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ABSTRACT: This paper presents an overview of the statistical aspects of the size effect law on the strength 
of quasibrittle structures. Two types of size effect law, corresponding to two different failure mechanisms, 
can be distinguished. The Type 1 size effect law (SEL) applies to the situations in which the maximum load 
of unnotched structure is attained after the stable formation of a large fracture process zone (FPZ) with dis-
tributed cracking. The Type 1 SEL can be explained by size effect on the type of probability distribution of 
nominal strength based on the weakest-link model with a finite number of links. These links represent the rep-
resentative volume elements of material whose random strength is derived from atomistic fracture mechanics. 
The theory is further extended to model the size effect on structural lifetime, which is important for durability 
of infrastructure. The Type 2 size effect law, which applies to structures that have a deep notch or contain at 
peak load a large traction-free (i.e., fatigued) crack, has a deterministic mean and the material strength statis-
tics only affects the variance of load, which means that the safe margin may be considered to be uniform for 
the size range of interest. An example based on experimental data shows that if the Type 2 size effect is ig-
nored, the failure probability may increase from 10

-6
 for small sizes to 10

-3
 for large sizes.  

1 INTRODUCTION 

The understanding of strength distributions, which is 
essential for a rational determination of safety fac-
tors guarding against the uncertainties of structural 
strength, is of paramount importance for safe and 
economic design of engineering structures. For per-
fectly ductile or perfectly brittle materials, the 
proper cumulative distribution functions (cdf’s) of 
the nominal strength of structure are known to be ei-
ther Gaussian or Weibullian, respectively. The type 
of cdf does not change with structure size and ge-
ometry, although the coefficient of variation de-
creases with size for the former and the mean de-
creases for the latter. 

This study focuses on positive geometry struc-
tures consisting of quasibrittle materials, which in-
clude, at normal scale, concrete, fiber-polymer com-
posites, tough ceramics, rocks, sea ice, wood, bone, 
etc., and many more at the scale of MEMS and thin 
films. Quasibrittle materials are materials that 1) are 
incapable of purely plastic deformations, and 2) in 
normal use, have a FPZ which is not negligible 
compared to the structure size. A salient property of 
quasibrittle materials is that they obey on a small 
scale the theory of plasticity characterized by mate-
rial strength, and on a large scale the linear elastic 
fracture mechanics (LEFM) characterized by frac-
ture energy. Over the last three decades, extensive 
studies have shown that the quasibrittle structures 

exhibit a strong size effect on its nominal strength 
(Bažant 1976, 1984, 2004, 2005). Two types of sim-
ple size effect laws have been distinguished: Type 1 
SEL, occurring in structures that fail at crack initia-
tion from a smooth surface, and Type 2 SEL, which 
occurs in structures with a deep notch or stress-free 
(e.g., fatigued) crack formed stably before failure. 
The SEL Type 2 is also called the size-shape effect 
law, since its fracture mechanics based extension 
(Bažant & Kazemi 1990) captures the effect of 
structure geometry through the LEFM energy re-
lease function. 

The Type 1 SEL applies to quasibrittle structures 
failing at crack initiation from a smooth surface. Be-
cause of material heterogeneity, a finite cracking 
zone representing the FPZ must develop before the 
cracking can coalesce into an initial macro-crack of 
finite depth attached to the surface. Formation of the 
initial FPZ causes stress redistribution and energy 
release necessary to drive the macro-crack. Except 
for the large size limit, the Type 1 SEL can be de-
rived by considering the limiting case of energy re-
lease where the energy release approaches zero with 
a vanishing crack length. For the large size limit, the 
Type 1 size effect must converge to the classical 
Weibull theory. 

Bažant & Pang (2006, 2007) and Bažant et al. 
(2009) presented a probabilistic theory for the size 
effect on strength distribution, by which the Type 1 
size effect can be explained alternatively and more 



fundamentally. For failures at crack initiation, the 
structure can be statistically modelled as a chain of 
representative volume elements (RVEs). It is impor-
tant that the chain is finite, which rules out Weibull 
distribution The strength distribution of one RVE 
was derived by relating the free energy loss at dach 
single-atom crack jump to the energy release from 
an atomic lattice block, and introducing a multi-
scale transition based on a hierarchy of series and 
parallel coupling, the former accounting for com-
patibility conditions and the latter for strain localiza-
tions. It is found that the strength distribution of one 
RVE must be Gaussian with a remote power-law (or 
Weibull) tail grafted to the probability of about 0.001. 

The strength distribution of quasibrittle structures 
modeled as a finite chain depends on the structure 
size and geometry, and varies gradually from a 
Gaussian cdf with a remote Weibull tail to a fully 
Weibull cdf at large sizes. The same theoretical 
framework also provides a plausible physical expla-
nation for the crack growth rate law. The theory can 
further be extended to the distribution of lifetime 
under sustained load (Bažant et al. 2009, Bažant & 
Le 2009a, Le et al. 2009). 

The Type 2 SEL applies to the case where the 
structure has a deep notch or stress-free (e.g., fa-
tigued) crack formed before the peak load is 
reached. Due to the stress concentration, there is no 
chance for the dominant crack to initiate elsewhere 
in the structure volume, which means that material 
randomness cannot cause any size effect in the 
mean. Thus, the size effect on the mean nominal 
strength of structure is essentially energetic, while 
material randomness can affect only the standard 
deviation of structure strength (Bažant & Xi 1991). 
The Type 2 size effect law can be derived by using 
asymptotic approximation of the energy release func-
tion for the propagating crack based on the equivalent 
linear elastic fracture mechanics (LEFM), or the J-
integral (Bažant 2005). Investigation of a large data-
base collected from various laboratories shows that if 
Type 2 size effect is ignored, the safety margin for 
large structures is substantially compromised. 

2 TYPE-I SIZE EFFECT DERIVED FROM 
ATOMISTIC FRACTURE MECHANICS 

2.1 Strength distribution of one RVE 

The fracture at macro-RVE scale originates from the 
breakage of interatomic bonds at the nano-scale 
(Henderson 1970, Zhurkov 1965, Zhurkov & Korsu-
kov 1974). Consequently, the statistics of structural 
failure of an RVE must be related to the statis tics of 
interatomic bond breakage. Consider a nano-
structure, either an atomic lattice block or a disor-
dered nano-structure, with some intrinsic defects 

 
Figure 1. Propagation of nanocrack. 

 
such as nano-cracks. The stress applied at macro-
scale causes nano-stress concentrations under which 
the nano-crack begins to propagate (Fig. 1). When it 
advances by one atomic spacing in the atomic lattice 
(or, in a disordered nano-structure, by one nano-
bond spacing), the energy release increment must 
equal the change of activation energy barrier. With 
the equivalent LEFM, the energy release increment 
can be expressed as a function of the remote stress 
applied on the nano-structure (Bažant et al. 2009). 

 

 
Figure 2. Mechanism of nanocrack jumps. 

 
Since the crack jumps by one atomic spacing or 

one nano-inhomogeneity are numerous and thus 
very small, the activation energy barrier for a for-
ward jump differs very little from the activation en-
ergy barrier for a backward jump. Therefore, the 
jumps of the state of the nano-structure, character-
ized by its free energy potential, must be happening 
in both directions, albeit with different frequencies 
(Fig. 2). After a certain number of jumps of the 
nano-crack tip, the length of the nano-crack reaches 
a critical value at which the crack loses its stability 
and propagates dynamically, causing a break of the 
nano-structure. Since, at nano-scale, it may gener-
ally be assumed that each jump is statistically inde-
pendent, the failure probability of the nano-structure 
is proportional to the sum of the frequencies of all 
the jumps that cause its failure. The failure probability 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



of the nano-structure has been shown to follow a 
power-law function of the remote stress with a zero 
threshold ((Bažant et al. 2009), i.e.: 
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where τ = micro-stress, σ = macro-stress and c = 
nano-macro stress concentration factor.  

 

 
Figure 3. Hierarchical model for statistical multiscale transition. 

 
To relate the strength distributions of a nano-

structure and a macro-scale RVE, certain statistical 
multiscale transition framework is needed. Though 
various stochastic multi-scale numerical approaches 
have been proposed to capture the statistics of struc-
tural response (Graham-Brady et al. 2006, William 
& Baxer 2006, Xu 2007), the capability of these ap-
proaches is always limited due to the incomplete 
knowledge of the uncertainties in the information 
across all the scales. In this study, the multi-scale 
bridging between the strength cdf at the nano-scale 
and at the RVE scale is statistically represented by a 
hierarchical model consisting of parallel and series 
couplings (Fig. 3). The parallel couplings statisti-
cally reflect the load redistribution mechanisms at 
various scales subject to compatibility conditions. 
The series couplings, represented by the weakest-
link chain model, reflect the localization of sub-scale 
cracking and slippage (or damage) into larger scale 
cracks or slips.  

For a chain of n elements where all of the ele-
ments have a strength cdf with a power-law tail of 
exponent p, the strength cdf of the entire chain has 
also a power-law tail and its exponent is also p.  If 
the tail exponents for different elements in the chain 
are different, then the smallest one is the tail expo-
nent of the cdf of strength of the entire chain. 

For parallel coupling of elements of random 
strength (fiber bundle), the strength distribution of 

the bundle depends on the mechanical behavior of 
each element. However, two asymptotic properties 
of the strength distribution of the bundle are inde-
pendent of the behavior of each element: 1) If the 
cdf of strength of each element has a power-law tail 
of exponent p, then the cdf of strength of a bundle of 
n elements also has a power-law tail, and its expo-
nent is np (Bažant & Pang 2006, 2007, Bažant & Le 
2009b), while the reach of the power-law tail is dras-
tically shortened as the number of elements n in-
creases, 2) The strength cdf of bundle converges to 
Gaussian distribution for an increasing number of 
elements (Daniels 1945, Bažant & Pang 2006, 2007, 
Bažant and Le 2009b, Harlow et al. 1983, Phoenix et 
al. 1997). The reach of the power-law tail and the 
rate of convergence to Gaussian distribution depend 
on the deformation behavior of the element (Bažant 
& Pang 2006, 2007). 

Numerical simulation shows that the strength dis-
tribution of one RVE, which is statistically modelled 
by the hierarchical model (Fig. 3), can be approxi-
mately described as Gaussian, with a Weibull tail 
grafted on the left at the probability of about 10

-4
 –

10
-3

 (Bažant & Le 2009b). Mathematically, one may 
approximate the strength distribution of one RVE as 
(Bažant & Pang 2006, 2007): 
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where σN = nominal strength, which is a maximum 
load parameter of the dimension of stress. In gen-
eral, σN = P/bD or P/D

2
 for two- or three-

dimensional scaling (P = maximum load of the 
structure or parameter of load system, b = structure 
thickness in the third dimension, D = characteristic 
structure dimension or size). Furthermore, m 
(Weibull modulus) and s0 are the shape and scale pa-
rameters of the Weibull tail, and µG and δG are the 
mean and standard deviation of the Gaussian core if 
considered extended to -∞; rf is a scaling parameter 
required to normalize the grafted cdf such that P1(∞) 
= 1, and Pgr = grafting probability = 1−exp[-(σgr/ 
s0)

m
]. Finally, continuity of the probability density 

function at the grafting point requires that (dP1/d 
σN)|σgr+ = (dP1/d σN)|σgr-. 

2.2 Size Effect on Mean Structural Strength  

In the context of softening damage and failure of a 
structure, the RVE cannot be defined by homogeni-
zation theory. Rather, it must be defined as the 
smallest material volume whose failure triggers the 
failure of a structure. The structure can thus be sta- 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  

 

J•∇=
∂

∂
−

t

w
                              (2) 

 
The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
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assume that the evaporable water is a function of 
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degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



tistically represented by a chain of RVEs. By virtue 
of the joint probability theorem, and under the as-
sumption of independence of random strengths of 
links in a finite weakest-link model, the strength dis-
tribution of a structure can be calculated as: 
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where σN = nominal strength of the structure, σ (xi) 
= σN s(xi) = maximum principal stress at the center 
of i

th
 RVE with the coordinate xi, s(xi) = dimen-

sionless stress describing the stress distribution in 
the structure, n = number of RVEs in the structure, 
and P1(σ) = strength cdf of one RVE. Equation 4 di-
rectly indicates the size effect on the type of strength 
cdf. For small-size structures (small n), the strength 
cdf is predominantly Gaussian, which corresponds to 
the case of quasi-plastic behavior. For large size 
structures, what matters for Pf is only the tail of the 
strength cdf of one RVE, and it causes that the entire 
cdf of strength of very large structures follows the 
Weibull distribution. 

Based on the finite weakest link model (Equation 4) 
and the grafted cdf of strength for one RVE (Equation 
2 and 3), the strength cdf of a structure must depend on 
its size and geometry. The mean strength for a struc-
ture with any number of RVEs can be calculated as: 
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Clearly, it is impossible to express 

N
σ  analytically. 

But its approximate form can be obtained through 
asymptotic matching. It has been proposed that the 
size effect on mean strength can be approximated by 
(Bažant 2004, 2005): 
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where parameters Na, Nb, r and m are to be deter-
mined by asymptotic properties of the size effect 
curve. It has been shown that such a size effect 
curve agrees well with the predictions by other me-
chanics models such as the nonlocal Weibull theory 
(Bažant & Novák 2000) and with the experimental 
observations on concrete (Bažant et al. 2007). As the 
large size asymptote, Equation 6 converges to 
(Nb/D)

1/m
. Calculation of the mean strength from the 

Weibull distribution shows that m must be equal to 
the Weibull modulus of strength distribution, which 
can be determined by the slope of the left tail of 
strength histogram plotted on the Weibull scale. The 
other three parameters, Na, Nb,, and r, can be deter-
mined by solving three simultaneous equations based 

on three asymptotic conditions, 
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3 SIZE EFFECT ON STRUCTURAL LIFETIME 

The probability of not achieving the design lifetime 
of a structure must be tolerable, i.e., sufficiently 
small. Although the theory just outlined has not yet 
been extended to fatigue under cyclic loads, the life-
time problem has already been solved for a constant 
load or stress. The creep crack growth law is needed 
as a link between the strength and lifetime statistics 
(Bažant et al. 2009, Bažant & Le 2009a). For dec-
ades, extensive experimental evidences showed that 
the crack growth rate law has a power-law form (Ev-
ans 1972, Evans & Fu 1984, Thouless et al. 1983, 
Munz & Fett 1999): 
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where K = stress intensity factor, Q0 = activation en-
ergy barrier at absence of stress, k = Boltzmann con-
stant, T = absolute temperature, A, n= empirical con-
stants. A recent study showed that the power-law 
form of the crack growth rate can be physically jus-
tified by considering the fracture mechanics of ran-
dom crack front jumps through the atomic lattice 
and the condition of equality of the energy dissipa-
tion rates calculated on the nano-scale and the macro-
scale (Bažant et al. 2009, 2009b, Le et al. 2009). 

Now consider both the strength and lifetime tests 
for an RVE. (1) In the strength test, the load is rap-
idly increased till the RVE fails. The maximum load 
registered corresponds to the strength of the RVE, 
which may be chosen to be equal to σN. (2) In the 
lifetime test, the load is rapidly increased to a certain 
level σ0 and then is kept constant till the RVE fails. 
The load duration up to failure represents the life-
time λ of the RVE at stress σ0. By applying Equation 
7 to both of these tests, one finds that the structural 
strength and the lifetime are related through the fol-
lowing simple equation: 
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where κ = loading rate for the strength test, and β = 
[κ (n+1)]

1 /(n+1)
 = constant. Christensen (2008) used the 

same approach to study the damage accumulation rules 
and showed that Equation 8 represents a nonlinear 
damage accumulation rule, which is more physical 
compared to the widely adopted linear damage accumu-
lation rule such as the Palmgren-Miner rule (Palmgren 
1924, Miner 1945). By substituting Equation 8 into 
Equations. 2 and 3, one obtains the lifetime distribu- 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  

 

( )
1

1
10

1
10

1
1

22.0188.0
0

,
1

−
⎟
⎠

⎞
⎜
⎝

⎛
−∞

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−∞

−−+−

=

h
cc

g
e

h
cc

g
eGs

s
s
c

w

sc
K

αα

αα

αα

αα

 

(6)

 
 
The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



tion of one RVE. Similar to strength statistics, one 
can calculate the lifetime distribution of a structure 
of any size (Equation 4) and the mean structural life-
time. A simple asymptotic matching formula for the 
size effect on the mean structural lifetime is: 
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where m = Weibull modulus of strength distribution, 

n = exponent of the power law crack growth rate, 

and m/(n+1) = Weibull modulus of lifetime distribu-

tion. Parameters Ca; Cb; r can be determined from 

three known asymptotic conditions for [ ]
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Figure 4. Size effects on structural strength and lifetime. 

 
Figure 4 shows the calculated size effect on the 

mean structural strength and lifetime of 99.9% 
Al2O3, based on the strength and lifetime cdf's cali-
brated by Fett and Munz's histogram testing (Fett & 
Munz 1991). It can be seen that the size effect on 
mean structural lifetime is much stronger than that 
on mean structure strength.   

This is physically plausible. Consider two geo-
metrically similar beams, with size ratio, say, 1:8. 
Let the nominal strength of the small beam be µ. 
Due to the size effect on the mean strength, the 
nominal strength of the large beam is about µ/2. If a 
nominal load µ/2 were applied on both beams, the 
large beam will fail within the standard laboratory 
testing period (i.e. about 5 minutes) while the small 
beam is expected to survive at that load for years if 
not forever. An important consequence is that, for a 
given tolerable probability, a slightly larger structure 
would have a much shorter lifespan. 

4 CONSEQUENCES OF IGNORING TYPE-2 
SIZE EFFECT 

In many common failure types, such as shear, tor-

sion and compression crushing, reinforced concrete 
structures exhibit a strong deterministic size effect 
of Type 2. Due to its energetic nature, the random-
ness of material properties affects only the standard 
deviation of strength, but not its mean. Nevertheless, 
statistical analysis of a large database presents other 
statistical problems. Using a large database, one 
should note that 1) the major source of scatter in the 
database is the differences among different concretes 
tested in different laboratories and among the sub-
jective selections of different experimenters accord-
ing to their research interests; 2) the entire database 
cannot be treated as one statistical population; 
rather, because of the size effect, it should be sepa-
rated into size intervals and the statistics should be 
treated as a statistical regression based on the Type 2 
size effect. 

Figure 5 shows a database of 398 data points col-

lected from various research groups to investigate 

the conservativeness of the current ACI shear design 

formula for concrete beams, which assumes a size-

independent shear strength '

2
cc
fv = (f'c is the spe-

cific compressive strength of concrete, which typi-

cally equals about 70% of the average compressive 

strength f'cr). Although obscured by enormous scat-

ter, it can still be noticed that the data cloud of shear 

strength values in the database displays a downward 

trend with respect to the beam depth d, which rules 

out applying population statistics to the database as a 

whole.  
 

 
Figure 5. a) Toronto size effect tests; b) shear database of 398 
data points; c) isolated data points in the small size range. 

 

However, if data points in small size range (100 

to 300 mm) are isolated from the database, the size 

effect is week enough for treating the data as a popu-

lation with no statistical trend. The mean and coeffi-

cient of variation (C.o.V) are found to be 

2.3/
'

==

−

−

crc
fvy  and ω = 27%; see Figure 5. The 

relatively high value of ω indicates that the scatter 

band of the isolated points is wider than what is ob-

served in individual test series.  
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



For example, the size effect tests of shear beam at 
University of Toronto (Podgorniak-Stanik 1998, 
Lubell et al. 2004) showed ω = 6.9%, and those at 
Northwestern University ω = 12% (Bažant & Ka-
zemi 1991). The reason is that the database covers a 
wide range of secondary characteristics such as the 
steel ratio, shear-span ratio and concrete type, which 
all vary throughout the database and have a signifi-
cant effect on the shear strength of beam. The non-
uniform distribution of these secondary characteris-
tics is the result of the subjective selection in 
different laboratories, and its contribution to the 
scatter of shear strength dominates. Therefore, the 
choice of the probability density function (pdf) to be 
calibrated by the test data in each interval must be 
empirical. Among the normal distribution, log-
normal distribution and Weibull distribution, the 
log-normal distribution is found to give the best fit 
for the first size interval, in which many data exist 
(Bažant & Yu 2009). It should be noted that a log-
normal distribution would be physically inadmissi-
ble for the scatter due purely to material random-
ness; but this randomness plays a negligible role in 
the database scatter.   

For large-size beams, the type of pdf of shear 
strength cannot be obtained by the same process be-
cause of the scarcity of data points in this size range. 
However, in view of the origin of scatter, it would 
be surprising that the type of pdf changed with the 
structure size. Therefore, it is logical to assume the 
log-normal pdf will apply for each size interval. 

In Figure 5c, the log-normal pdf obtained from 

small size range is plotted in the double-logarithmic 

scale. Figure 6a shows the same pdf superposed on 

size effect tests made at the University of Toronto. 

The strength value for the test of the single beam 

0.925 m deep was just at the limit of the ACI shear 

design formula '

2
cc
fv =

(Fig. 6), and the test of the 

single beam 1.89 m deep was below this limit but 

nevertheless exceeded the value '

2
c

fφ where φ  = 

0.75 = required capacity reduction factor (understrength 

factor). Some engineers deemed it to be acceptable, 

and thus to justify the disregard of size effect. How-

ever, a probabilistic analysis demonstrates the opposite. 
To explain, note that, for the particular secondary 

characteristics (such as the shear span, steel ratio or 
concrete type) used in the Toronto tests, the shear 
strength value (the first bold diamond point) of the 
Toronto test lies (in the logarithmic scale) at certain 
distance a below the mean of the pdf of the database 
interval (Fig. 6a). Since the width of the scatter band 
in the logarithmic scale does not vary appreciably 
with the beam size, the same pdf and the same dis-
tance a between the pdf mean and the Toronto test 
result must be expected for every beam size d, in-
cluding the sizes of d = 0.925 m and 1.89 m. In other 

words, if the Toronto test for d = 925 mm were re-
peated for the same secondary characteristics as dis-
played in the small size range, one would have to 
expect the same pdf but shifted downwards in the 
logarithmic scale by distance a as shown in Figure 
6a. By assuming the value of a to be the same for the 
small and large size ranges, we simply imply that the 
probability, or frequency, of beams having shear 
strength below the value characterized by a will be 
the same for these size ranges. 

 

 
Figure 6. a) Log-normal pdf of shear strength in small size 
range and its shift to d = 1 m; b) failure probability of beams in 
different size ranges according to the corresponding pdf. 

 

Now note that the pdf of shear strength in the 

small size range lies almost entirely above the ACI 

shear design formula '

2
cc
fv = , but extends well 

below it for size range centered at d ≈ 1 m. This 

means that if the Toronto large size test could be re-

peated for many different concretes, shear spans, 

steel ratios, etc., a large portion of the test results 

would likely fall below the ACI shear strength limit. 

According to the log-normal pdf obtained here, the 

percentage of the unsafe large beams would be 40%. 

This is unacceptable. 
Consider now the consequences for the failure 

probability, Pf, of a structure exposed to the actual 
service loads. To this end, one must consider the 
randomness of these loads, reflected in design in the 
load factor µ. Let p(y) be the pdf of the extreme ser-
vice loads y. Determining the type of pdf is a de-
manding task, but for the purpose of comparing 
small and large structures it will suffice to assume 
that p(y) is log-normal and that its coefficient of 
variation is 10%.  

Evaluating the classical Freudenthal’s reliability in-

tegral (Ang & Tang 1984, Madsen et al. 1986, Hal-

dar & Mahadevan 1999) ∫
∞

=

0

)()( dyyRyfPf  (where 

R(y) is the cdf of structure resistance, Fig. 5), one 

obtains Pf ≈ 10
-6

 for beams of d ≈ 200 mm (centroid 

of the chosen small size interval in Fig. 6). This is 

safe since, compared to the inevitable risks that peo-

ple face, 10
-6

 is generally considered the maxi- 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



mum tolerable. However, for beams of d = 1 m, the 

failure probability increase to Pf = 10
-3

, which is far 

beyond what the risk analysis experts generally accept 

as safe. For d = 1.89 m, the Pf value is still higher. 

Therefore, Type 2 size effect must be incorporated 

in the design code. Otherwise, a uniform safety mar-

gin is unachievable.   

5 CONCLUSION 

The gradual transition of the type of distribution of 
structural strength and lifetime from Gaussian to 
Weibullian has serious implications for the safety 
factors and minimum lifetime guarantees of quasi-
brittle structures. This needs to be taken into account 
in the design and safety assessments of large con-
crete structures, as well as large composite aircraft 
frames and ship hulls, microelectronic devices, bone 
implants, etc. By contrast with perfectly ductile and 
perfectly brittle structures, their safety factors cannot 
be decided empirically, but must be calculated. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  
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By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
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etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
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paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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