 into Eq. 16, one can solve the displace-
ment increment without introducing any additional 
unknowns. Since the finite difference method has a 
lower accuracy than the finite element method, a 
fine mesh was used in the domain to ensure that the 
solution converges.  

Figure 5 shows the calculated size effect curves 
by both the implicit gradient model and the NBL 
method. As one can see, the size effect curves pre-
dicted by these two models do not have a significant 
difference. For the large beams (D > 300 mm), the 
difference is indiscernible since the influence zone 
size is negligible compared to the beam size. Conse-
quently, both the NBL model and the implicit gradi-
ent model approach the local model.  

 

 
 

Figure 5. Size effect on the modulus of rupture. 

 
For the medium size beam (D = 75~300 mm), the 

implicit gradient model slightly overestimates the 
modulus of rupture compared to the NBL model. 
This is due to the fact that, for the medium size 
beam, the boundary layer along the tensile face of 
beam, which governs the peak load, consists of a 
non-negligible portion of the beam. In the NBL, the 
damage in the layer is evaluated from the local de-
formation at the center of the layer. In the implicit 
gradient model, the damage is evaluated from the 
nonlocal deformation. Since the implicit gradient 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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model is mesh-insensitive, considering the same 
mesh for both methods, the implicit gradient model 
gives a slightly lower damage value, and thus a 
higher peak load, than the NBL method does. It 
seems that the NBL gives slightly better prediction 
compared to the test data. 

For the small size beam (D < 75 mm), the trend 
of the NBL method greatly overestimates the 
modulus of rupture. This is due to the fact that the 
NBL method limits the element size for the bound-
ary layer (Fig. 4). For the small beam, this layer can 
occupy one fourth to one half of the beam depth. 
This causes that there are too few elements along the 
beam depth. In such a case, the beam is too stiff and 
the peak load is greatly overestimated due to the 
numerical errors. Therefore, the NBL method is not 
suitable when the beam is too small, i.e. the depth of 
beam is less than 4 RVEs.  

 

 
 

Figure 6. FEM Mesh for notched TPB specimens. 

4 BOUNDARY LAYER APPROACH FOR 
NONLOCAL INTEGRAL MODEL 

The implicit gradient model represents one special 
class of strongly nonlocal (integral-type) nonlocal 
models (Peerlings et al. 2001).  In this regard, three 
different types of models were prepared to illustrate 
the performance of the NBL in an integral-type 
nonlocal formulation: 

1) A local damage model (LM), where the local 
continuum stress tensor and damage parameter is de-
termined using only the local continuum strain ten-
sor (Eqs 9-11). 

2) A conventional nonlocal approach (NUS) in 
which the weight function is scaled uniformly when 
the nonlocal domain protrudes through the structural 
boundary. The nonlocal strain tensor at a Gauss 
Point is determined by a weighted average of the 
strain tensors within the neighborhood of the Gauss 
Point (using Eqs 3-5).  The nonlocal strain tensor is 
then used in Eqs. 10-11 to determine the nonlocal 
damage parameter to be used in Equation 9. 

3) The NBL approach, where the domain is dis-
cretized by boundary layer elements and elements in 
the interior of the structure.  To ensure the averag-
ing function does not protrude through the edges of 

the structure, the boundary layer elements are en-
dowed with a LM formulation as described in item 
1). The elements in the interior of the structure are 
assigned the behavior described in item 2), where 
the averaging function for elements near the bound-
ary layer captures the strain tensors within the 
boundary layer elements. 

The mesh in Figure 6 illustrates a three-point 
bend specimen discretized in the sense or the NBL 
model. The boundary layer encompasses all the 
edges of the specimen, including those around the 
notch, as illustrated by the red elements. The grey 
elements are loading platens which were included in 
all the simulations to help eliminate the effect of 
stress concentrations at the load and reaction points. 
For the NUS and LM, all the elements contained 
four Gauss points. However, to achieve equivalence 
with the probabilistic approach, the boundary layer 
elements contained a single Gauss point at the center 
of the elements. 

An example of these three approaches can be 
seen in Figure 7. The 12 inch deep specimen from 
the test series of Bažant & Pfeiffer (1987) was simu-
lated with the LM, NUS and NBL. To obtain equiva-
lence with the probabilistic approach, it was neces-
sary to make the thickness of the boundary layer 
equal to l0, or one RVE size, which was selected to 
be 1 inch, or two times the coarse aggregate diame-
ter as recommended by Bažant & Pang (2007). The 
height of the finite elements in the interior was not 
restricted and could be chosen smaller. The linear 
damage law in Equation (10a) was assumed. The 
width of all the elements varied from about 1 RVE 
size to 1/3 of the RVE size. To ensure that all the 
elements dissipate the same fracture energy, given 
by Equation (19), the post-peak softening slope of 
the damage law was rescaled in the sense of the 
crack band model, as described in Bažant & Oh 
(1983). The value of f't was 390 psi. The fracture en-
ergy was (Bažant and Pfeiffer 1987): 

 
 (19) 

 
The damage parameter was evaluated using a sca-

lar equivalent strain εeq, given by Equation (11). For 
the LM and the boundary elements of the NBL 
model, εeq was evaluated using the components of 
the local strain tensor. For the NUS model and for 
the elements in the interior of the structure in the 
NBL model, εeq was evaluated using the nonlocal 
strain tensor.  

The specimens were loaded under displacement 
control and were tested using the open source finite 
element solver OOFEM, descried in Patzák & Bittnar 
(2001), Patzák et al. (2001). In all the cases, the load 
level and load point displacement were recorded. The 
load versus load point displacement curves from the 
three approaches can be seen in Figure 7.  
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moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
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that the variation in time of the water mass per unit 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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vg and k
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vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



 

 
 

Figure 7. Load vs. load-point displacement curves for the 12 
inch deep specimens. 

 
As can be seen, the LM gives the lowest peak 

load. The NUS model gives the highest, which is 
explained by the fact that it is averaging the strains 
at the crack tip with the strains away from the near 
tip field which have not exceeded εf. The NBL 
model gives a peak load in between these two ex-
tremes. The NUS and LM exhibit a sharper transi-
tion from pre-peak to post-peak. For the NBL 
model, the transition from pre- to post-peak behavior 
is much more gradual. For large load-point dis-
placements, the NBL model seems to approach the 
response of the NUS model.  

At the time of writing (October 2009), the simu-
lation and calibration for this and other specimen 
sizes is still in progress. It will be included in the 
forthcoming journal article. 

5 CONCLUDING REMARKS 

The NBL offers a sound physical basis for the treat-
ment of the boundary conditions for nonlocal con-
tinuum models. Although the case of nonlocal con-
tinuum treatment of the statistical weakest-link 
model of finite length is the most obvious, the 
method also appears to provide the best treatment of 
the boundary conditions for the deterministic gradi-
ent models for softening continuum damage, includ-
ing the strongly nonlocal model of Peerlings et al. It 
is logical to expect a similar improved clarity and 
performance for the integral-type deterministic 
nonlocal models, but at the time of writing this still 
remains to be demonstrated. 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
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isotherm for HPC is influenced by many parameters, 
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ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
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Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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