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a b s t r a c t

The sorption–desorption hysteresis observed in many nanoporous solids, at vapor

pressures low enough for the liquid (capillary) phase of the adsorbate to be absent, has

long been vaguely attributed to some sort of ‘pore collapse’. However, the pore collapse

has never been documented experimentally and explained mathematically. The present

work takes an analytical approach to account for discrete molecular forces in the

nanopore fluid and proposes two related mechanisms that can explain the hysteresis at

low vapor pressure without assuming any pore collapse nor partial damage to the

nanopore structure. The first mechanism, presented in Part I, consists of a series of

snap-through instabilities during the filling or emptying of non-uniform nanopores or

nanoscale asperities. The instabilities are caused by non-uniqueness in the misfit

disjoining pressures engendered by a difference between the nanopore width and an

integer multiple of the thickness of a monomolecular adsorption layer. The wider the

pore, the weaker the mechanism, and it ceases to operate for pores wider than about

3 nm. The second mechanism, presented in Part II, consists of molecular coalescence, or

capillary condensation, within a partially filled surface, nanopore or nanopore network.

This general thermodynamic instability is driven by attractive intermolecular forces

within the adsorbate and forms the basis for developing a unified theory of both

mechanisms. The ultimate goals of the theory are to predict the fluid transport in

nanoporous solids from microscopic first principles, determine the pore size distribu-

tion and internal surface area from sorption tests, and provide a way to calculate the

disjoining pressures in filled nanopores, which play an important role in the theory of

creep and shrinkage.

& 2012 Published by Elsevier Ltd.

1. Introduction

The sorption isotherm, characterizing the isothermal dependence of the adsorbate mass content on the relative vapor
pressure at thermodynamic equilibrium, is a basic characteristic of adsorbent porous solids. It is important for estimating
the internal pore surface of hydrated Portland cement paste and other materials. It represents the essential input for
solutions of the diffusion equation for drying and wetting of concrete, for calculations of the release of methane from coal
deposits and rock masses, for the analysis of sequestration of carbon dioxide in rock formations, etc. Its measurements
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provide vital information for determining the internal surface of nanoporous solids (Powers and Brownyard, 1946;
Adolphs and Setzer, 1996; Jennings, 2000; Adolphs et al., 2002; Espinosa and Franke, 2006; Baroghel-Bouny, 2007).

An important feature of sorption experiments with water, nitrogen, alcohol, methane, carbon dioxide, etc. has been a
pronounced hysteresis, observed at both high and low vapor pressures and illustrated by two classical experiments in
Fig. 1c and d; in Powers and Brownyard (1946, p. 277) and Feldman and Sereda (1964) (see also, e.g. Feldman and Sereda,
1968; Rarick et al., 1995; Adolphs et al., 2002; Espinosa and Franke, 2006; Baroghel-Bouny, 2007). For adsorbates that exist
at room temperature in a liquid form, e.g. water, the room temperature hysteresis at high vapor pressures near saturation
has easily been explained by non-uniqueness of the surfaces of capillary menisci of liquid adsorbate in larger pores (e.g.,
the ‘ink-bottle’ effect Brunauer, 1943).

However, a liquid (capillary) water can exist in the pores only if the capillary tension under the meniscus (which is
given by the Kelvin–Laplace equation) does not exceed the tensile strength of liquid water, which is often thought to be
exhausted at no less than 45% of the saturation pressure, if not much higher. Anyway, at vapor pressures less than about
80% of the saturation pressure, the liquid phase represents a small fraction of the total evaporable water content of calcium
silicate hydrates (C–S–H) (Jennings, submitted for publication); see Fig. 1a.

For more than 60 years, the hysteresis in the range of low vapor pressures (lower than about 80% of saturation in the
case of C–S–H) has remained a perplexing and unexplained feature. In that range, most or all of the adsorbate is held by
surface adsorption. The gases and porous solids of interest generally form adsorption layers consisting of several
monomolecular layers (Fig. 1b). The multi-layer adsorption is described by the BET isotherm (Brunauer et al., 1938)
(Fig. 1b), which is reversible. Sorption experiments have generally been interpreted under the (tacit) hypothesis of free
adsorption, i.e., the adsorption in which the surface of the adsorption layer is exposed to gas.

In nanoporous solids, though, most of the adsorbate is in the form of hindered adsorption layers, i.e., layers confined in
the nanopores which are sometimes defined as pores r2 nm wide (Balbuena et al., 1993). For instance, 1 cm3 of hardened
Portland cement paste contains the internal surface of about 500 m2. The total porosity is typically about 50%, with the
large capillary pores occupying about 15% and the nanopores about 35% of the material volume. So, the average width of
nanopores is about 0.35 cm3/500 m2

¼0.7 nm, which is about three water molecular diameters. The hindered adsorbed
layers in such nanopores have no surface directly exposed to vapor and communicate with the vapor in macropores by
diffusion along the layer. It has been well known that a large transverse stress, called the disjoining pressure (Derjaguin,
1940) (or solvation pressure Balbuena et al., 1993), must develop in these layers.

Fig. 1. (a) Typical desorption and sorption isotherms; (b) BET isotherm; (c) and (d) desorption and sorption isotherms measured on hardened Portland

cement paste.
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Development of the theory of hindered adsorption for concrete was stimulated by Powers’ general ideas of the creep
mechanism (Powers, 1966). Its mathematical formulation for C–S–H gradually emerged in Bažant (1970a, 1970b, 1972a,
1972b), and was reviewed in a broad context in Bažant (1975). But this theory of hindered adsorption is also reversible.
Thus, although a theory exists, it cannot explain the hysteresis.

The sorption hysteresis in hardened Portland cement paste, concrete and various solid gels (Scherer, 1999; Jennings
et al., 2008) has for decades been vaguely attributed to some sort of changes of the nanopore structure. In particular, it was
proposed that the exit of water, called the interlayer water, from the narrowest nanopores would somehow cause the
pores to collapse (Feldman and Sereda, 1968; Espinosa and Franke, 2006; Baroghel-Bouny, 2007; Thomas et al., 2008) (see
Rarick et al., 1995, Figs. 13 and 16, Espinosa and Franke, 2006, Fig. 1, or Jennings, submitted for publication, Fig. 9),
picturing hypothesized pore width changes of the order of 100%.

However, if a mathematical model of such a mechanism is attempted, it inevitably predicts enormous macroscopic
deformations, far larger than the observed shrinkage caused by drying. For example, measurements on the hardened
cement paste reveal desorption and sorption isotherms (Fig. 1) in which the water contents w for the same humidity h

differ by 50% or more. As before, consider that the nanopores represent 35% of the total volume of material. Thus, if the 50%
difference in w were totally due to collapsing nanopores, the relative volume change in the material would have to be
about 0.35�0.50¼0.175. This means that the pore collapse would have to cause a linear shrinkage of about 0:175=3� 6%.
But the typical drying shrinkage of hardened cement pastes is one to two orders-of-magnitude smaller. Although the
results of a more accurate analysis could differ by a factor of up to about 2, there is no way the hypothesis of pore collapse
could be quantitatively reconciled with the shrinkage observations.

Another objection to the pore collapse hypothesis is that the isotherm for second desorption is much closer to that for
first desorption than to that for first sorption. If this hypothesis was true, then the pores would have to get somehow
reconstructed prior to the second desorption. So, the pore collapse hypothesis is untenable (and so is the use of this
hypothesis for explaining the increase in creep of concrete due to simultaneous drying: Feldman and Sereda, 1968).

Another idea, qualitatively inferred from environmental scanning electron microscope studies (Hall et al., 1995), was to
explain the hysteresis in cement pastes by new hydration of unreacted remnants of cement grains and the associated
swelling which would be encroaching into the pore space and also causing pore wall damage. But how could one then
explain that the second desorption isotherm is close to the first (Powers and Brownyard, 1946; Baroghel-Bouny, 2007)?
Surely one cannot expect the grains to reversibly dehydrate during wetting sorption, and the pore wall damage to get
repaired. Besides, in bulk, no measurable cement hydration takes place at pore humidities below about 0.70–0.85.

Here it will be shown that sorption hysteresis must occur even if the nanopore structure does not change. The main
message of this work is that the number of molecular layers of adsorbate that can be confined in a nanopore is not unique,
and that this non-uniqueness inevitably causes sorption hysteresis.

Non-uniqueness is also a salient feature of capillarity of liquid water in larger pores, typically of micrometer
dimensions. In the capillary range, the non-uniqueness is classically explained by the afore-mentioned ‘ink-bottle’ effect,
which exists even in two dimensions. In three dimensions, there is much broader range of topological and geometrical
configurations which provide a richer and more potent source of non-uniqueness of liquid adsorbate content.

The simplest demonstration is a regular cubic array of identical spherical particles separated by a small gap d between
each pair. At h¼1, either all the pore space can be filled by a liquid, or an anticlastic meniscus surface of a zero total
curvature r�1 ¼ r�1

1 þr�1
2 ¼ 0 and of a liquid pressure equal to ps can exist between each two spheres, with r1 ¼�r2 and

r1,r2 ¼ principal curvature radii (the surface near the symmetry line of the pair of spheres is a rotational hyperbolic
paraboloid). Such effects can explain 100% differences among equilibrium liquid contents w at h¼1 observed in some
experiments. It can even be shown that when both d and r1 (with r2 ¼�r1) approach zero in a certain way, then also the
liquid content (as a continuum) approaches 0 (thus, in theory, an arbitrarily small but non-zero equilibrium liquid content
at h¼1 is possible, though extremely unlikely).

This three-dimensional picture, for example, explains why the non-uniqueness of sorption isotherm extends to h41
(as shown in Fig. 1a by dashed lines); here h¼ pv=psðTÞ is the relative vapor pressure, or relative humidity in the case of
water, pv is the pressure of vapor or gas; and ps(T) is the saturation vapor pressure). For h41, the vapor pressure pv4ps,
the total curvature of the menisci is changed from positive to negative, the pores contain overpressurized vapor, and the
hysteresis, or non-uniqueness, continues (Bažant and Thonguthai, 1978; Bažant and Kaplan, 1996). This non-uniqueness
and hysteresis explains why the slope of the isotherm for h41 is one, or even two, orders of magnitude higher than one
would calculate if all the water were liquid for h41 (in theory, this non-uniqueness can extend up to the critical point of
water). In cements these phenomena are complicated by the fact that the chemical reactions of hydration withdraw some
water from the pores, and create self-desiccation bubbles (thus one can practically never have concrete with no vapor,
even for pv4ps).

The consequence of the non-uniqueness is that the sorption isotherm is not a function but a functional of the entire
previous history of adsorbate content. Here we will show that the functional character extends to the range of hindered
adsorption in nanopores.

The recent advent of molecular dynamic (MD) simulations is advancing the knowledge of nanoporous solids and gels or
colloidal systems in a profound way (Pellenq et al., 2010; Coasne et al., 2008a, 2008b, 2009; Jönson et al., 2004, 2005;
Smith et al., 2006; Malani et al., 2009; Vandamme et al., 2010). Particularly exciting have been the new results by Rolland
Pellenq and co-workers at the Concrete Sustainability Hub (CSH) in MIT led by Franz-Josef Ulm (Bonnaud et al., 2010;
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Brochard et al., 2011, 2012). These researchers used numerical MD simulations to study sorption and desorption in
nanopores of coal and calcium silicate hydrates. Their MD simulations (Bonnaud et al., 2010, Figs. 3 and 4) demonstrated
that the filling and emptying of pores 1 and 2 nm wide by water molecules exhibits marked hysteresis.

Especially revealing is the latest article of Pellenq et al. from MIT (Brochard et al., 2011). Simulating a chain of
nanopores, they computed the distributions of disjoining (or transverse) pressure and found that it can alternate between
negative (compressive) and positive (tensile), depending on the difference of pore width from an integer multiple of the
natural thickness of an adsorbed monomolecular layer (see Brochard et al., 2011, Figs. 14 and 11). This discrete aspect of
disjoining pressure, which cannot be captured by continuum thermodynamics, was a crucial finding of Pellenq et al. which
stimulated the mathematical formulation of snap-through instabilities in Part I of this work. Oscillations between positive
and negative disjoining pressures have also been revealed by density functional theory simulations of colloidal fluids or
gels in Balbuena et al. (1993) (where the excess transverse stress is called the ‘solvation pressure’ rather than the
disjoining pressure).

Nanoscale oscillations of the disjoining (or solvation) pressure have also been observed in the MD simulations of
nitrogen molecules in rough slit-shaped carbon nanopores (using for carbon the quenched solid density functional theory)
(Yang et al., 2011). It was concluded that the surface roughness damps these oscillations. This phenomenon may be
important for the meso- or macroscale residual stresses and creep in C–S–H but, as argued here, not for the sorption
isotherms that are dominated by dynamic snap-throughs.

This work is organized as follows. In Part I, we begin by summarizing the classical theory of multi-layer adsorption on
free surfaces by Brunauer, Emmett and Teller (BET) (Brunauer et al., 1938), which is widely used to fit experimental data,
but assumes reversible adsorption without any hysteresis. We then develop a general theory of hindered adsorption in
nanopores which accounts for crucial and previously neglected effects of molecular discreteness as the pore width varies.
This leads us to the first general mechanism for sorption hysteresis, snap-through instability in non-uniform pores, which
is the focus of this Part I.

In Part II which follows (Bazant and Bažant), we show that the attractive forces between discrete adsorbed molecules
can also lead to sorption hysteresis by molecular condensation in arbitrary nanopore geometries, including perfectly flat
surfaces and pores. This second mechanism of hysteresis is a general thermodynamic instability of the homogeneous
adsorbate that leads to stable high-density and low-density phases below the critical temperature. The mathematical
formulation of Part II is thus based on non-equilibrium statistical mechanics. But here, in Part I, we begin to build the
theory using more familiar models from solid mechanics and continuum thermodynamics.

2. Continuum thermodynamics of hindered adsorption in nanopores

Free adsorption: When a multi-molecular adsorption layer on a solid adsorbent surface is in contact with the gaseous
phase of the adsorbate, the effective thickness a of the layer is well described by the BET equation (Brunauer et al., 1938,
Eq. (28))

Y¼
a

s0
¼

Gw

G1
¼

1

1�h
�

1

1�hþcT h
, cT ¼ c0eDQa=RT ð1Þ

where T is the absolute temperature, Gw is the mass of adsorbate per unit surface area; G1 is the mass of one full molecular
monolayer per unit area, Y is the dimensionless surface coverage, h is the relative pressure of the vapor in macropores
with which the adsorbed water is in thermodynamic equilibrium, R is the universal gas constant (8314 J kmole�1 K�1),
c0 is the constant depending on the entropy of adsorption, DQa is the latent heat of adsorption minus latent heat of
liquefaction, s0 is the effective thickness of a monomolecular layer of the adsorbate, a is the effective thickness of the free
adsorption layer in contact with vapor (Fig. 1b), which attains saturation at the maximum thickness of about five
monolayers.

Powers (1965), using the BET isotherm, estimated in 1965 that a monomolecular water adsorption layer in cement
paste was complete at h¼12% and a bimolecular one at 51%. This would imply that cT � 54, which is the value used in the
plot of BET isotherm in Fig. 1b. However, because of the new phenomena discussed here and in Part II which follows
(Bazant and Bažant), this estimate of cT is likely to be far too high.

Eq. (1) can be easily inverted

h¼ hðaÞ ¼ Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
þB

q
ð2Þ

where

A¼
BcT

2
1�

s0

a

� �
, B¼

1

cT�1
ð3Þ

Hindered adsorption: Consider now a pore with planar rigid adsorbent walls parallel to the coordinates x and z, and a
width 2y that is smaller than the combined width 2a of the free adsorption layers at the opposite walls given by Eq. (1).
Then, the adsorbate has no surface in contact with the vapor and full free adsorption layers are prevented from building up
at the opposite pore walls, i.e., the adsorption is hindered and a transverse pressure, pd, called the disjoining pressure
(Derjaguin, 1940), must develop. For water in C–S–H, which is highly hydrophillic, the adsorption layers can be up to 5
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molecules thick, and so hindered adsorption can exist only in pores less than 10 molecules wide (2yo2:6 nm). Here in Part
I we deal solely with pores of such width. The hindered adsorption with disjoining pressure will develop when h is high
enough to fill the pore. The hindered adsorbate communicates by diffusion along the pore with the vapor in an adjacent
macropore.

In a process in which thermodynamic equilibrium is maintained, the chemical potentials m of the vapor and its
adsorbate, representing the Gibbs’ free energy per unit mass, must remain equal. So, under isothermal conditions

dm¼ r�1
a ðd ~pdþ2dpaÞ=3¼ r�1

v dpv ð4Þ

here r is the mass density of the vapor and ra is the average mass density of the adsorbate (which probably is, in the case
of water, somewhere between the mass density rw of liquid water and ice). The superscript ~ is attached to distinguish the
disjoining pressure obtained by continuum analysis from that obtained later by discrete molecular considerations ( ~pd ¼ 0
if the nanopore is not filled because the transverse pressure due to water vapor is negligible); pa ¼ pa=y is the in-plane
pressure in the adsorption layer averaged through the thickness of the hindered adsorption layer; it has the dimension of
N/m2, and (in contrast to stress) is taken positive for compression; pa is the longitudinal spreading ‘pressure’ in the
adsorption half-layer of thickness y (here the term ‘pressure’ is a historically rooted misnomer; its dimension is not
pressure, N/m2, but force per unit length, N/m); pa is superposed on the solid surface tension gas, which is generally larger
in magnitude, and so the total surface tension, g¼ gs�pa, is actually tensile (see Bažant, 1972a, Fig. 2) (thus the decrease in
spreading pressure with decreasing h causes an increase in surface tension, which is one of the causes of shrinkage).

Further note that if pd and pa were equal, the left-hand side would be dm¼ r�1
a dpd, which is the standard form for a

bulk fluid. Also, in contrast to solid mechanics, the left-hand side of Eq. (4) cannot be written as Ey dpdþ2Ex dpa because
strains Ex and Ey cannot be defined (since the molecules in adsorption layers migrate and the difference between pd and pa

is caused by the forces from solid adsorbent wall rather than by strains).
Consider now that the ideal gas equation pvr�1

v ¼ RT=M applies to the vapor (M¼molecular weight of the adsorbate;
e.g., for water M¼18.02 kg/kmole). Upon substitution into Eq. (4), we have the differential equation

for hrhf : r�1
a dpa ¼ ðRT=MÞ dpv=pv ð5Þ

for h4hf : r�1
a ðd ~pdþ2 dpaÞ=3¼ ðRT=MÞ dpv=pv ð6Þ

where hf is the value of h at which the nanopore of width 2y gets filled, i.e., hf ¼ hðyÞ based on Eq. (2). Factors 2 and 3 do not
appear for hohf because the free adsorbed layer can expand freely in the thickness direction. Integration of Eq. (4) under
the assumption of constant ra yields

for hrhf : pa ¼
pa

y
¼ ra

RT

M
ln h ð7Þ

for h4hf : ~pdþ2ðpa�paf Þ ¼ 3ra

RT

M
ln

h

hf
ð8Þ

where paf ¼ paðhf Þ is the longitudinal pressure when the nanopore just gets filled, i.e., when a¼y.
It is now convenient to introduce the ratio of the increments of in-plane and disjoining pressures

k¼ dpa=d ~pd ð9Þ

which we will call the disjoining ratio. If the adsorbate was a fluid, k would equal to 1. Since it is not, ka1. The role of k is
analogous to the Poisson ratio of elastic solids. A rigorous calculation of k would require introducing (aside from surface
forces) the constitutive equation relating pa and pd (this was done in Bažant and Moschovidis (1973), but led to a complex
hypothetical model with too many unknown parameters).

We will consider k as constant, partly for the sake of simplicity, partly because (as clarified later) k is determined by
inclined forces between the pairs of adsorbate molecules (Fig. 3b and c); k should be constant in multi-molecular layers
because the orientation distribution of these forces is probably independent of the nanopore width. Note that k would be
equal to 0 only if all these intermolecular forces were either in-plane or orthogonal (as in a rectangular grid, Fig. 3a).

For constant disjoining ratio k, we may substitute pa ¼ k ~pd in Eq. (8), and we get

~pd ¼
ra

1þ2k
RT

M
ln

h

hf
ð10Þ

For k¼ 0, this equation coincides with Eq. (29) in Bažant (1972a) but, in view of Fig. 3, a zero k must be an
oversimplification.

According to this continuum model of hindered adsorption, which represents a minor extension of Bažant (1972a), the
sorption isotherm of the adsorbate mass as a function of vapor pressure would have to be reversible. However, many
classical and recent experiments (Powers and Brownyard, 1946; Feldman and Sereda, 1964; Rarick et al., 1995; Espinosa
and Franke, 2006; Baroghel-Bouny, 2007) as well as recent molecular simulations (Bonnaud et al., 2010; Brochard et al.,
2011, 2012) show it is not. Two mutually related mechanisms that must cause sorption irreversibility in nanopores with
fixed rigid walls will be presented, one here in Part I, and one in Part II which follows (Bazant and Bažant).
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3. Mechanism I: snap-through instability

The local transverse (or disjoining) pressure pd can be determined from the transverse stiffness Cn, defined as
Cn ¼DF=Ds, where DF is the transverse resisting force per molecule and Ds is the change of spacing (or distance) between
the adjacent monomolecular layers in a nanopore containing n monomolecular layers of the adsorbate. Since large changes
of molecular separation are considered, Cn varies with s and should be interpreted as the secant modulus in the force–
displacement diagram (Fig. 2b). For this reason, and also because many bond forces are inclined (‘lateral interactions’
(Nikitas, 1996; Cerofolini and Meda, 1998a, 1998b)) rather than orthogonal with respect to the adsorption layer (shown by
the bars in Fig. 3), Cn is generally the same as neither the second derivative d2F=dr2 of interatomic potential nor the first
derivative dF=ds of force F (Fig. 2a and b).

To estimate Cn, one could consider various idealized arrangements of the adsorbate molecules (as depicted two-
dimensionally for two different pore widths 2y in Fig. 3) and thus obtain analytical expressions for Cn based on the classical
mechanics of statically indeterminate elastic trusses. However, in view of all the approximations and idealizations, it
makes no sense to delve into these details.

Diverging nanopore: Consider now a wedge-shaped nanopore between two diverging planar walls of the adsorbent
(Fig. 4a), having the width of 2y, where y¼ kx. Here x is the longitudinal coordinate (Fig. 4), k is the constant (wedge
inclination) and s0 is the effective spacing of adsorbate molecules at no stress. In the third dimension, the width is
considered to be also s0. The adsorbate molecules are mobile and at the wide end (or mouth) of the pore they communicate
with an atmosphere of relative vapor pressure h in the macropores.

Fig. 2. (a) Interatomic pair potential; (b) the corresponding interatomic force and secant stiffness; and (c) interatomic forces between opposite pore walls

visualized by springs.

Fig. 3. Various simple idealized molecular arrangements between the walls of a nanopore.
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We assume the hindered adsorbed layer to be in thermodynamic equilibrium with the vapor in an adjacent macropore.
This requires equality of the chemical potentials m per molecule (m ¼ m=M, the overbar being used to label a quantity per
molecule). At the front of the portion of the nanopore filled by adsorbate, henceforth called the ‘filling front’ (marked by
circled 2, 3 or 4 in Fig. 4), Eq. (10) of continuum thermodynamics gives a zero transverse pressure, ~pd ¼ 0, and so
m ¼ ma ¼ mv.

However, in the discrete treatment of individual molecules, the chemical potential can be altered by transverse tension
or compression Dpd (Fig. 4), which can develop at the filling front and act across the monomolecular layers unless the
nanopore width 2y at the filling front happens to be an integer multiple of the unstrained molecular spacing s0. We will
call Dpd the ‘misfit’ (part of) disjoining (or transverse) pressure, by analogy with the misfit strain energy for a dislocation
core in the Peierls–Nabarro model (Hirth and Lothe, 1992).

The misfit pressure, which, at the filling front, represents the total transverse pressure (or stress), is determined by the
average change Ds of spacing s between adjacent monomolecular layers, which is

Ds¼ 2kx=n�s0 ðn¼ 1;2,3, . . .Þ ð11Þ

where n is the number of monomolecular layers across the nanopore width and s0 is the natural spacing between the
adjacent monomolecular layers in free adsorption, i.e., when the transverse stress vanishes (note that for the triangular
arrangements in Fig. 2b and c, s0 is obviously less than the natural spacing of unstressed adsorbate molecules, shown as s0

in Fig. 2a). So, the force between the molecules of the adjacent layers is F ¼ CDs and the strain energy of the imagined
springs connecting the molecules is FDs=2 or CðDsÞ2=2 per molecule (if, for simplicity, a loading along the secant is
considered).

The hindered adsorbed layer is in a multiaxial stress state, for which the total strain energy is the sum of the strain
energies of the strain components. Since continuum thermodynamics gives zero disjoining (transverse) pressure pd at the
filling front, it suffices to add to CnðDsÞ2=2 the chemical potential ma per molecule at the filling front due to longitudinal
pressure pa only. So, in view of Eq. (10), the chemical potential per molecule at the filling front xn

f
with n monomolecular

Fig. 4. Filling of a continuously diverging nanopore and disjoining pressures.
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layers is

mf ,n ¼
Cn

2

2kxf

n
�s0

� �2

þma ð12Þ

where again the overbar is a label for the quantities per molecule. Since ~pd ¼ 0 at the filling front xn, the only source of mn is
the longitudinal spreading pressure pa in the adsorption layer.

Let us now check whether at some filling front coordinate xn (Fig. 4) the diverging nanopore is able to contain either n

or nþ1 monomolecular layers with the same chemical potential per molecule. For nþ1 layers

mf ,nþ1 ¼
Cn

2

2kx

nþ1
�s0

� �2

þma ð13Þ

Setting mn ¼ mnþ1, we may solve for x. This yields the critical coordinate and critical pore width for which the molecules in
n and nþ1 monomolecular layers have the same chemical potential per molecule:

xn

f ,n ¼

ffiffiffiffiffiffi
Cn

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
Cnþ1

p
1

n

ffiffiffiffiffiffi
Cn

p
þ

1

nþ1

ffiffiffiffiffiffiffiffiffiffiffi
Cnþ1

p s0

2k
, yn

f ,n ¼ 2kxn

f ,n ð14Þ

So, the critical relative pore width 2yn

f =s0 at the filling front is a weighted harmonic mean of n and nþ1 (and a simple
harmonic mean if Cn ¼ Cnþ1).

Equality of the chemical potentials per molecule at the filling front for n and nþ1 monomolecular layers in the same
nanopore, which occurs for the pore width given by Eq. (14), implies that no energy needs to be supplied and none to be
withdrawn when the number of monomolecular layers is changed between n and nþ1. So, the equilibrium content of
hindered adsorbate in the nanopore for a given chemical potential of vapor is non-unique. Similar to non-uniqueness of
capillary surfaces, this non-uniqueness underlies the sorption–desorption hysteresis in the nanopores.

The possibility of non-uniqueness is evident from Fig. 2. For the same value of potential F, there are two states with
different molecular separations s1 and s2, one corresponding to attraction (tension) and one to repulsion (compression), as
seen on the horizontal line intersecting the curve of F in Fig. 2. Note that the secant stiffness for compression must be
larger than it is for tension, which is a point neglected, for the sake of simplicity, in the foregoing calculation.

Misfit disjoining pressure: In view of Eq. (12), its value corresponding to mn for n monomolecular layers in the nanopore is

pd,n ¼ Cn s0�
2kxn

n

� �
þ ~pdðxnÞ ð15Þ

where ~pdðxnÞ, based on continuum thermodynamics, is non-zero if xnaxf ,n. In contrast to stress, the pressure is considered
as positive when compressive. Replacing n with nþ1, we find that the disjoining pressure makes a jump when the number
of monomolecular layers in the nanopore changes from n to nþ1

Dpd,n ¼ pd,nþ1�pd,n ¼ 2kxn
Cn

n
�

Cnþ1

nþ1

� �
þs0ðCnþ1�CnÞ ð16Þ

(see Fig. 4). At the filling front, the jump is from transverse tension to compression (Fig. 5c).
Eq. (16) shows that the sudden jumps Dpd,n of the misfit pressures from tension to compression diminish with

increasing n (n¼1,2,3,y), as the nanopore is getting wider; see Figs. 4d and 5c. Therefore, the wider the pore is, the less
effective the mechanism of snap-through instabilities is. It ceases to operate for pores of width n410, which are wider
than the combined maximum thicknesses of two opposite adsorption layers (about 3 nm).

Note that, since the changes Ds of molecular distance are large, the C values depend on F or Dpd (Fig. 2b). So, Eq. (16) is
actually a nonlinear equation for Dpd and its numerical solution would require iterations. But here we are aiming at
conceptual explanation rather than numerical results.

Misfit chemical potentials and their effect on sorption isotherm: The variation of chemical potential at the filling front xf is
shown in Fig. 5d. Since transverse tension at the filling front gives the same chemical potential as transverse compression
of equal magnitude, the misfit chemical potential, defined as the part of chemical potential due to pd at the filling front,
varies continuously, provided the pore width varies continuously, too; see Fig. 5d. This is because transverse tension gives
the same chemical potential as transverse compression of equal magnitude.

The total chemical potential at the filling front is obtained by adding the chemical potential maðxf Þ obtained from
continuum thermodynamics, which yields the potential variation in Fig. 5e. Considering the relation of filling front
coordinate xf to the adsorbate mass w shown (in a smoothed form) in Fig. 5b, and the relation h¼ eðM=RTÞmf , one can deduce
the solid curve in Fig. 5e representing the diagram of equilibrium states of mass content w versus relative vapor pressure h

in the macropore.
Why are the segments of the pressure variation in Fig. 5c linear, and why are the segments of the chemical potential

variation in Fig. 5d–f parabolic? The reason is that the variation of nanopore width has been idealized as linear (and that
the plots are made for constant C). These segments take different shapes for other width variations.

Sequential snap-throughs of adsorbate content: In sorption testing and most practical problems, the relative vapor
pressure h is the variable that is controlled, and the adsorbate mass w is the response. Consequently, the states at the
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reversal points 1, 3, 5, 7 of the equilibrium diagram in Fig. 5 for the diverging nanopore are unstable. Likewise, the states at
points 1, 3, 5, 7 in Fig. 6d for the nanopore of step-wise variable width. The loss of stability can be evidenced by checking
that the molecular potential loses positive definiteness. Fundamental though such checks may be, it is simpler and more
intuitive to argue in terms of infinitely small deviations dh from the equilibrium state.

Consider, e.g., that, in Fig. 5f or 6d, a sufficiently slow gradual increase of h has moved the equilibrium state from point
2 to point 3, which is a local maximum of h as a function of w. For a further infinitesimal increase dh, there is on the
equilibrium diagram no longer any point close to point 3. So, borrowing a term from structural mechanics (Bažant and
Cedolin, 1991), we realize that the adsorbate mass content w must dynamically ‘snap through’ at constant h along vertical
line 34 to point 4. After dissipating the energy released along segment 34 (the rate of which depends on the lingering times
of adsorbed molecules and diffusion along the hindered adsorbed layer; Bažant and Moschovidis, 1973), thermodynamic

Fig. 5. Misfit disjoining pressures and chemical potentials in a continuously diverging nanopore, with dynamic snap-throughs of adsorbate content.
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equilibrium is recovered at point 4. It is stable because a further infinitesimal increment of dh finds, next to point 4, an
equilibrium state with adsorbate content incremented by dw.

If h is increased slowly enough further, the equilibrium system will move from point 4 to point 5 at which a local
maximum of h is reached again and the loss of stability gets repeated, since a further increase dh can find equilibrium only
after a dynamic snap-through to point 6. Each snap-through will release some energy which must be damped and
dissipated by the system. So, the local maxima of h at points 1, 3, 5 and 7 are the critical states giving rise to the so-called
‘snap-through instability’ (Bažant and Cedolin, 1991). The equilibrium states on curved segments 1e2, 3c4 and 5a6 are
unstable and can never be reached in reality.

The salient feature is that a different path w(h) is followed when h is decreased. To show it, consider point 7 in Fig. 5f or
6d as the starting point. During a slow enough decrease h, the system will follow the stable states along segment 76a until
a local minimum of h is reached at point a, which is the stability limit. Indeed, if h is further decremented by dh, there is no
equilibrium state near point a. So, the equilibrium state a is unstable and the system will ‘snap through’ dynamically at
constant h along path ab. At point b stable equilibrium is regained after sufficient time. When h is decreased further slowly
enough, the equilibrium states move through segment b4c until again a local minimum of h is reached and stability is lost
at point c. Thereafter, the system ‘snaps through’ along line cd to point d, where equilibrium is regained, etc.

Fig. 6. Step-wise diverging nanopore and misfit disjoining pressures.
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In the diverging pore in Fig. 5, the snap-through means that when the equilibrium filling front reaches the critical
points, x1,x2, or x3, it will advance forward a certain distance at constant h, as fast as diffusion along the micropore,
controlled by the lingering times of the adsorbate molecules, will permit.

The cross-hatched areas in between the sorption and desorption isotherms, such as area 34cd3 in Fig. 5e or 6d,
represent sorption hysteresis. They also characterize energy dissipation.

Sequential snap-throughs for step-wise nanopore width variation: The diagrams in Fig. 5d–f are valid only for a micropore
with continuously diverging rigid planar walls (Fig. 5a). This is, of course, an idealization. Because of the atomistic
structure of pore walls, the pore width in reality varies discontinuously, as exemplified in Fig. 6a. The chance of a width
exactly equal to an integer multiple of s0 is small.

Consider that the jumps of nanopore width (Fig. 6a) occur at x1,x2,x3, . . ., and that at x1 is narrower than s0, at x2 exactly
equal to 2s0, and at x3 wider than 3s0. Thus, the filling front in pore segment ðx1,x2Þ is in transverse compression, in
segment ðx2,x3Þ at zero transverse pressure, and in segment ðx3,x4Þ in transverse tension; see Fig. 6b. The corresponding
strain energies, representing the misfit chemical potential Dmd per molecule, have a pulse-like variation as shown in
Fig. 6c. Continuum thermodynamics, which ignores the misfits, gives a monotonically rising staircase variation of the
chemical potential ~maðxÞ (per unit mass) as a function of the filling front coordinate xf, represented by path jiedhgba

(Fig. 6d). Superposing on this staircase the misfit chemical potential Dmd (converted to unit mass), one gets the non-
monotonic step-wise path of equilibrium states, shown by the bold line 12ed455b6 in Fig. 6d.

Taking into account the dependence of the adsorbate mass w in the nanopore on the filling front coordinate xf, one can
covert the diagram in Fig. 6d into the sorption isotherm in Fig. 6e, usually plotted as w versus h. The monotonic staircase
hkfejicba would represent the equilibrium path if the misfit disjoining pressures were ignored.

When the rise of h, and thus mf , is controlled, the segments 23 and 56 in Fig. 6e are unstable and unreachable. Indeed,
when h or mf is infinitesimally increased above point 2, there is no nearby equilibrium state, and so the system will ‘snap
through’ dynamically to point 3. At that point, equilibrium is regained, and h and mf can be raised again, slowly enough to
maintain equilibrium, along path 345. A similar dynamic snap-through is repeated along segment 56, after which the
stable segment 678 can be followed. Likewise, in the diagram of mf versus the filling front coordinate xf (Fig. 6d), forward
snap-throughs at increasing mf (which is a monotonically increasing function of h) occur along segments 23 and 56.

When h or mf is decreased slowly enough from point 8, the stable equilibrium path 876bc is followed until stability is
lost at point c (Fig. 6e). Then, the system snaps through dynamically from c to d, follows equilibrium path def, and snaps
dynamically from f to g. Likewise, in Fig. 6d, backward snap-throughs at decreasing mf occur along segments bc and ef.

Obviously, the states on segments c5 and f2 in Fig. 6e, or 2e and 5e in Fig. 6d, can never be reached. They represent
unstable equilibrium. The shaded areas g13eg and d46bd represent hysteresis, which leads to energy dissipation.

Snap-throughs in a system of nanopores: The diverging nanopore (Figs. 4, 5a and 6a) is not the only pore geometry producing
sorption hysteresis. There are infinitely many such geometries. In the simple model of discrete monolayers pursued in Part I,
the only geometry avoiding hysteresis due to sequential snap-throughs is hypothetical—the widths of all the nanopores would
have to be exactly equal to the integer multiples of the natural spacing s0 of monomolecular layers in free adsorption, so as to
annul the misfit pressures. Below, we will show that if molecular coalescence is allowed in the lateral direction, then even these
special pore geometries will exhibit sorption hysteresis, and so the effect is extremely general.

An essential feature of nanoporosity is that there are nanopores of many different thicknesses 2y densely distributed as
shown in Fig. 7. At a given vapor pressure, all the nanopores that are narrower than a certain width 2y are filled by
adsorbed water and the wider ones are empty, containing only vapor; see Fig. 7a, c and e.

As the relative pore pressure h is increased, larger and larger pores fill up. A critical state (or a local maximum of h) is
reached for a pore width at which the misfit chemical potential Dmd due to misfit disjoining pressure is for n

monomolecular layers equal to or larger than the misfit chemical potential for nþ1 layers. After that state, the system
loses stability and regains it only when all the nanopores up to a certain larger width get filled without increasing h. For
decreasing h, the stability loss would occur for a different pore width.

The distribution of nanopore thicknesses 2y may be characterized by a continuous cumulative frequency distribution
function jðyÞ that represents the combined volume of all the nanopores with thicknesses o2y. This case, though, is not
qualitatively different from the diverging nanopore studied previously. For jðyÞpky2, the nanopore system in Fig. 7
becomes mathematically equivalent to the linearly diverging nanopore studied before.

The way the hysteresis in the individual nanopores gets superposed to produce a pronounced hysteresis on the
macroscale is schematically illustrated in Fig. 8.

Rough or non-matching nanopore surfaces: For hydrated cement, a smooth pore surface is surely an idealization, needed
to render the calculations simple. In reality, the pore surface is irregular, random and rough. Recently, it has been shown
(Yang et al., 2011) by MD simulations of nitrogen in carbon slit-pores that random surface roughness of approximately the
same amplitude as the fluid molecule diameter effectively damps the oscillations of the disjoining pressure, compared to
molecularly smooth surfaces. However, it is doubtful that this is true locally, for the disjoining intermolecular forces
individually. The preceding observations regarding a system of nanopores applies to arbitrarily short nanopores, and a
rough pore can be imagined as a series of very short smooth nanopores. The roughness aspect calls for deeper study.

Even if the nanopore surface is a regular atomic lattice, the spacing of surface atoms generally does not match the
equilibrium spacing of adsorbate molecules along the pore. This imposes a wavy potential of transverse intermolecular
forces with non-matching wavelength. This potential will alter the locations of the snap-throughs.
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Temperature: The present analysis of snap throughs focuses on isolated, fixed molecular energy barriers and thus
neglects some important thermal effects in the adsorbate. Temperature appears in the present analysis via the entropy of
the vapor phase (which defines the humidity) and the reversible, continuum isotherm for multi-layer adsorption. The free
energy barriers for snap through instabilities are related to discrete molecular inclined forces without accounting for
entropic contributions and molecular rearrangements that constantly vary the barrier energy and structure. At low
temperatures, this solid-like picture of the adsorbate with long-lived molecular states is valid, and snap throughs can occur
by rare, thermally activated transitions over the energy barriers related to inclined molecular forces in non-uniform pore
geometries.

This model, however, neglects the balance between the same attractive lateral interactions and the entropy of discrete
molecular rearrangements on the surface, which can lead to ‘phase separation’ into low-density and high-density phases in
the adsorbate (Gelb et al., 1999). Such effects dominate at low temperature (below the ‘critical hysteresis temperature’)
and can lead to sorption hysteresis even in perfectly straight nanopores. Variations in the nanopore geometry, however, do
provide additional free energy barriers for molecular condensation and snap throughs between different pore regions. As
shown in Part II, these temperature-dependent phenomena can be treated using non-equilibrium statistical thermo-
dynamics, which provides a general theory of molecular condensation in nanoporous solids building on this work.

Fig. 7. System of nanopores of different widths communicating through vapor phase.

Fig. 8. Superposition of hysteretic loops from different nanopores.
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Analogy with snap-through buckling of flat arch: There is an instructive analogy with the snap-through buckling of elastic
arches or shells under controlled load (Bažant and Cedolin, 1991, Fig. 9, p. 231). If the arch is flat enough and flexible
enough not to fracture, the equilibrium diagram of total load p versus midspan deflection u follows the diagram sketched
in Fig. 9. The segments 051 and 432 consist of stable states at which the potential energy is positive definite (i.e., has a
strict local minimum). But this is not true for the equilibrium states on the segment 12, at which the potential energy does
not have a strict local minimum.

Consider that load p is increased from point 0 up to the local maximum at critical point 1 (Fig. 9). If load p is increased
further by an infinitesimal amount ddp, there is no nearby equilibrium state. The arch must follow at constant load the
dynamic snap-through path 14, during which there is accelerated motion. The load difference from the equilibrium curve
below represents the inertial force, which provides rightward acceleration. The arch gains kinetic energy up to point 3,
swings over (along a horizontal line), and then vibrates at constant load about point 3 until the kinetic energy is dissipated
by damping (without damping, it would vibrate indefinitely). Then, if the load is increased further, the arch moves through
stable equilibrium states on the segment 34.

When the load is decreased, starting at point 4, the arch will follow the stable equilibrium states along segment 432
until a local minimum is reached at point 2. If the load is decreased further by an infinitesimal amount dP, there is no
equilibrium state near point 2. So, the arch must snap through dynamically to point 5, the load being again balanced by
inertia forces which provide leftward acceleration. During this snap-through the arch gains kinetic energy, swings over to
the left of point 5 and vibrates about point 5 until the kinetic energy is dissipated by damping. Then, the load can be
decreased further following the stable equilibrium states below point 5.

Note that even though the arch is elastic and the structure–load system is conservative, hysteresis is inevitable. During
the cycle, the arch dissipates an energy equal to the cross-hatched area 51325 in Fig. 4.

Energy dissipated by hysteresis and material damage: The Gibbs free energy dissipated per unit mass of the nanoporous
material is dG¼w dm, where dm¼ RT=M d ln h, which has in thermodynamic equilibrium the value for the adsorbate
species in the vapor and for the adsorbed phases. Therefore, the free energy dissipated per unit volume of material due to
the hysteresis during a complete cycle, e.g., a drying–wetting cycle of hardened cement paste, is

DG¼
RT

M

I
wðhÞ

h
dh ð17Þ

Since h is in the denominator, integrability, i.e., the finiteness of DG, requires that limh-0w=h¼ 1=hn, where 0rno1.
Graphically, DG is proportional to the area between the sorption and desorption isotherms in the diagram of w=h versus h

(Fig. 10).
The energy could be dissipated in two ways:

(1) By internal friction in the adsorbed fluid during the dynamic snap-throughs (or the molecular coalescence phenomena
discussed in Part II Bazant and Bažant) or

(2) by fracturing or plastic damage to the nanopore surfaces.

However, the latter seems unlikely since it could be associated with every disjoining pressure change and not particularly
with the snap-through. The existence of the former is undeniable, and the point here is to show that the hysteresis is
perfectly explicable without postulating any damage to the nanopore surface.

Anyway, the degree of material damage due to a drying–wetting cycle, if any, could be checked by measuring the
strength or the fracture energy, or both, of the material before and after the cycle. This would have to be done slowly
enough on thin enough specimens having drying half-times less than 1 h (o1 mm thick for cement paste), in which the
relative humidity h in the capillary pores can be changed without creating a significant gradient of h across the specimen
wall (in thicker samples, most of the material damage is done by non-uniform shrinkage stresses engendered by non-
uniformity of h across the wall thickness Bažant and Raftshol, 1982). Shrinkage and creep experiments on such specimens

Fig. 9. Analogy with snap-through of an arch.
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have been performed at Northwestern (Bažant et al., 1976), but no cycles were performed and strength changes were not
checked. It could also be checked whether the snap-throughs might be associated with the acceleration of concrete creep
due to simultaneous drying, called the drying creep (or the Pickett effect).

Sorption potential: Note that, based on the derivation of Eq. (17), it further follows that

b¼
RT

M

w

h
¼
@G

@h
ð18Þ

In other words, Gibbs’s free energy per unit mass of adsorbate as a function of h is a potential for the adsorbate content
parameter b during a one-way change of h.

Is the atomic crystal structure of pore walls relevant? The spacing of atoms in the pore walls imposes on the attractive
potential a waviness whose wavelength generally differs from the in-plane spacing of the adsorbate molecules. However, it
would be incorrect to consider the adsorbate molecule to jump over the peaks of this wavy attractive potential. The reason
is that such jumps are not rare hopping processes. Unlike solids, the adsorbate molecules undergo constant vigorous
rearrangements (except during solidification at extremely low temperature). Thus, they feel only the average surface
properties and have strong entropic/steric interactions with the surface. In liquids and gases, the entropy prevails over
bond enthalpy and prevents long-lived solid-like states connected by thermal hopping.

4. Conclusions of Part I

We can summarize the findings of the first part as follows:

1. One mechanism that must be causing sorption hysteresis at low vapor pressure is a series of snap-through instabilities
causing path-dependent non-uniqueness of adsorbate content and dynamic jumps of water content of nanopores at
constant vapor pressure.

2. The snap-through instabilities are a consequence of the discreteness of the adsorbate, which leads to non-uniqueness of
mass content and to misfit disjoining (transverse) pressures due to a difference between the pore width and an integer
multiple of the thickness of a transversely unstressed monomolecular layer of the adsorbate.

3. The hysteresis is explained by the fact that the snap-through instabilities for sorption and desorption follow
different paths.

4. The wider the pore, the weaker the mechanism of snap-through instabilities. This mechanism cannot operate in pores
wider than about 3 nm.

5. The snap-through instabilities are analogous to snap-through buckling of arches and shells, long known in structural
mechanics. They cause hysteresis and energy dissipation even when the arch or shell is perfectly elastic and the load
conservative.

If a quantitative version of this theory were developed, it might be possible to infer from the hysteresis the surface area
and the size distribution of the nanopores filled by hindered adsorbate. Our preliminary analysis of snap-through
instabilities suggests that the key to making this connection is to also account for inclined forces and ‘lateral interactions’,
in the statistical thermodynamics of hindered adsorption. Part II will show that attractive lateral interactions generally
lead to sorption hysteresis in any pore geometry due to molecular coalescence of the adsorbate (Bazant and Bažant).

Fig. 10. Energy dissipated by sorption hysteresis on a full h-cycle 1-0-1 (shaded area), and dissipation during mid-range reversals (a, b).
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Bažant, Z.P., 1970a. Constitutive equation for concrete creep and shrinkage based on thermodynamics of multi-phase systems. Mater. Struct. 3, 3–36.

(reprinted in Wittmann, F.H. (Ed.), Fifty Years of Evolution of Science and Technology of Building Materials and Structures, RILEM, Aedificatio
Publishers, Freiburg, Germany, 1997, pp. 377–410).
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