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Improved Algorithm for Efficient and Realistic Creep 
Analysis of Large Creep-Sensitive Concrete Structures
by Qiang Yu, Zdeněk P. Bažant, and Roman Wendner

Recent compilation of data on numerous large-span prestressed 
segmentally erected box girder bridges revealed gross underesti-
mation of their multi-decade deflections. The main cause has been 
identified as incorrect and obsolete creep prediction models in 
various existing standard recommendations and is being addressed 
in a separate study. However, previous analyses of the excessive 
deflections of the Koror-Babeldaob (KB) Bridge in Palau and of 
four Japanese bridges have shown that a more accurate method 
of multi-decade creep analysis is required. The objective of this 
paper is to provide a systematic and comprehensive presentation, 
appropriate not only for bridges but also for any large creep-
sensitive structure. For each time step, the solution is reduced to 
an elastic structural analysis with generally orthotropic elastic 
moduli and eigenstrains. This analysis should normally be three-
dimensional (3-D). It can be accomplished with a commercial finite 
element code such as ABAQUS. Based on the Kelvin chain model, 
the integral-type creep law is converted to a rate-type form with 
internal variables, which account for the previous history. For time 
steps short enough to render aging during each step to be negli-
gible, a unique continuous retardation spectrum for each step is 
obtained by Laplace transform inversion using simple Widder’s 
formula. Discretization of the spectrum then yields the current 
Kelvin chain moduli. The rate-type creep analysis is computation-
ally more efficient than the classical integral-type analysis. More 
importantly, though, it makes it possible to take into account the 
evolution of various inelastic and nonlinear phenomena such as 
tensile cracking, cyclic creep, and stress relaxation in prestressing 
tendons at variable strain, as well as the effects of humidity and 
temperature variations, and the effect of wall thickness variation 
on drying creep and shrinkage. Finally, the advantages compared 
to the existing commercial programs, based on step-by-step inte-
gration of memory integrals, are pointed out and illustrated by a 
simple example.

Keywords: aging; bridge deflections; commercial programs; continuous 
retardation spectrum; cracking; creep and shrinkage; cyclic creep; Kelvin 
chain model; rate-type algorithm; steel relaxation; three-dimensional 
analysis; variable environment. 

INTRODUCTION
The severity of the effects of multi-decade creep of 

concrete has long been underestimated. In 2008, however, 
the release of detailed technical data on the Koror-Babeldaob 
(KB) Bridge in Palau, which collapsed in 19961,2 as a result 
of a retrofit, provided a wakeup call. When built in 1977, this 
prestressed segmentally erected box girder had the world-
record span of 241 m (791 ft). Within 18 years, its midspan 
deflection (compared to the design camber) reached 1.61 m 
(5.3 ft), which was approximately three times larger than 
the deflection calculated in design.3 The 18-year prestress 
loss was measured to be approximately 50% (as an average 
of nine readings), which was more than the double of the 
normally predicted loss4,5 (refer to Fig. 1).

Thanks to other data released in 2008 by Shimizu 
Construction, Tokyo, similar underestimations of long-term 

creep effects were also documented for four large segmen-
tally erected box girders in Japan.3,6,7 A subsequent search of 
data on segmentally erected prestressed box girder bridges, 
undertaken under the auspices of the recently established 
RILEM Committee TC-MDC (Multi-Decade Creep), led to 
a list of 69 large spans (in 10 countries) that suffered grossly 
excessive long-time deflections.8-10 It is likely that many 
more cases of excessive deflections exist worldwide. Clearly, 
the problem is widespread and its cause must be systematic.

Analyses of the data on the KB Bridge and the Japanese 
bridges3,6,7 with Model B3 (calibrated by multi-decade labo-
ratory tests11-13) showed that the main causes of the gross 
underestimation are twofold:

1. Incorrect and obsolete material models for concrete 
creep surviving in standard design recommendations of ACI, 
CEB-fib, and other engineering societies; and

2. An oversimplified method of creep structural analysis.
The former is being addressed in a separate study.6-8 This 

article will focus attention on the latter. Assembling previ-
ously published results, it will give a comprehensive presen-
tation of the method of multi-decade creep analysis, which 
can use a general-purpose finite element code such as 
ABAQUS and has led to excellent agreement with the obser-
vations on the KB Bridge and four Japanese bridges.

For the purpose of creep analysis, the prestressed concrete 
box girders have traditionally been analyzed as one-dimen-
sional (1-D) beams, sometimes using, for the top slab, 
approximate correction formulas for the shear lag.14-16 Such 
analysis, however, still popular in commercial design soft-
ware, can have large errors, mainly for two reasons:

1. It cannot realistically capture the shear lag effects, 
which are not only elastic but also aging viscoelastic, occur 
not only in the top slab but also in the vertical walls and 
the bottom slab, and are caused by both the vertical shear 
forces at the piers and by the concentrated loads from tendon 
anchors; and

2. It cannot account for the differences in drying creep 
properties and in shrinkage caused by the differences in the 
drying rates of slabs, resulting from different thicknesses 
and environmental exposure.

Properly, the box girders should be analyzed as thick 
shells, for which a three-dimensional (3-D) finite element 
analysis is necessary. Such analysis is, of course, also 
necessary for other creep-sensitive structures such as super-
tall buildings.
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RESEARCH SIGNIFICANCE
Achieving sustainability of built environment requires that 

the design of large bridges, as well as other large creep-sensi-
tive structures such as super-tall concrete buildings or large-
span shells, would ensure a lifetime of at least 100 years. 
Excessive creep deflections and prestress losses shorten 
the life span to approximately 20 to 40 years. The result is 
an enormous economic loss. Whereas in most cases exces-
sive creep deflections will not cause collapse per se, they 
may provoke a retrofit with additional prestressing, which 
can be risky and may lead to collapse with a loss of life, 
as witnessed in Palau.2,17,18 Therefore, a realistic method of 

multi-decade creep structural analysis is one essential part of 
sustainable design.

A realistic method is also needed for reanalyses of some 
recently completed structures. Excessive deflections produce 
cracking and, even if a retrofit is successful, the cracking 
does not heal. Thus, should reanalysis show future excessive 
deflections to be likely, a retrofit could be performed before 
any damage develops.

REASONS FOR COUPLING FINITE ELEMENT 
ANALYSIS WITH RATE-TYPE 

 CREEP FORMULATION
Concrete creep at constant stress and in constant envi-

ronment is characterized by the compliance function 
J(t, t′), which represents the strain at time t caused by a unit 
sustained uniaxial stress applied at age t′. Generalization for 
time-variable stress s (t) is obtained by applying the prin-
ciple of superposition in time, which yields a linearly visco-
elastic stress-strain relation in the form of a Volterra integral 
equation with a kernel which, because of chemical aging, is 
not of convolution type. According to this classical formu-
lation, the evolution of deflections, nodal displacements, or 
statically indeterminate internal forces is characterized by a 
system of linear Volterra integral equations.

However, the integral-type approach to aging viscoelas-
ticity is too complicated and computationally inefficient for 
larger structures. More seriously, it is also unrealistic because 
many influencing phenomena can be taken into account 
only with a rate-type, rather than integral-type, formulation. 
Although the history integrals of aging viscoelasticity are a 
valuable pedagogical tool for the conceptual understanding 
of various kinds of viscoelastic effects in structures, espe-
cially the long-time stress redistributions, in practice they 
are adequate only for crude preliminary estimates and illus-
trative calculations of simple beam or frame structures.

Fig. 1—Excessive deflection recorded in KB Bridge in Palau. (Note: 1 m = 3.28 ft; 1 MPa 
= 145 psi.)
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In real design of large creep-sensitive structures, the inte-
gral-type creep law arising from the principle of superposi-
tion must be converted to an equivalent rate-type creep law 
with internal variables whose current values account for the 
previous history of viscoelastic strain. There are basically 
two reasons for choosing the rate-type approach:

1. One is computational: The strain history need not be 
stored and no sums over all the previous time steps need to be 
computed to approximate the history integrals. Thus, the rate-
type approach makes creep computations far more efficient. 
For the design of very large structures, the rate-type form of 
creep law is almost inevitable. It also makes it easier to simu-
late the effects of numerous changes in the structural system, 
as in segmental construction with sequential prestressing of 
many segments or in super-tall building erection.

2. Another is the necessity to capture the phenomena 
causing deviations from the principle of superposition in 
time.19-21 These phenomena include the cracking and other 
damage of concrete, variations of humidity and tempera-
ture with the corresponding changes in the rate of aging (or 
hydration), bond slip, and cyclic creep. Upon inclusion of 

the nonlinear phenomena, the rate-type stress-strain rela-
tion ceases to obey the principle of superposition. A further 
highly nonlinear phenomenon is the stress relaxation of steel 
tendons, which is not viscoelastic. The evolution of steel 
relaxation may be significantly influenced by the strain vari-
ation in concrete and thus needs to be calculated as part of 
structural creep analysis to take into account the time varia-
tion of prestress loss due to the combined effects of concrete 
creep, shrinkage, and steel relaxation (note that the usual 
assumption of either a time-constant prestress loss or time-
variable steel relaxation estimated in advance is generally 
insufficient for creep-sensitive structures).

The key property enabling the rate-type analysis is the fact 
that any realistic integral-type stress-strain relation of aging 
viscoelasticity can be approximated with any desired accu-
racy by a rate-type creep law visualized by the Kelvin chain 
model. This model consists of a series of Kelvin units m = 
1, 2, 3, ···, N (Fig. 2), each of which involves a spring of 
stiffness Em(t) coupled in parallel with a dashpot of viscosity 
hm(t) = Em(t)tm, where tm are the suitably chosen retardation 
times. In step-by-step analysis, one takes advantage of the 

Fig. 2—Kelvin chain model and flowchart of algorithm of finite element creep 
analysis based on rate-type creep model.
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fact that, for a sufficiently short time step, Em and hm can be 
considered as approximately constant, although Em and hm 
generally change from one time step to the next.

The plot of compliances A(tm) = Em
–1 versus logtm is the 

discrete retardation spectrum. Because of aging, the spectrum 
is different for each subsequent time step. The discrete retar-
dation times are best chosen to be spaced by decades in the 
logarithmic time scale—that is, tm + 1 = 10tm. For a sparser 
spacing of

 
tm, the representation of the compliance function 

by the discrete spectrum becomes bumpy and inaccurate, 
while a denser spacing gives no significant gain in accuracy.

When the rate-type creep law is used, the structural creep 
problem can be reduced to a system of first-order ordinary 
differential equations in time with age-dependent coeffi-
cients. Similar to the system of integral equations, however, 
this approach is a waste of effort. It is more efficient to 
convert the incremental stress-strain relation for each time 
step Dt to a quasi-elastic incremental stress-strain rela-
tion. Thus, the structural creep problem gets reduced to a 
sequence of elasticity problems with initial strains19,20,22,23 
(refer also to Section 29.3.5 in Jirásek and Bažant24).

CONTINUOUS RETARDATION SPECTRA FOR 
SUBSEQUENT TIME STEPS

A continuous retardation spectrum, which corresponds to 
the limit of an infinite Kelvin chain with infinitely many retar-
dation times tm of infinitely close spacing, can be identified 
from the compliance data more conveniently than a discrete 
spectrum. It represents a smoothed-out plot of Kelvin unit 
compliances Em

–1(t) versus logtm. Its advantage is that it is 
unique and can be identified from the given compliance 
function analytically by Laplace transform inversion (which 
is justified by the fact that, within a sufficiently short time 
step Dt, the aging of the material can be neglected). Widder’s 
approximate inversion formula25 is effective for this purpose 
and gives25-28
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where C(k) is the k-th order derivative on time t of the creep 
part C(t, tn – 1/2) of the compliance function J(t, tn – 1/2); C(t, t′) 
= J(t, t′) – 1/E0; and E0 is the instantaneous (or short-time) 
elastic modulus. Note that, generally, L(tm) is different for 
each integration point of each finite element in each time 
step. The effects of thickness tb, current local humidity h, 
current local temperature T, and so on are introduced into the 
spectrum through the compliance curve J(t, t′), in which t′ is 
constant and represents the age of concrete in the middle of 
the current time step.

In practice, the limit in Eq. (1) need not be calculated 
and it suffices to use k = 3. A discrete approximation of the 
continuous spectrum gives the discrete spectrum
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which corresponds to a finite (or discrete) Kelvin chain and 
is required for numerical computations.

Note that, in the original rate-type creep analysis,29 the 
discrete spectrum A(tm) was calculated by least-square fitting 

of the compliance function J(t, t′), but this approach was 
found to give non-unique results for A(tm) and to be over-
sensitive to small changes in compliance. The continuous 
spectrum route is not only much simpler but also avoids this 
non-uniqueness and over-sensitivity.27

NUMERICAL PROCEDURE USING EXPONENTIAL 
ALGORITHM FOR INCREASING TIME STEPS

Every compliance function J(t, t′) can be represented with 
any desired accuracy by the Kelvin chain rheologic model, 
which converts the constitutive law for creep from a matrix 
of the Volterra integral equation to a system of ordinary first-
order linear differential equations for the rates of Kelvin 
unit strains em. These are partial strains that represent what 
is known in thermodynamics as the internal variables (the 
Maxwell chain model can also be used but is less conve-
nient because it requires converting J(t, t′) to the relaxation 
function R(t, t′)). The equations for the em (a 6 × 1 column 
matrix) read

( ) ( ) ( ) ( )t
D t t tm

m m
m

 
+ = 

 
 

t
g

g sD	 (3)

( ) ( )t tm m m= g et	 (4)

in which s is the 6 × 1 column matrix of stress; em is the 
partial strains = strains of the individual Kelvin units (6 × 
1 column matrixes); Dm is the elastic moduli of Kelvin units 
(scalars); and D is the constant 6 × 6 elastic stiffness matrix 
for isotropic material with a unit value of Young’s modulus, 
introduced under the simplifying assumption of a constant 
creep Poisson ratio, n ≈ 0.18; and, with the notation n* = 
(1 – 2n)/(2(1 – n)).
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The usual algorithms for numerical integration of first-
order ordinary differential equations, such as the central or 
backward difference methods or the Runge-Kutta method, 
fail by numerical instability. The reason is that these methods 
are stable only if Dt << t1 while, to reach long times, the 
time steps Dt need to be increased to values larger (in fact, 
many orders of magnitude larger) than the shortest retarda-
tion time tm = t1. An unconditionally stable algorithm, called 
the exponential algorithm, was devised to overcome this 
problem.20,23,29,30 In this algorithm, one calculates (for each 
integration point of each finite element, in each time step)

( )/ , 1 /te tm−D
m m m m= = − Dtb l t b (6)
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where E″ is the incremental modulus. The 6 × 1 column 
matrix of the inelastic strain increments, also called the 
eigenstrains, is obtained as
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The matrix of eigenstrains must now be augmented by 
the shrinkage (and thermal) strain increments in the current 
time interval, as well as the inelastic strain increments due 
to smeared cracking or other damage, and eventually also 
the cyclic creep (unless its simplified analysis is undertaken 
separately). Note that the last three terms in matrix De″ repre-
sent the shear creep, which is normally neglected when the 
integral-type approach is used, although it is important for 
the shear lag in box girders. The 1-D stiffness in Eq. (8) is 
then used to construct the 3-D isotropic quasi-elastic matrix 
stress-strain relation with eigenstrains20,24

1 2( ) ( )nE t −= −′′ ′′Ds De DeD	 (10)

where D denotes the increments per time step, and matrixes 
D and De are generally non-isotropic. This stress-strain rela-
tion, which is different for each integration point of each 
finite element in each time step, is then used in an elastic 
structural analysis program. Thus, the structural creep 
problem gets reduced to a sequence of incremental elasticity 
problems,19,20,22-24 each of which can easily be solved by 
various commercial elastic finite element programs, such as 
ABAQUS. After solving the stress increment matrixes at all 
the integration points, the column matrix of the increments 
of internal variables of Kelvin chain units is then updated at 
each integration point as follows

( ) ( )11n nD −−
m m m m m= +g Ds gl b	 (11)

Note that the history—that is, the values of gm
(n), em, and s 

for the previous steps 1, 2, ···, n – 1—need not be stored. The 
history is fully characterized by the current values of gm

(n).
The exponential algorithm automatically captures the fact 

that every Kelvin unit whose retardation time tm is much 
shorter than Dt behaves essentially as an elastic spring, as 
if the parallel dashpot did not exist. This property means 
that the compliances of the Kelvin units for which tm << Dt1 
(the shortest time step) could be summed and all these units 
replaced by a single spring. This would reduce the amount 
of computations. For programming, though, it is simpler to 
keep all the Kelvin units, even those with remotely small 

tm. It is important that the entire short-time tail of the spec-
trum be covered by tm, especially when short time steps are 
used.7 Vice versa, the exponential algorithm also automati-
cally captures the fact that the Kelvin units whose retarda-
tion times are an order of magnitude longer than the current 
time step behave essentially as rigid links.

A change of structural system, or an imposition of new 
constraints in a certain time step, is modeled by activating 
some previously deactivated finite elements (which is a stan-
dard feature in ABAQUS). This is, for example, necessary to 
simulate the sequential erection of segmental box girders (or 
of super-tall buildings). It also makes it possible to easily take 
into account the differences in the ages of various segments; 
the sequential prestressing at various times; the step-wise 
load increase in the individual segments during construc-
tion; the application of temporary construction loads (for 
example, the traveler truss weight); and the introduction of a 
new constraint, such as the joining of two opposite cantile-
vers after the segmental construction is completed.

In addition to construction sequence, ABAQUS can also 
automatically take into account the joining of two structural 
parts, as well as the jacking of a prestress tendon at the right 
time, in the form of a specified initial strain (or eigenstrain) 
in the tendons. The relaxation of steel tendons is introduced 
through the increments of inelastic strain in bar elements 
representing the tendons.

Compared to the integral-type approach, the rate-type 
approach has another big advantage. The incremental elastic 
stress-strain relation in each time step can further be modi-
fied according to cracking or other damage, cyclic creep, 
current humidity, current temperature, and current degree of 
hydration in the same way as it is done for inelastic time-
independent analysis. Note that this is not possible for the 
integral-type creep law because the cracking, humidity, and 
temperature, unlike concrete creep, do not have a memory 
and thus cannot be introduced into the history integrals. 
Furthermore, in contrast to the system of Volterra integral 
equations for statically indeterminate quantities, one can 
easily introduce the viscoplastic strain increments equiva-
lent to the stress relaxation in steel tendons and thus solve 
the stress relaxation in prestressing steel as part of structural 
creep analysis (the result can be quite different from the 
standard estimates of prestress loss due to stress relaxation, 
as revealed by the analysis of the KB Bridge in Palau).

The derivation of the exponential algorithm for the rate-
type form of aging viscoelasticity was originally given in 
Bažant30 and was presented in full detail in Bažant,19 RILEM 
Committee TC-69,20 and Bažant23 and in Section 29.3.5 of 
Jirásek and Bažant24 for a general compliance function. In 
Bažant and Prasannan,31,32 the derivation of a simpler special 
form was given for the special compliance function of the 
solidification theory and for Model B3.33,34 Calculation of 
the continuous retardation spectrum and its discretization 
were presented in Bažant and Xi.27

GENERALIZATION FOR CYCLIC CREEP
The cyclic creep (or fatigue deformations) caused by 

repeated traffic loads is not a major effect, but sometimes it 
can increase the deflections by approximately 2 to 5%.7 In 
the case of Palau,7 it was calculated separately because it 
was negligible compared to the total deflection. However, 
for smaller-than-record spans or heavily loaded bridges with 
many lanes, especially those carrying cars and rail, the cyclic 
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creep can be stronger and is better calculated as part of the 
general algorithm. According to Bažant and Kim,35 the 
additional inelastic strain due to the cyclic creep increment 
during time step Dt may in general be roughly estimated as

( ), ,cyc cyc maxg f tD = D De s s	 (12)

where g is an empirical function; fcyc is the frequency of 
normal stress cycles; smax is the maximum magnitude of 
normal stress; and Ds = smax – smin is the stress amplitude. 
For accurate analysis, the strains Decyc should be calculated 
for each integration point of each finite element at each time 
step and added to the creep strain increments. But often the 
cyclic creep is very small and then a separate, simpler calcu-
lation is possible, as shown in Bažant et al.8 Calibration of 
Eq. (12) by test data of Gaede36 and others is the subject 
of a separate paper in preparation. Note that an alternative 
formula of Bažant and Kim35  and Bažant and Panula,37 which 
gives the cyclic creep as an acceleration of the static creep, 
appears to greatly underestimate the cyclic creep for multi-
decade loading.

NUMERICAL IMPLEMENTATION AND ALGORITHM
All the creep and shrinkage models predict the average (or 

effective) properties of creep and shrinkage over the thick-
ness of a slab of the cross section directly from the envi-
ronmental humidity, taking into account the slab thickness. 
This simplification is quite poor for cross sections subject 
to pure bending, partly because the creep prediction model 
has been calibrated by the tests under axial load. However, 
in flanged cross sections such as those of box girders, the 
distribution of longitudinal normal stress across the wall is 
nearly uniform—that is, the bending component within the 
wall alone is relatively small and the force resultant is nearly 
centric within the wall thickness. In that case, the aforemen-
tioned simplification works much better. It suffices to use 
only one finite element through the slab thickness, except 
in the top slab because that slab is subjected to transverse 
bending from roadway loads.

A computer program based on the algorithm described in 
the following was written and applied to the KB Bridge in 
Palau.3,6,7 This program (which can be freely downloaded from 
www.civil.northwestern.edu/people/Bažant/PDFs/Papers) 
can be adapted to other segmental bridges, as well as other 
types of concrete structures. On a state-of-the-art personal 
computer (PC) (for example, a quad-core, 4 GB memory), 
the entire 3-D finite element creep analysis of the KB Bridge 
ran for approximately 50 minutes. The flowchart of the algo-
rithm used in this program is shown in Fig. 2.

Note that the number N of internal variables could actu-
ally be reduced to approximately five, but then the first L(tm) 
(m = 1) would have to be computed as the integrated area 
under the spectrum up to –∞ in the log-time scale (the reason 
is that Kelvin units with tm << Dt behave as springs, and the 
compliances of springs coupled in series can be combined 
into one compliance). Using N = 22 for Model B3 and N = 
13 for other models increases the demand on computer time 
and storage but is simpler to program, which is important 
for the user. The spectral values L(tm) for tm >> t (the current 

time) are ignored because the corresponding Kelvin units 
behave as perfectly rigid.

EXPONENTIAL ALGORITHM SIMPLIFICATIONS 
AND REFINEMENTS FOR MODEL B3

The foregoing algorithm can also be used for Model B3, 
provided that the total compliance J(t, t′) is computed for 
each integration point.33,34 For basic creep, however, a 
simpler exponential algorithm exists,31,32 which needs only 
the compliance rate J

⋅
(t, t′). The compliance rate is directly 

specified by Model B3 and is applied only to the non-aging 
viscoelasticity of the non-aging constituent of growing 
volume v(t). The modified steps of the algorithm, which are 
also shown in Fig. 2, involve the following equations
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where Ab(tm
b) is the discretized spectrum for the non-aging 

constituent in Model B3; e″1 is the 6 × 1 column matrix 
(vector) of the inelastic strain increments in the current 
volume fraction of solids; and e″2 is the 6 × 1 column matrix 
of inelastic strain increment of viscous flow.

More realistic is an analysis in which the relative humidity 
hp in the capillary pores of concrete at various points and 
times is computed from the nonlinear diffusion equation for 
concrete drying,38,39 for which a 1-D version for transverse 
moisture transport is generally sufficient. This approach 
further has the advantage that the creep and shrinkage law 
for a material point is simpler and more accurate than it is for 
the cross-section average.

Model B3 includes an alternative that allows such point-
wise calculation of creep and shrinkage. In this case, the 
thickness of the slab needs to be subdivided into at least 
six finite elements, which increases the number of all finite 
elements in the structure approximately six times. The inte-
gration of the diffusion equation for drying (and wetting) of 
concrete38 is done numerically, simultaneously with creep 
structural analysis. This more refined approach is a straight-
forward generalization of the present approach and will not 
be discussed further.

PRESTRESSING STEEL RELAXATION AT 
VARIABLE STRAIN

So far, the practice has been to calculate the stress relax-
ation in prestressing tendons from simple formulas that give 
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relaxation at constant strain e. As exemplified by the KB 
Bridge in Palau, however, the strain variation in steel bonded 
to concrete need not be negligible when dealing with creep-
sensitive structures. Also, the exposure of pavement to sun 
can cause significant heating of tendons embedded in the top 
slab.7 Therefore, one needs a general uniaxial viscoplastic 
constitutive law for prestressing steel (Chapter 27 of Refer-
ence 24). Plenty of test data on prestressing steel relaxation 
exist for constant strain and constant room temperature.40 The 
most extensive are given in Magura et al.41 The data for vari-
able strain and variable temperature are much more limited 
but those that exist42,43 suffice for calibration. It is clear that 
the equation governing the relaxation of prestressing steel 
must have the form of a viscoplastic constitutive law, which 
gives the inelastic strain increment in steel as follows

( ),v p Tf A t TD = D + aDe e s	 (17)

where sp 
is the current stress in steel tendons; e is the current 

strain in tendons, which must be the same as in the adja-
cent concrete; DT is the increment of temperature; a is the 
thermal expansion coefficient of steel; and AT is the tempera-
ture factor, which equals 1 at room temperature. A real-
istic expression for function f(e, sp) which, for constant e, 
constant T, and high sp, reduces to the CEB-fib formula and 
also incorporates a threshold co-opted from American prac-
tice, has been derived and calibrated by test data in Bažant 
and Yu40; refer to the Appendix.

CHECK OF PROGRAMMING WITH SIMPLE 
NUMERICAL EXAMPLE

The user can check the correctness of programming of the 
exponential algorithm by the following example, which uses 
the compliance function J(t, t′) = [1 + f(t, t′)]/E(t′) in which, 
according to ACI Committee 20944,45

( ) ( )
( )

0.6

0.6, 2.35
10

c

t t
t t

t t

− ′
=′

+ − ′
f g	 (18)

gc is the empirical factor accounting for age t′ at loading, 
humidity, slab thickness, concrete slump, and contents of 
fine aggregates and air. The cyclic creep cannot be combined 
with Eq. (18).

The ACI 209 function (Eq. (18)) is used not because it 
would be realistic (it is not) but because it is the simplest to 
check the correctness of programming. For practical use in 
design, this function should be replaced by a realistic one.

In ABAQUS, the exponential algorithm is used in the user 
material subroutine (UMAT):

1. At t = t0, initialize the internal variables: gm
(0) = 0, J(t0, t0) 

= 1/E(t0), where t0 is the time when the first load is applied. 
Select tm = 10–7 + m (m = 1, 2, ···, 13);

2. Use Widder’s formula25-27 to calculate the continuous 
spectrum; also refer to Eq. (1)

( )
( ) ( )

( ) ( )

3 3 3
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3 41.2 0.6 0.6 0.6

/ 2.35

0.336 10 0.528 10

 0.432 10 1.296 10

cd d
− −− −

− −− −

= Y =

× + + +
+ + − + 

f x x g

x x x x
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where x = t – t′, L(tm) = 2.35gc(3tm)3Y(3tm)/2; gc is calculated 
using tn – 1/2;

3. Discretized spectrum; also refer to Eq. (2): A(tm) = L(tm)
ln10/E(tn – 1/2);

4. Calculate bm, lm, and Dm; refer to Eq. (6) and (7);
5. Calculate the effective modulus E″–1(tn – 1/2); refer to 

Eq. (8);
6. Obtain the creep strain increment matrix De″; refer to 

Eq. (9);
7. The stress-strain relation for this integration point is

( ) ( )1/2 ;nE t −= −′′ ′′Ds De DeD  refer to Eq. (10).

The loop repeats these calculations for all the integration 
points of all finite elements and supplies the stiffness and 
load matrixes of the incremental stress-strain relations for 
the assembly of the structural stiffness and load matrixes. 
Then, ABAQUS runs the incremental elastic finite element 
analysis; and

8. After retrieving the stress increments computed by 
ABAQUS, update for each finite element the internal vari-
ables g m

(n); refer to Eq. (11). Then begin the next time step, 
unless the lifetime has been reached.

Using gc = 1.25(t′)–0.118

( )28 / 4 0.85tE E t t= +

(where E28 = E at 28 days of age = 30 GPa [4350 ksi]), and 
uniaxial loading by s = 1 MPa (145 psi) applied at t0 = 
7 days, one should get: e = 4.92 × 10–5 = for t = 8 days, e = 
9.68 × 10–5 for t = 100 days, e = 0.00012 for t = 1000 days, 
and e = 0.000129 for t = 10,000 days. The ACI formula gives 
almost the same results; refer to Fig. 3.

COMPARISON WITH EXISTING COMMERCIAL 
DESIGN SOFTWARE PROGRAMS

Commercial programs, whose basic form was devel-
oped around 1980, are generally used for the creep design 
of prestressed box girder bridges. They include SOFiSTiK, 
SCIA-Engineer, InfoCAD, and RSTAB/RFEM software 
(distributed by the Ingenieur-Software Dlubal GmbH, 
Germany).46-49 The material creep and shrinkage model, 
typically the CEB Model, is embedded in these programs. 
In these programs, all the nonlinear, cracking, diffusion, 
cyclic creep, and drying effects are neglected. So are the 
environmental variations, heating of tendons, and relaxation 
affected by concrete strain. An example of such a commercial 
code is SOFiSTiK, which is the only program used herein. 
Therefore, the conclusions that follow are verified only for 
SOFiSTiK, although they probably apply to the aforemen-
tioned other similar software programs. For 1-D analysis, 
in which the box girder is represented by beam elements, 
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the creep is modeled by linear aging viscoelasticity, which 
is implemented in the primitive form of an integral-type 
creep law (as introduced for nuclear reactor structures 
before 1970). The memory integrals are numerically inte-
grated step by step from the complete stress history of each 
beam element, which increases the demands on computer 
time and storage. This fact, and the need to investigate many 
load cases and combinations, are probably the reasons why, 
despite the availability of two-dimensional (2-D) and 3-D 
finite elements, SOFiSTiK does not use the memory inte-
grals in combination with these elements. Rather, in the case 
of 2-D or 3-D elements, SOFiSTiK uses a simple quasi-
elastic algebraic analysis based on a one-step incremental 
elastic relation of the following uniaxial form

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1, , ,sht t E t t t t t t t t − = − −′′  s s e f e e
	

(20)

where s, e is axial stress and strain; t1 is the age of concrete 
at load application; t is current age; e(t1) is initial elastic 
strain at t1; f(t, t1) and esh are creep coefficient and shrinkage 
strain, respectively, as specified by the 1990 CEB Model 
Code; and E″(t, t1) is the incremental Young’s modulus for 
the entire period from t1 to t. According to the 1967 Trost 
method,50 E″ = E28/(1 + rf), where r is Trost’s so-called 
relaxation coefficient, typically taken as 0.8.

But r and E28 do not take into account the creep aging. 
This effect can be captured by the age-adjusted effective 
modulus (AAEM) method,20,23,24,51 in which E28 is replaced 
with E(t) and r with aging coefficient c, as shown in 1972 by 
Bažant.51 The AAEM has been endorsed since 1982 by 

ACI Committee 209 and since 1990 by the CEB Model 
Code, yet no update has been made in SOFiSTiK (nor 
RSTAB/RFEM or InfoCAD).

By virtue of taking the aging into account, the errors of 
the AAEM for loads applied at a young age (which is a 
typical situation for box girder segments) are significantly 
smaller, compared to the exact linear viscoelastic solutions, 
than the errors of the Trost method.24,52 The AAEM often 
gives surprisingly good estimates of the linear aging visco-
elastic solutions in simple beam structures. However, even 
if SOFiSTiK switched to AAEM, much larger errors due to 
the use of quasi-elastic analysis for multi-dimensional finite 
elements and of pure linear viscoelasticity for 1-D beam 
elements would still remain.

Although the major source of error in a program such as 
SOFiSTiK is the embedded CEB creep model, one must 
accept this model to isolate other errors through numerical 
examples. The first example is a freestanding plain concrete 
column under uniaxial compression. The relevant concrete 
properties are fc28 = 30 MPa (4350 psi) (which gives E28 = 
31,008 MPa [4496.2 ksi] according to the CEB formula) and 
an environmental humidity h = 70%. The first compressive 
stress s (1) = 1 MPa (145 psi) is applied at t0 = 7 days and 
subsequently additional compressive stresses s (i) = 1 MPa 
(145 psi) (i = 2, 3, ···, 12) are applied every 7 days. It is 
found that, in this example, the integral-type algorithm of 
SOFiSTiK predicts the creep deformations accurately 
enough. The deviations from the exact analytical solution 
and the present algorithm are barely distinguishable (Fig. 3).

The second example is the ill-fated KB Bridge in Palau. 
The information about this bridge can be found in investiga-
tion reports and recent studies.1-3,6,7,18,53 To explain the unex-
pected huge deflection, a comprehensive investigation of this 

Fig. 3—Left: simulation results by ABAQUS compared with ACI formula; and right: results 
for elementary example of freestanding column, in which curves show comparison of creep 
analysis results obtained with present rate-type algorithm and integral-type algorithm run in 
commercial program SOFiSTiK. (Note: 1 m = 3.28 ft; 1 GPa = 145 ksi; 1 mm = 0.0394 in.)
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bridge was carried out at Northwestern University3,6,7; refer 
also to Fig. 4. By applying the present rate-type algorithm to 
3-D analysis, the long-term deflections have been computed 
for different creep and shrinkage models, as plotted in 
Fig. 4 with respect to the end of construction. As seen in 
the figure, such analysis based on Model B3 can match the 
measured deflection very well, provided the creep parame-
ters are calibrated by the long-term creep tests of Brooks11,12; 
refer to B3 (Set 2) in Fig. 4.

Unlike the rate-type analysis with ABAQUS, SOFiSTiK 
uses a simplified approach with 45 nodes and 44 beam 
elements corresponding to the segmental construction2,3,6,7; 
refer to Fig. 4. The prestressing system is modeled 
by 44 tendon groups consisting of six to 40 individual 32 mm 
(1.25 in.) diameter threaded alloy bars with 1030 MPa 
(150 ksi) nominal tensile strength, which are assumed to 
be located in the center of the top slab. The jacking force 
for each tendon is 600 kN (135 kips) with 5% of initial 
prestress loss. According to the design specifications, the 
28-day concrete properties are fc′ = 35.9 MPa (5207 psi) 
and Ec = 28.3 GPa (4105 ksi). The pier and foundation are 
substituted by an idealized vertical spring of kz = 1.42 × 
108 kN/m (9.73 × 106 kip/ft) and a rotational spring of km,y 
= 1.42 × 109 kN-m/rad (1.05 × 109 kip-ft/rad). The CEB 
Model 199054 is used not only for concrete creep but also for 
steel relaxation. The steel relaxation evolution is handled in 
SOFiSTiK either by a fixed 1000-hour relaxation factor or, 
as chosen in this example, by the stress-dependent quadratic 
function according to the CEB Model Code 1990,54 inter-
polated from three points: 2% at 0.60fpk, 4% at 0.70fpk, 
and 6.67% at 0.80fpk, where fpk is the characteristic tensile 
strength of the prestressing tendons. Although the actual 
calculations in SOFiSTiK are a black box, the specified 
quadratic CEB relaxation function in itself is not a good 
approximation for multi-decade relaxation.40 For the creep 

and shrinkage analysis, the age at start of drying is taken as 
t0 = 7 days, which is also the assumed segmental erection 
cycle. The average environmental humidity is h = 0.70. In 
each erection cycle, one segment, including its dead load, is 
added and prestressed at the end of the 7-day period.

The linear viscoelastic analysis of the KB Bridge in 
SOFiSTiK (modeled as beam) predicts substantially less 
deflection than the recorded measurements, which are 
represented by the diamonds in Fig. 4. Furthermore, when 
compared with the rate-type 3-D analysis, which uses the 
same CEB model, SOFiSTiK also substantially underpre-
dicts the creep deflection. The integral-type algorithm used 
in this calculation gives a deflection of only approximately 
79% of the value predicted by the CEB Model Code when 
applied in the ABAQUS 3-D analysis, which itself underes-
timates the observed creep deflections by a factor of approxi-
mately 1/3; refer to Fig. 4.

Even if the viscoelastic analysis and finite element simu-
lation were perfect, SOFiSTiK and similar design software 
programs cannot correctly simulate the nonlinear evolution 
of viscoplastic steel relaxation at variable strain, the varia-
tions of temperature and humidity, and the nonlinear effects 
of cracking and cyclic loading (although a correction for 
cracking can, of course, be made in a time step; this would 
be incorrect in combination with memory integrals for creep 
because the cracking has no delayed memory). The effects 
of wall thickness differences among the top slab, walls, and 
bottom slab on the drying creep and shrinkage can only be 
captured by more refined models using a rate-type creep law 
and 2-D or 3-D finite elements.

SUMMARY AND CONCLUSIONS
1. Although many ingredients of the present algorithm 

have been developed separately—some of them long 
ago19,22,24,27,29-31,33,34,55—this paper combines them into one 
comprehensive algorithm, gives the previously missing 
details needed for programming, and incorporates into the 

Fig. 4—Comparison of simulation results of KB Bridge by rate-type 3-D analysis and 
SOFiSTik. (Note: 1 m = 3.28 ft.)
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algorithm two innovations: 1) the method of continuous 
retardation spectrum, adapted for creep prediction models 
other than those based on the solidification theory (that is, 
other than Model B3)3; and 2) the dependence of prestressing 
steel relaxation on temperature and the variation of strain, 
based on the theory of viscoplasticity of metals.

2. While the previously developed ingredients of the 
formulation have been used mainly in research studies of 
nuclear containments, reactor vessels, and segmental box 
girders, herein they are amalgamated into one comprehen-
sive algorithm intended for creep-sensitive design.

3. The recent compilation of data on excessive deflections 
of numerous bridges8-10 and the detailed analysis of some of 
them3,6,7 reveal that the creep analysis based on a rate-type 
creep law, which can capture various nonlinear and drying 
effects, as well as a complex evolution of the loading and 
structural system, is a necessity for all large structures of 
high creep sensitivity if serviceability and lifetimes in excess 
of 20 to 40 years are to be ensured.

4. Evaluation of the existing commercial software 
programs reveals that they strongly underestimate the effects 
of multi-decade creep in large-span prestressed bridges (and 
probably in columns of tall buildings as well). Except for 
possible cases of deliberate overdesign and special deflection 
mitigating measures, a continued use of such outdated soft-
ware would likely compromise the durability of structures. A 
major update of this software is requisite. For smaller-span 
structures dominated by live load, the use of this software 
is likely harmless but also superfluous—a much simpler 
analysis based on the effective (or sustained) modulus for 
creep would suffice.
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APPENDIX—PRESTRESSING STEEL 
RELAXATION AT VARIABLE STRAIN  

AND TEMPERATURE
In Eq. (17), developed in Bažant and Yu,40 the viscoplastic 

strain is defined by
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Herein, k, c, r0, and h are positive empirical constants for 
the given steel; and r0 is an empirical function of e(t). For oil-
tempered wire (OT Series in Magura et al.41), r0 = 0.34 and 
h = 0.01. At constant strain, F(e) = s0 = initial prestress; T(t) 
is absolute temperature; T0 = 298 K; and Q/kB ≈ 14,600 K43 
(kB = Boltzmann constant). Furthermore, Et = tangential 
modulus = initial E-modulus if the prestress is within linear 
range; sp = F(e) = short-time stress-strain curve and, for 
linear range, F(e) = Ee; fy′ is the yield strength (1% offset); 
g fy′ is the threshold below which there is no relaxation 
(safely g = 0.45, although often g = 0.55); x = F(e)/fy′ – g ; 
k, c are the empirical exponents40; and the initial relaxation 
curve s0 – s ∝ tk (k = 0.08, but the CEB Model Code gives 
different values for different steels; c ≈ 2).
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