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Abstract: The segmental prestressed concrete box girder of Koror-Babeldaob (KB) Bridge in Palau, which had a record span of 241 m
(791 ft), presents a striking paradigm of serviceability loss because of excessive multidecade deflections. The data required for analysis have
recently been released and are here exploited to show how the analysis and design could be improved. Erected segmentally in 1977, this girder
developed a midspan deflection of 1.61 m (5.3 ft) compared with the design camber after 18 years, and it collapsed in 1996 as a consequence
of remedial prestressing, after a 3-month delay. Compared with three-dimensional analysis, the traditional beam-type analysis of box girder
deflections is found to have errors up to 20%, although greater errors are likely for bridges with higher box-width-to-span ratios than the KB
Bridge. However, even three-dimensional finite-element analysis with step-by-step time integration cannot explain the observed deflections
when the current American Concrete Institute, Japan Society of Civil Engineers, Comité Euro-International du Béton (or Comité Euro-
International du Béton—Fédération internationale de la précontrainte), and Gardner and Lockman prediction models for creep and shrinkage
are used. These models give 18-year deflection estimates that are 50–77% lower than measured and yield unrealistic shapes of the deflection
history. They also predict the 18-year prestress loss to be 46–56% lower than the measured mean prestress loss, which was 50%. Model B3,
which is the only theoretically based model, underestimates the 18-year deflection by 42% and gives a prestress loss of 40% when the default
parameter values are used. However, in Model B3, several input parameters are adjustable and if they are adjusted according to the long-time
laboratory tests of Brooks, a close fit of all the measurements is obtained. For early deflections and their extrapolation, it is important that
Model B3 can capture realistically the differences in the rates of shrinkage and drying creep caused by the differences in the thickness of the
walls of the cross section. The differences in temperature and possible cracking of the top slab also need to be taken into account. Other
paradigms on which data have recently been released are four bridges in Japan and one in the Czech Republic. Their excessive deflections can
also be explained. The detailed method of analysis and the lessons learned are presented in Part II. DOI: 10.1061/(ASCE)ST.1943-541X
.0000487. © 2012 American Society of Civil Engineers.
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Introduction

Clarification of the causes of major disasters and serviceability loss
has been andwill always be a prime opportunity for progress in struc-
tural engineering. A paradigm that presents such an opportunity for
creep and shrinkage analysis and design is offered by the excessive
deflections of the Koror-Babeldaob (KB) Bridge, which crossed the
Toegel Channel between the islands of Koror and Babeldaob in the
Republic of Palau in the tropical western Pacific [Fig. 1(a)]. When it
was completed in 1977, its main span of 241 m (791 ft) set the world

record for segmental prestressed concrete box girders (Yee 1979).
The final deflection,measured as the difference from the design cam-
ber of �0:3 m (or �12 in.), was expected to terminate at 0.76–
0.88 m (30–34.6 in.), as predicted by the design (ABAM 1993;
Khaled Shawwaf, personal communication, September, 18, 2008)
based on the original CEB-FIP design recommendations (1970–
1972). According to the 1971 American Concrete Institute (ACI)
model (ACI 1971), which is still in force today (reapproved in
2008) (ACI 2008a), the deflectionmeasured from the design camber
would havebeen predicted as 0.71m (28 in.) according toMcDonald
et al. (2003) and 0.737 m (29 in.) according to the present analysis.

After 18 years, the deflection measured at the end of the con-
struction reached 1.39 m (54.7 in.) and kept growing (ABAM 1993;
Berger/ABAM 1995a). The design camber of 0.30 m (12 in.) was
not met (Khaled Shawwaf, personal communication, September
18, 2008) and an additional creep deflection of 0.22 m (9 in.)
had accumulated during the segmental erection, making the actual
camber only 0.075 m (3 in.) when the cantilevers were joined.
Thus, the total 18-year deflection at midspan was 1.61 m (5.3 ft).

Remedial prestressing was undertaken but caused the bridge to
collapse (after a 3-month delay) on September 26, 1996, with two
fatalities and many injuries (SSFM 1996; Parker 1996; Pilz 1997,
1999; McDonald et al. 2003; Burgoyne and Scantlebury 2006)
[see Fig. 1(b)].
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As a result of the legal litigation, the technical data collected
by the investigating agencies in relation to this major disaster
were unavailable to the engineering public for many years. A
worldwide group of 47 experts (see the Appendix), therefore pro-
posed a resolution at the Third Structural Engineers World
Congress in Bangalore that called, on the grounds of engineering
ethics, for the release of all technical data necessary for analyses
of major structural collapses, including the bridge in Palau. The
resolution passed on November 6, 2007, and was circulated widely.
In January 2008, the Attorney General of the Republic of Palau
permitted the release of the necessary technical data.

The present two-part study (see also Bažant et al. 2012), which
updates a 2008 preliminary report (Bažant et al. 2008) and expands a
brief recent article (Bažant et al. 2010), aims to explain the
reasons for the excessive long-term deflections and compare the per-
formance of various existing models. Understanding the reasons is
important because recent data collection (Bažant et al. 2011a, b, c)
has revealed similar, mostly excessive, deflections of 69 similar
bridge spans (and likely many more). The method of analysis is
presented in detail in Part II (Bažant et al. 2012), which also enun-
ciates the lessons for structural analysis and design. Hopefully, these
lessons will resolve the currently intractable disagreements in tech-
nical committees about the optimal predictionmodel that can be used
as a standard guide. These lessons should also help interpret the
health monitoring of structures. Clarification of the collapse caused
by remedial prestressing will be postponed for a subsequent article.
A forthcoming article (Yu et al. 2012) further makes a comparison
with a popular commercial bridge creep program (SOFiSTiK).

Bridge Description and Input Data for Analysis

Themain span of 241m (791 ft) consisted of two symmetric concrete
cantilevers connected at midspan by a horizontally sliding hinge.
Each cantilever consisted of 25 cast-in-place segments of depths
varying from 14.17 m (46.5 ft) at the main piers to 3.66 m (12 ft)
at the midspan. The main span was flanked by 72.2 m (237 ft) long
side spans in which the box girder was partially filled with rock bal-
last to balance the moment at the main pier. The total length of the
bridge was 386 m (1,266 ft). The thickness of the top slab ranged
from 432 mm (17 in.) at the main piers to 280 mm (11 in.) at the
midspan. The thickness of the bottom slab varied from 1,153 mm
(45.4 in.) at the main piers to 178 mm (7 in.) at the midspan. Com-
pared with the depth of the girder, the webs had an unusually small
thickness of 356 mm (14 in.), which was constant throughout the
whole main span. The typical cross sections are shown in Fig. 2.

Type I portland cement was used for the superstructure (Khaled
Shawwaf, personal communication, September, 18, 2008). The
mass density of the concrete was ρ ¼ 2;325 kg∕m3 (145 lb∕ft3).

The top slab was covered by concrete pavement with an average
thickness of 76 mm (3 in.) and a density of 2;233 kg∕m3

(139 lb∕ft3). The aggregate was crushed basalt rock of the maxi-
mum aggregate size of approximately 19 mm (3∕4 in), supplied
from a quarry on the island of Malakal. Beach sand from Palau
was used as the fine aggregate, and its washing by mechanical
means helped keep the chloride content within the limit allowed
(Berger/ABAM 1995b).

Although no original measurements of the Young’s elastic modu-
lus Ec of the concrete are known, some information was obtained
in 1990 through core sample tests (JICA 1990). These tests yielded
Ec ¼ 22:1 GPa (3,200 ksi). In 1995, further core sample tests
(Berger/ABAM 1995a) made just before the retrofit revealed the
porosity to be high and Ec to be approximately 21.7 GPa (3,150 ksi).
Both investigations showed values approximately 23% lower than the
value estimated from the design compression strength according to
the ACI empirical formula, which is 28.3 GPa (4,110 ksi). Truck load
tests were conducted during an on-site investigation by the Japan
International Cooperation Agency (JICA). Matching the deflections
measured at midspan by finite-element elastic analysis provided,
after a correction for concrete age according to the ACI formula,
an average 28-day Ec of approximately 22.0 GPa (3,190 ksi) (JICA
1990). This Ec value was adopted for analysis because the load test
gives the average elastic modulus in the box girder.

The prestress was generated by Dywidag threaded alloy
bars (tendons) [yield strength 1,034 MPa (150 kip); diameter

Fig. 1. (a) Koror-Babeldaob Bridge in Palau (in 1977); (b) Babeldaob side after the collapse (in 1996) (images courtesy DYWIDAG Systems
International and Wiss, Janney, Elstner Associates, Inc., with permission)

Fig. 2. 3D view of one-half of the box girder, its cross sections at the
main pier and at the middle of the main span, and the placement of
prestressing tendons at the main pier
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31.8 mm (1.25 in.)], extended by couplers, anchored by nuts, and
grouted in ducts [diameter 47.6 mm (1.9 in.)] (ABAM 1993; DRC
1996). Some tendons were stressed from one end and some from
both ends (Yee 1979; McDonald et al. 2003). The jacking force of
each tendon was 0.60 MN (135 kip) (DRC 1996). There were 316
tendons above the main pier, densely packed in four layers within
the top slab (see Fig. 2). Their combined initial prestressing force
was approximately 190 MN (42,606 kip) (Yee 1979; Pilz 1997;
McDonald et al. 2003). The same threaded bars were used to
provide vertical prestress in the webs and horizontal transverse
prestress in the top slab. The tendon spacing in the webs ranged
from 0.3 to 3 m (1 to 10 ft) (Khaled Shawwaf, personal commu-
nication, September, 18, 2008). The horizontal transverse tendons
in the top slab were spaced at 0.56 m (22 in.) (ABAM 1993;
McDonald et al. 2003).

The alloy steel of the tendons had a yield strength of 1,034 MPa
(150 ksi) and an ultimate strength of 1,054 MPa (153 ksi) (DRC
1996). Its Young’s elastic modulus was assumed to be 200 GPa
(29,000 ksi), and the Poisson’s ratio was assumed to be 0.3.
Unprestressed steel reinforcement (ABAM 1993) was taken into
account in the calculations. In postcollapse examination, neither
the prestressed nor the unprestressed steel showed any signs of
significant corrosion despite the tropical marine environment,
although some of the ducts showed mild corrosion.

The construction of each segment took slightly more than one
week (TYLI 1996). When the concrete strength in the segment just
cast attained 17.2 MPa (2,500 psi), 6–12 tendons were stressed to
50% of their final jacking force (TYLI 1996). When the concrete
strength reached 24.1 MPa (3,500 psi), all the tendons terminating
in this segment were stressed fully. The segmental erection of the
opposite symmetric cantilevers was almost simultaneous and took
6–7 months (Yee 1979).

Although the construction was closely monitored, the camber
that was planned to offset the anticipated long-term deflections
was not met. The creep and shrinkage during the segmental
erection caused an unintentional initial sag of 229 mm (9 in.) at
midspan that could not be corrected during the erection because
it would have required abrupt large changes of slope (Khaled
Shawwaf, personal communication, September 18, 2008). The
initial sag before installation of the midspan hinge was not in-
cluded in the reported deflection measurements or in the deflection
curves in the figures.

The initial deflections for the first 2 years were benign. How-
ever, in 1990, the longer-term deflections revealed that the midspan
deflection had reached 1.22 m (48 in.) (JICA 1990), which caused
ride discomfort, vibrations after vehicle passage, and excessive
deterioration of the road surface. By 1993 (ABAM 1993), the
deflection had reached 1.32 m (52 in.). In 1995, just before removal
of the roadway pavement [average thickness of 76 mm (3 in.)],
the midspan deflection had reached 1.39 m (54.7 in.) and was still
growing (Berger/ABAM 1995a).

Creep and Shrinkage Models Considered

As an adequate approximation under service conditions, concrete
can be assumed to follow aging linear viscoelasticity with correc-
tions for tensile cracking, variations of humidity and temperature,
and drying creep (or the Pickett effect). The concrete deformation is
then fully characterized by one of the existing prediction models for
the shrinkage strain ϵsh(t) and the compliance function Jðt; t0Þ. The
prediction models considered in the analysis were the ACI model
(ACI 1971, 2008a), the Comité Euro-Internationale du Béton
(CEB), Fédération internationale de la précontrainte (FIP) (or

CEB-FIP, or fib) model (Fédération internationale du béton, fib
1999), the Japan Society of Civil Engineers (JSCE) model (JSCE
1991), the Gardner and Lockman (GL) model (Gardner 2000;
Gardner and Lockman 2001), and Model B3 (Bažant and Baweja
1995, 2000; Bažant and Prasannan 1988, 1989a, b; Jirásek and
Bažant 2002). The same computer program, ABAQUS (SIMULIA,
Providence, Rhode Island), with the same step-by-step time inte-
gration based on the Kelvin chain, was used for all models (see
Bažant et al. 2012).

The smallest deviations from the data were obtained with
Model B3 based on the solidification theory (Bažant and Prasannan
1989a, b), which was first presented in 1995 (Bažant and Baweja
1995), slightly updated in 2000 (Bažant and Baweja 2000), and
summarized in Jirásek and Bažant (2002). Model B3 represents
a refinement of the earlier Bažant-Panula and Bažant-Panula-
Kim-Xi models (Bažant and Panula 1978a, b, c, d, 1979a, b; Bažant
and Kim 1991b, 1992a, b, c; Bažant et al. 1991, 1992). The theo-
retical justification has been provided in several studies (Bažant
et al. 1997; Bažant 2000, 2001). The form of the B3 compliance
function for basic creep was theoretically derived and experimen-
tally supported in Bažant and Prasannan (1988, 1989a, b). In stat-
istically unbiased comparisons with a large database (Bažant and Li
2008a), Model B3 was clearly superior to the other existing models
(Bažant and Li 2008b; Bažant et al. 2008).

The input parameters of the creep and shrinkage prediction
models are divided into extrinsic and intrinsic. For all models,
the extrinsic parameters, which include the environmental factors,
are the following:
1. The age at the start of drying, taken here as tc ¼ 7 days, which

is the mean period of the segmental erection cycle ranging
from 5 to 10 days (Khaled Shawwaf, personal communication,
September 18, 2008; TYLI 1996);

2. The average environmental humidity h ¼ 0:70;
3. The effective thickness of cross section D ¼ 2 V∕S, in which a

minor correction ks for body shape is applied in the case of
Model B3; ks ¼ 1 for all slabs and webs considered here
(V∕S = volume—surface ratio); and

4. For the extended Model B3 only, and also the temperature.
The intrinsic input parameters, which reflect the composition of

concrete, vary from model to model. Formulation of the ACI, CEB,
and GLmodels was driven by the desire for simplicity. Accordingly,
the only important intrinsic parameter in thesemodels is the standard
28-day compression strength f 0c, while other major influencing
parameters such as the cement content and the water-cement and
aggregate-cement ratios are not taken into account.

Model B3 is special in that the free intrinsic input parameters
are more than one. They introduce the main aspects of concrete
composition. If unknown, they can be set equal to their recom-
mended default values. Their advantages are that reasonable ranges
of the unknown concrete mix parameters can be explored, compu-
tation of structural responses for various plausible sets of values of
these parameters can be run, and a picture of the possible range of
structural responses to expect can be obtained. Two sets of input
parameters have been considered in the computations.

Set 1 Pure Prediction

The mean 28-day compressive strength f 0cr of concrete was approx-
imately 35.9 MPa (5,200 psi), as indicated by the cylinder tests
during construction reported by Raymond Zelinski (personal
communication, December 12, 2010). However, in Bažant et al.
(2010), the value of 35.9 MPa was considered according to ABAM
(1993) to be the 28-day specified compressive strength f 0c. The
mean strength �f c from the cylinder tests during construction must
not have been lower than f 0cx; and according to the ACI code
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(ACI 2008b), Zelinski’s value implies that f 0c ≤ 35:9MPa�Δf ,
where Δf ≈ 1:34 × standard deviation (Bažant and Yu 2006),
which would have been much less than 35.9 MPa. On the other
hand, the f 0c value from ABAM (1993) implies that f 0cr ≈
35:9 MPaþΔf . ABAM and Zelinski cannot both be right. The
records of Zelinski (the resident engineer at the KB Bridge con-
struction representing both the designer, Alfred A. Yee & Associ-
ates, and the owner, the Trust Territory Government) are deemed
more reliable, and so the curves from Bažant et al. (2010) had to be
recalculated. Nonetheless, the recalculation changed the results
very little because other Zelinski’s input changes happened to com-
pensate. Furthermore, the prediction models should properly use
the mean strength or an estimated f 0cr, as stated in Model B3,
but the ACI Guide (ACI 2008a) specifies the use of f 0c for all mod-
els. To keep the results comparable, f 0c had to be used as the input
for all models, including B3 Set 1.

The 28-day elastic modulus Ec was neither specified in design
nor measured on the site. The modulus value was measured on
core samples just before the retrofit, but this value is appropriate
for Set 2 and must not be used for Set 1, which is intended to
check the prediction capability. The only way that Ec could be
estimated at the time of design was from the approximate ACI
formula Ec ¼ ð57;000 psiÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 0crðpsiÞ
p

, which gives Ec ¼ 28:3 GPa
(4,110 ksi). Furthermore, according to Zelinski’s records, the spe-
cific cement content c was 535 kg∕m3 (33:4 lb∕ft3), the aggregate-
cement ratio a∕c was 2.90, and the water-cement ratio w∕c was
0.40 (in which a superplasticizer was used). A higher w∕c value
was considered in Bažant et al. (2010), but this was an estimate
from ABAM (1993) and Khaled Shawwaf (personal communica-
tion, September 18, 2008).

On the basis of the foregoing input, the B3 empirical formulas
(Bažant and Baweja 2000) yield the following Model B3
parameters, which are different from Bažant et al. (2010):

q1 ¼ 0:146; q2 ¼ 1:42; q3 ¼ 0:011; q4 ¼ 0:080;

q5 ¼ 2:33ð×10�6∕psiÞ ð1Þ

εk∞ ¼ 0:000981 and kt ¼ 19:2 ðset 1Þ ð2Þ
where the values of q2, q3, and q4 are increased by 20% because
of the mean of the plasticizer effects observed by Brooks (2000)
(the use of plasticizer was not known in Bažant et al. 2010).

Set 2 Updated

For a better estimate, only the values of q2, q5, and εs∞, governing
mainly the response for the first few years, have been estimated
from the composition, and the estimates of the remaining param-
eters were improved as follows:

q1 ¼ 0:188; q3 ¼ 0:262; q4 ¼ 0:140ð×10�6∕psiÞ
ðas changed for set 2Þ

ð3Þ

where q1 was adjusted according to the elastic modulus obtained
in the truck load test (Bažant et al. 2010). Here, q3 and q4 were
identified by a trial-and-error procedure, conducted with two
objectives in mind: (1) stay close to the values of multidecade
creep tests, which are only the 30-year tests of Brooks (1984,
2005); and (2) obtain the closest possible fit of the measured
deflection of the KB Bridge. Fig. 3 indicates that the selected in-
trinsic parameters agree with these tests reasonably well.

It has been noted that the compliance function Jðt; t0Þ agrees
with the 30-year tests of Brooks and is in good agreement with

the measured deflections. This result suggests using these tests
for recalibrating input parameters q3 and q4, which are the main
controlling parameters of the multidecade creep in Model B3
and are difficult to estimate from the database because the database
is dominated by test data for load durations < 5 years.

To calculate and compare the predictions of various models,
all the properties of the concrete and the environmental histories
of the KB Bridge concrete would have to be known, but they are
not. Therefore, comparing the predictions of various models ei-
ther mutually or with the observations is not fully informative.
Nevertheless, what can be compared is whether the observed
deflections are within the realistic range of each model. They
are indeed within the realistic range for Model B3 but not at
all for other models, including the ACI, CEB, JSCE, and GL
models.

For Model B3, the predictions are not fixed because there exist
input parameters that are uncertain for the KB Bridge and are thus
free to be set within their realistic range. The predictions of the
other models are fixed by the reported value of the concrete
strength, with no flexibility of adjustment (a partial exception is
the JSCE model, which takes into account the water content w
and cement content c). The data available for the KB Bridge, as
presented here, do not suffice to obtain a unique compliance func-
tion for this bridge unless the default parameter values are used;
they do suffice to obtain unique compliance functions for the
ACI, CEB, JSCE, and GL models—although at the cost of ignoring
many important influences.

Some engineers want the model to predict the creep and shrink-
age from as few parameters as possible, particularly from the
concrete design strength only (ACI 2008a). This might be more
convenient, but it is not realistic. If the additional parameters of
Model B3 for a given concrete are known, better predictions
can be made. If they are unknown, they can be assigned their
typical, or default, values, and thus predictions can still be made
even if only the strength is known. Furthermore, by varying the
influencing parameters of Model B3 through their realistic range,
a realistic range of expected responses can be explored; and a struc-
ture for the most unfavorable realistic combination can be designed.
With the other models, one can explore only the effect of strength
variation.

Fig. 3.Model B3 curve for adjusted q3 and q4 compared with the creep
tests by Brooks (1984, 2005)
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Computed Deflections, Prestress Loss, and
Comparisons to Measurements

Because of symmetry, only one-half of the bridge was analyzed. A
three-dimensional (3D) finite-element program that automatically
captured all the stress-redistribution effects attributable to creep
was used (see the mesh in Fig. 2). As a first check of the program,
a comparison was made with the bridge stiffness, which was mea-
sured in January 1990 in a load test by JICA (1990). An average
downward deflection of 30.5 mm (0.10 ft) was recorded at midspan
when two 12.5 t trucks were parked side by side on each side of the
midspan hinge (a previous paper erroneously assumed that only
one truck was parked on each side). The front wheels of the

two trucks on each side were assumed to have been 3 m away from
the midspan. The rear wheels, 12 m behind the front wheels, were
assumed to carry 60% of the truck weight. The finite-element code
predicted the deflection of 30 mm (0.098 ft) that was measured
approximately within 2.4 h (the 2.4 h creep was based on Model
B3 Set 2) under a load of 245 kN (55.1 kip). Given the uncertainty
about the actual rate of loading, the difference was small enough.

The results of the calculations are shown in Figs. 4–7, both in
linear and logarithmic time scales (t − t1 = time measured from the
end of construction; t1 = time when the midspan hinge was in-
stalled). The data points show the measured values. The circles re-
present the data reported by the firm that investigated the excessive
deflections (JICA 1990), and the diamonds represent the data

Fig. 4. Mean deflections calculated using Model B3 and the ACI, CEB (one using SOFiSTiK), JSCE, and GL models in normal and logarithmic
scales

Fig. 5. Mean deflections calculated as in Fig. 4 but for time extended up to 150 years (assuming no retrofit and no collapse have taken place)
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accepted from a secondary source (Berger/ABAM 1995a). For
comparison, Figs. 4–7 show the results obtained with Model B3
and the ACI, CEB, JSCE, and GL models. All these responses were
computed with the same finite-element program and the same step-
by-step time integration algorithm. For Model B3, it was possible
to consider the effect of the differences in thickness of the slabs and
webs on their drying rates. In Fig. 4, the deflection obtained by
using the popular commercial program SOFiSTiK, which is based
on the one-dimensional beam element model, is also demonstrated
(Yu et al. 2012).

Fig. 4 shows the calculated deflection curves up to the moment
of retrofit at approximately 19 years of age. Except for the curves
in the JSCE model, the curves differ only slightly from those in
Bažant et al. (2010) because of the input being compensated by
various changes. Because a lifetime well beyond 100 years is
generally expected, Fig. 5 shows the same curves extended up to
150 years under the assumption that there has been no retrofit
and, thus, no collapse.

Fig. 6 presents the midspan deflection that is obtained (1) if
the drying creep is neglected, (2) if both the shrinkage and drying
creep are neglected, and (3) if the shrinkage and the drying creep
compliance are considered to be uniform over the cross section
and to be deduced from the overall effective thickness D ¼
2V∕S of the whole cross section. The use of uniform creep and
shrinkage properties throughout the cross section neglects the cur-
vature growth attributable to differential shrinkage and differential
drying creep and gives results dominated by the unusually thin
webs. Also, the effect of mean drying can be very different from
the mean of the effects of drying in the individual slabs (Bažant
et al. 1992).

The shear lag effect with the associated creep-induced stress re-
distributions within the cross sections necessitates 3D simulations.
It cannot be realistically captured by the classical concept of effec-
tive width of the top slab (which was actually used in the design
of the KB Bridge). The computations show that the shear lag occurs
in four different ways—in the transmission of vertical shear force
because of the vertical reaction at the pier, in the transmission of

Fig. 6. Deflections in normal and logarithmic scales computed using Model B3 for (1) no drying creep; (2) no shrinkage and no drying creep;
(3) uniform creep and shrinkage over the cross section

Fig. 7. Prestress loss in tendons at the main pier using Model B3 and the ACI, CEB, JSCE, and GL models in normal and logarithmic scales
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the concentrated forces from tendon anchors, and for each of
these in the horizontal slabs and in the vertical walls. Only full
3D analysis can capture this behavior. It always yields larger de-
flections and larger prestress losses. For the bridge in Palau, the
beam-type analysis causes an error of −20% in deflections and
−10% in the prestress loss. The errors are larger in the 95% con-
fidence limits, discussed subsequently.

Accuracy in calculating the prestress loss is crucial because the
bridge deflection is a small difference of two large, but uncertain,
numbers—the downward deflection because of self-weight and
the upward deflection because of prestress. Calculations show
that, compared with the classical theory of bending, all the shear
lags combined increased the elastic downward deflection by 18%
because of self-weight and the elastic upward deflection by 14%
because of initial prestress, which jointly produced the aforemen-
tioned total shear lag effect of 20%.

Steel relaxation is a viscoplastic phenomenon (Jirásek and
Bažant 2002) that occurs at variable, rather than constant, strain
and is strongly influenced by elevated temperature, as described
by the viscoplastic constitutive law given in Part II, Bažant et al.
(2012) (see Bažant and Yu 2011). That law builds on the formulas
for constant strain relaxation used in both the European code (CEB-
FIP 1990; FIB 2010) and American practice (Magura et al. 1964;
Nawy 2006), formulates the strain change effects as validated by
the experiments of Buckler and Scribner (1985), and introduces the
temperature effect through the activation energy and the Arrhenius
factor (Cottrell 1964) calibrated by the data from fib (2010, see
Figs. 5.3–5.5 therein). The calculations in Part II (Bažant et al.
2012) showed that the heating of the top slab by the tropical
sun must have significantly intensified the steel stress relaxation,
which in turn must have increased the deflections.

The simulation of the bridge in Palau indicated that the exces-
sive deflection was accompanied by the longitudinal creep and
shrinkage contraction of the box girder. Although this contraction
tended to cause a reduction of the subsequent prestress loss,
the temperature increase because of solar heating of the top slab
together with the continuing longitudinal creep and shrinkage con-
traction of the concrete more than compensated for this reduction.
This caused the excessive prestress loss to continue and eventually
reach values much higher than those for the constant strain of the
steel and constant temperature.

The environmental fluctuations of both temperature and humid-
ity also affect the concrete, while heating of the top slab by the
tropical sun significantly increased the relaxation of the embedded
tendons and, thus, also the deflections of the bridge (see Bažant
et al. 2012), the daily temperature fluctuations have little overall
effect on the concrete, and seasonal temperatures are negligible
in the tropics. Even at higher latitudes, the humidity fluctuations
because of the weather and the seasonal changes are not too im-
portant for multidecade deflections because the moisture diffusivity
is approximately 1,000 times lower than the thermal diffusivity
(Bažant et al. 2003). This fact is documented by the smoothness
of the measured deflection histories of 55 bridges presented in
Bažant et al. (2011a, b, c).

The measured deflection at 18 years after span closing, which
was 1.39 m, closely matched the deflection calculated from Model
B3 with Set 2 parameters. This measured deflection was roughly
three times larger than that calculated for the ACI or CEB model
(which was 0.47 m or 0.53 m), and approximately double the mea-
sured deflection calculated for the GL model (which was 0.65 m)
(see Fig. 4). The ACI, CEB, JSCE, and GL deflection curves had
shapes that were rather different from those of Model B3 as well
as those of the observed deflection history. They all gave far too
much deflection growth during the first year and far too little from

three years on, especially for the ACI, CEB, and JSCE models. The
19-year prestress loss was only 22% and 24% when the ACI and
CEB models were used in the present finite-element code but
approximately 46% when Model B3 was used (see Fig. 7) (again,
the changes from Bažant et al. 2010 are only slight).

The correctness of the prestress loss predicted by Model B3
was confirmed by the stress relief tests that were made by ABAM
on three tendons just before the retrofit (Berger/ABAM 1995a).
Sections of three tendons were bared, and strain gauges were glued
at three different locations on each of the three tendons. Each of
these tendons was then cut, and the stress was calculated from the
shortening measured by the gauge next to the cut (see Table 1). The
average stress obtained from nine measurements on the tendons
was 377 MPa (54.7 ksi), indicating that the average prestress loss
over 19 years was approximately 50%. The coefficient of variation
was 12.3%. Model B3 (Set 2) calculations gave a prestress loss of
46%, which deviated from the measured mean by only 9%. This
was less than the coefficient of variation of these measurements,
which was 12.3%. Similar tests were also conducted by another
investigating company (Wiss, Janey and Elstner, Highland Park,
Illinois), and the average measured prestress loss was almost same.

Only nondestructive methods are normally permitted. This
makes it next to impossible to measure the stresses in grouted
tendons; however, for the KB Bridge, the cutting of tendons
was not a major sacrifice because additional tendons were to be
installed anyway. Thus, the decision to retrofit furnished a unique
opportunity to learn about the actual prestress losses.

In the mid-1970s, the prestress loss was calculated not by finite
elements but by simple formulas based on the beam theory
(e.g., Nilson 1987). A lump estimate of the final prestress loss
was generally used; and according to Khaled Shawwaf (personal
communication, September, 18, 2008), it was used for the KB
Bridge. According to the lump estimate, the prestress loss would
have been 22%, which is marked in Fig. 7 by a horizontal dashed
line. Compared with the measurements, the errors of this estimate
are enormous, and so are the errors compared with the present
calculation based on Model B3. These errors are one reason that
the long-term deflections were so badly underestimated in design.
For large box girders, the standard textbook formulas for prestress
loss are inadequate and dangerously misleading.

According to the ACI, CEB, and the JSCE models, the compli-
ance curves and the deflection curves terminate with a horizontal
asymptote. However, according to Model B3, the long-term com-
pliance curves are logarithmic. Thus, Model B3 predicts that the

Table 1. Summary of Strain Relief Tests of Prestressed Tendons of the KB
Bridge in Palau (Berger/ABAM 1995a)

Tendon Location
Δ1
(μϵ)

Δ2
(μϵ)

Δ3
(μϵ)

Mean Δ
(μϵ)

σ
(MPa)

1 1 1,640 1,640 1,630 1,637 327.3

2 1,650 1,640 1,650 1,647 329.3

3 1,680 1,700 1,710 1,697 339.3

Average 332.0

2 4 1,810 1,820 1,790 1,807 361.3

5 1,810 1,800 1,790 1,800 360.0

6 1,780 1,790 1,790 1,787 357.3

Average 359.6

3 7 2,250 2,230 2,220 2,233 446.7

8 2,220 2,220 2,210 2,217 443.3

9 2,170 2,150 2,170 2,163 432.7

Average 440.9
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deflection curve terminates in the logarithmic time scale with an
asymptote that is a straight line of a finite slope, which agrees very
well with the observations (Fig. 4). However, the final slope pre-
dicted by Model B3 (Set 1) for 18 years is too small. To match the
slope in Fig. 4, it would need to be increased by a factor of 1.52.

For times longer than approximately three years, the deflections
were observed to evolve almost linearly in the logarithmic time
scale, an outcome that is to be expected for theoretical reasons
(Bažant 2000) and can thus be extrapolated to longer times graphi-
cally (see Fig. 5). The graphical straight-line extrapolation is
observed to agree almost exactly with the Model B3 calculations
up to 150 years. It is virtually certain that if the bridge were left
standing without any retrofit, the 150-year deflection would have
reached 2.24 m (7.35 ft), well beyond the limit of serviceability.

Capturing the initial deflection history correctly is essential
for correct extrapolation in order to predict subsequent problems.
The differential shrinkage and drying creep due to nonuniform
drying is important in this respect (Křístek et al. 2005, 2006,
2008). In Fig. 4, Model B3 gives by far the closest prediction
for the early deflection history.

Excessive Long-Term Deflections of Other Box
Girders

It is deplorable that the data on excessive deflections usually
go unpublished. Nevertheless, Y. Watanabe, the chief engineer
of Shimizu Corp., Tokyo, graciously made available the data on
some large Japanese bridges that epitomize the experience in many

other countries. These deflection data are plotted in Fig. 8, in which
the data points represent the measured deflections and the dashed
curves show the prediction based on the design recommendations
of the Japan Road Association (JRA). The solid curves give the
predictions of Model B3 calculated in the same way as for the
KB Bridge after adjusting the composition parameters similarly
to Set 2.

The foregoing observations document that the deflections of the
KB Bridge are not a unique occurrence. Interestingly, one of these
four bridges, Urado, did not show excessive 30-year deflection;
the reason may be that the creep curve in the JRA code was set
approximately 60% higher than in the JSCE code. However, the
deflection slope at 30 years portends future problems.

The absence of a midspan hinge has been known to reduce
deflections. However, it is not a panacea. Even bridges without
a midspan hinge, designed by the code, can suffer excessive deflec-
tions. This outcome, for example, is documented by the data on the
Děčín Bridge over the Labe in North Bohemia (see Fig. 9).

Model B3 Improvement and Need for Inverse
Analysis of Many Bridges

Based on the parameter values obtained for Set 2 and on the
comparisons with deflection measurements, it has been determined
that the multidecade deflection prediction could be improved by
replacing the B3 formulas (Bažant and Baweja 1995, 2000) for
q3 and q4 with the following:

Fig. 8. Excessive deflections observed in four Japanese bridges
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q3 ¼ ðw∕cÞ2q2; q4 ¼ 0:3ða∕cÞ�0:7 ð4Þ

in which w∕c and a∕c = water-cement and aggregate-cement ratios
by weight, respectively. However, the data on one or several bridges
do not suffice to overcome the extreme scarcity of multidecade test
data (Bažant and Li 2008a). For optimal recalibration of the B3
prediction of material parameters from concrete composition and
strength, it will be necessary to gather data on the deflections of
many box girder bridges and then conduct inverse finite-element
creep analysis with optimization.

Uncertainty of Deflection Predictions and
Calculation of Confidence Limits

Creep and shrinkage are notorious for their relatively high random
scatter. For this reason, it has previously been argued (Bažant and
Kim 1989, 1991) that the design should be made not for the mean
deflections but for some suitable confidence limits such as 95%
(Bažant and Liu 1985; Bažant et al. 2010). By adopting Latin
hypercube sampling of the input parameters (Bažant and Liu
1985; Bažant and Kim 1989), such confidence limits can easily

be obtained by repeating the deterministic computer analysis of
a bridge according to Model B3 eight times—one run for each
of eight different randomly generated samples of eight input
parameters.

The range of the cumulative distribution of each random input
variable (assumed to be Gaussian) is partitioned into N intervals
of equal probability. The parameter values corresponding to the
centroids of these intervals are selected according to randomly
generated Latin hypercube tables (these tables can be freely down-
loaded from the ITI website, http://iti.northwestern.edu/generator,
so a bridge designer would not need to work with a random number
generator). The values from the rows of these tables are then used as
the input parameters for N deterministic computer runs of creep and
shrinkage analysis.

Choose N ¼ n ¼ number of random input parameters (here,
N ¼ n ¼ 8) is sufficient. One random input variable is the envi-
ronmental relative humidity h, with the mean and coefficient of
variation being estimated as 0.70 and 0.2 (70% and 20%). The
other parameters are the material characteristics q1, q2, q3, q4,
q5, kt , and ε∞, representing the parameters of Model B3. According
to Model B3, the means of these parameters for the KB Bridge were
assumed to be q1 ¼ 0:188, q2 ¼ 1:42, q3 ¼ 0:262, q4 ¼ 0:14,
q5 ¼ 2:33, kt ¼ 19:2, and ε∞ ¼ 0:000981. The estimated coeffi-
cient of variation was 23% for creep parameters q1, q2, and q5,
and 30% for q3 and q4 (these have a higher uncertainty as they
relate to long-term creep and data relating to this are scarce). For
shrinkage parameters kt and ε∞ (Bažant and Panula 1978a, b, c, d;
Bažant and Baweja 1995, 2000), the estimated coefficient of varia-
tion was 34%.

The responses from each deterministic computer run for Model
B3 (Set 2), particularly the midspan deflections at specified times,
were collected in one histogram of eight values, with the mean �w
and coefficient of variation ωw being the desired statistics. Knowing
these and assuming the Gaussian (or normal) distribution, the one-
sided 95% confidence limit was obtained as w95 ¼ �wð1þ
1:645 ωwÞ (i.e., the limit that was exceeded with a probability of
5%). In other words, the limit would be exceeded by one out of
20 identical bridges, which seems to give the optimal balance
between risk and cost.

The curves of the mean and the one-sided 95% and 5% confi-
dence limits for the KB Bridge in Palau are shown for Model B3,

Fig. 9. Excessive deflections observed in a continuous bridge in the
Czech Republic (images courtesy Lukas Vrablik, with permission)

Fig. 10. Mean response and 95% confidence limits of Model B3 in normal and logarithmic scales
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Set 2, in Fig. 10. The curves of the present finite-element calcula-
tions according to the ACI and CEB models lie way outside the
statistical confidence band obtained with Model B3, and the
traditional prediction lies even farther outside the confidence band.

Using the database (Bažant and Li 2008a) as the prior informa-
tion, the statistics of long-term deflection can be further improved
by means of Bayesian statistical analysis (Křístek and Bažant
1987). The probabilistic problem of deflections is fortunately much
easier than the problem of structural safety. For the latter, the
extreme value statistical theory must be used, because the tolerable
probability of failure is < 10−6, far less than the value of 0.05 that
is acceptable for deflections.

Summary of the Main Causes of Underestimation of
Deflections and Prestress Loss

In the order of decreasing importance, the main causes of under-
estimation of deflections and prestress loss are as follows:
1. Poor material model for creep and shrinkage;
2. Beam-type analysis instead of a full 3D analysis;
3. Differences in the rates of shrinkage and drying creep because

of different thicknesses of slabs in the box cross section; and
4. Lack of statistical estimation of the range of possible

responses.
Detailed conclusions will be presented in Part II (Bažant

et al. 2012).

Appendix. Resolution of Third Structural Engineers
World Congress

1. The structural engineers gathered at their Third World
Congress deplore the fact the technical data on the collapses
of various large structures, including the Koror-Babeldaob
Bridge in Palau, have been sealed as a result of legal
litigation.

2. They believe that the release of all such data would likely lead
to progress in structural engineering and possibly prevent
further collapses of large concrete structures.

3. In the name of engineering ethics, they call for the immediate
release of all such data. [Proposed at the congress by Z. P.
Bažant, in the name of the following group of experts whose
support has been obtained in advance: C. Andrade (Madrid),
L. Belarbi (Missouri), N. Bićanić (Glasgow), I. Carol
(Barcelona), L. Cedolin (Politecnico di Milano), T.-P. Chang
(Taipei), J.-C. Chern (Taipei), W. Dilger (University of
Calgary), L. Elfgren (Lulea), R. Eligehausen (Stuttgart Univer-
sity), E. Fairbairn (Rio de Janeiro), D. M. Frangopol (Lehigh),
P. Gambarova (Politecnico di Milano), W. Gerstle (University
of New Mexico), N. M. Hawkins (Seattle), A. Ingraffea
(Cornell University), M. Jirásek (CTU Prague), J. W. Ju (Los
Angeles), M. T. Kazemi (Tehran), J.-K. Kim (KAUST, Korea),
V. Křístek (CTU Prague), C. Leung (HKUST, Hong Kong),
Z.-J. Li (Hong-Kong), K. Maekawa (University of Tokyo),
G. Maier (Politecnico di Milano), C. Majorana (University
of Padua), H. Mang (Vienna), P. Marti (ETHZ), H. Mihashi
(Sendai), D. Novák (BTU Brno), J. Ožbolt (Stuttgart Univer-
sity), B. Raghu-Prasad (Bangalore), I. Robertson (Honolulu),
J. G. Rots (Delft), V. Saouma (Boulder), B. Schrefler (Padua),
Susanto Teng (Singapore), S. Teng (Singapore), T. Tanabe
(Nagoya), T. Tsubaki (Yokohama), F.-J. Ulm (MIT), J. van
Mier (ETHZ), C. Videla (Santiago), M. Vořechovský (BTU
Brno), K. Willam (University of Colorado at Boulder), Y. Xi
(Boulder), and A. Zingoni (Cape Town)].
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Excessive Long-Time Deflections of Prestressed Box
Girders. II: Numerical Analysis and Lessons Learned

Zdenĕk P. Bažant, Hon.M.ASCE1; Qiang Yu2; and Guang-Hua Li3

Abstract: As a sequel to Part I, which clarified the causes of the unexpectedly large deflections of the Koror-Babeldaob Bridge in the Pacific
island nation of Palau, Part II presents the numerical procedure and reviews the lessons learned. The box girder represents a thick shell that is
discretized by eight-node, three-dimensional (3D) finite elements. Except for corrections due to cracking, concrete creep is assumed to follow
aging linear viscoelasticity and is modeled by a rate-type law based on the Kelvin chain, the properties of which are adjusted for humidity
conditions and temperature. In each time step and at each integration point, Widder’s formula is used to convert the aging compliance function
to a continuous retardation spectrum for the current age of concrete, and discretization of the spectrum yields the current elastic moduli of the
Kelvin units. The shrinkage strains depend on the environmental humidity and the thickness of each plate in the cross section. The compu-
tations proceed according to Bažant’s exponential algorithm, which is unconditionally stable and reduces the problem to a sequence of
elasticity problems with an orthotropic effective stiffness of material and nonisotropic inelastic strains, different for each integration point
in each time step. These problems are solved by commercial software ABAQUS. The segmental construction sequence is also modeled. The
computer results reported in Part I explain the excessive deflections and compare the performance of various material models for creep and
shrinkage. Part II formulates the lessons learned and makes recommendations for implementation. DOI: 10.1061/(ASCE)ST.1943-541X
.0000375. © 2012 American Society of Civil Engineers.

CE Database subject headings: Creep; Shrinkage; Viscoelasticity; Deflection; Box girders; Numerical analysis; Prestressing.

Author keywords: Kelvin chain; Design standards; Segmental erection; Bridges; Shear lag; Prestressed concrete; Relaxation.

Introduction

The creep and shrinkage analysis of segmentally built prestressed
concrete box girders is, in practice, often conducted in a rather
simplified way. It usually relies on the material models recom-
mended by the American Concrete Institute (ACI), Comité
Euro-International du Béton/Fédération Internationale de Béton
(CEB-FIP), and the Japan Society of Civil Engineers (JSCE),
which grossly underestimate multidecade creep, give unrealistic
shapes of creep and shrinkage curves and unrealistic effects of dry-
ing, and assume the creep to terminate at some fixed upper bound,
for which no experimental support exists. In computer programs for
long-time creep, the box girder is typically simplified as a beam
with cross sections remaining plane, except that shear lag correc-
tions for the effective width of top slab are usually made.

The previous analysis of the Koror-Babeldaob Bridge (hereafter,
the KB Bridge) in Palau confirms that such simplifications are unre-
alistic. However, as demonstrated by the computer results in Part I,
a significant improvement has been made possible by the advances

in material modeling of creep and shrinkage. The computational ap-
proach, which is usable for all box girder bridges, is presented here.

Creep Structural Analysis Utilizing ABAQUS

By step-by-step analysis, the structural creep problem gets reduced
to a sequence of elastic finite-element analyses for an elastic stress-
strain relation with inelastic strain, one analysis for each time step,
which is an approach proposed in Bažant (1967). Because each
such analysis can be carried out with a commercial finite-element
program, one merely needs to find a suitable commercial finite-
element program that has the requisite geometric and material
modeling features. The software ABAQUS (Dassault Systèmes/
SIMULIA; Providence, Rhode Island) has been chosen.

The plates (slabs and walls) of the box girder are subdivided into
eight-node isoparametric finite elements (Fig. 1). Except in the top
slab, the finite elements are chosen to extend through the whole
thickness because the stresses caused by load do not vary signifi-
cantly through the thickness and plate bending is not important. For
drying creep and shrinkage, accurate modeling may generally
require the wall thickness to be subdivided into at least six finite
elements, but Model B3 makes it possible to avoid thickness sub-
division because it is based on an analytical solution of drying
according to the diffusion theory. This approach would not be ac-
curate for cross sections subjected to flexure or highly eccentric
compression, because the creep specimens in the underlying data-
base are loaded centrically and are drying symmetrically. However,
for the box girder, the accuracy is good because the resultant of
normal stresses across the wall is everywhere nearly centric, the
same as in standard creep tests.

In view of symmetry, only one-half of the bridge is analyzed.
Together with the pier, it is subdivided into 5,036 hexahedral
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elements. The mesh, automatically generated by ABAQUS, is
shown in Fig. 1. The prestressing tendons and the nonprestressed
steel bars are further subdivided into 6,764 bar elements connected
rigidly (with no slip) to the nodes of the three-dimensional (3D)
mesh [the information on unprestressed steel is found in ABAM
(1993)]. Sufficiency of mesh fineness has been validated by check-
ing that a finer mesh with 20,144 hexahedral elements would yield
only a negligible improvement of the computed elastic deflections.

The differences in the ages of various segments, the sequential
prestressing at various times, and the stepwise load increase in the
individual segments during construction (including the extra
weight of 1,068 kN, or 240 kips, introduced during the construction
by the formwork-carrying traveler) are taken into account accord-
ing to the actual cantilever erection procedure. To simulate this seg-
mental erection procedure, the elements are deactivated at first and
then progressively reactivated according to the construction
sequence (the ABAQUS keyword that enables this helpful feature
is Model change, Remove/Add).

The individual prestressing bars, of which there are 316 above
the main pier, were modeled as two-node line elements, attached to
concrete at the nodes. The individual bars of unprestressed steel
reinforcement were modeled similarly. The introduction of pre-
stress was handled in ABAQUS automatically by the keyword Ini-
tial conditions, type = stress, user in the keyword editor. Thus, it
sufficed to specify the prestress values of every tendon in the user
subroutine sigini of ABAQUS. Although not all the tendons were
prestressed fully at the same time (T. Y. Lin International 1996),
each tendon was assumed to get fully prestressed 7 days after
its anchoring segment had been cast. Capturing the time schedule
accurately is important for the initial deflection history but not for
multiyear deflections.

Because the tendons are straight, the curvature friction is nil and
only the wobble friction was modeled. To do that, the initial
prestress was diminished according to the length of each individual
tendon using the wobble coefficient κ ¼ 0:0003∕ft or 0:00098∕m
(e.g., Nilson 1987; DRC 1996).

The prestress losses caused by creep and shrinkage, by se-
quential prestressing of tendons, and by relaxation of steel stress,
σs, are automatically reproduced by ABAQUS. For constant
strain, ϵ, the relaxation is assumed to follow the CEB-FIB for-
mula (CEB 1990) for prestress loss ratio: ρ ¼ ðσ0 � σsÞ∕σ0 ¼
ρ1ðt∕1;000 hoursÞk where σ0 ¼ initial prestress, k ≈ 0:12, and
ρ1 ≈ 6:5% (value of ρ at 1,000 h). Because the strain in steel
must be equal to the strain in adjacent concrete, which varies with

time t, this formula is generalized as (Bažant and Yu, “Viscoplas-
tic constitutive law for prestressing steel relaxation at varying
strain,” yet unpublished, 2012)

_ϵ ¼ _σ
Et

þ kρ1∕k1 AT

Etλ1
FðϵÞ

½1� σ∕FðϵÞ�1∕k�1 ¼
_σ
Et

þ σ
η

ð1Þ

Δϵν ¼
σ
η
Δt ¼ kρ1∕k1 AT

Etλ1
FðϵÞ

½1� σ∕FðϵÞ�1∕k�1 Δt ð2Þ

where σ = current stress, FðϵÞ = stress at the short-time strain-
stress curve for the initial prestressing, Et = tangential modulus =
F0ðϵÞ (which is normally equal to E except for alloy bars with
high prestress), and AT ¼ expðQ∕kBT0 � Q∕kBTÞ = Arrhenius
temperature factor (Cottrell 1964), which equals 1 for room tem-
perature T0 ¼ 298K, T = absolute temperature, Q = activation
energy, kB = Boltzmann constant, and Q∕kB ¼ 2;800K according
to experimental data (fib 2010); for details, see Bažant and Yu
(ibid.). For the KB Bridge, the tropical sunlight was considered
to heat the pavement to about 55°C, and a simple calculation of
heat conduction indicated that the top layer of tendons must have
reached approximately 30°C within 2.5 h after pavement heating
and for about 6 h daily. Based on the aforementioned value of
Q∕kB, it was estimated that, as a time-averaged value, AT ≈ 2
for these tendons.

The foregoing stress-strain relation applies to tendon steel at any
time step Δt. It is based on the Kelvin chain model for creep with
stress-dependent viscosity and is implemented in the user subrou-
tine uexpan of ABAQUS. For Δϵ ¼ 0 or ϵ ¼ ϵ0, integration of
Eq. (1) yields the CEB-FIB formula. Its validity is also verified
by experiments (Magura et al. 1964; Buckler and Scribner 1985).

Effects of Slab Thickness, Temperature,
and Cracking

Model B3 predicts separately the basic creep of the material
(i.e., the part of creep unaffected by moisture content variation)
and the additional effects of drying. These effects consist of the
average shrinkage and average drying creep (or stress-induced
shrinkage) in the cross section, and depend on the effective thick-
ness, D, of the cross section.

The shrinkage is modeled by inelastic strain increments in the
user subroutine uexpan. In each of the 25 segments of the central
half-span, the plate thicknesses, D, and concrete ages are different,
resulting in a different shrinkage function and a different compli-
ance function for each plate of each segment.

Recent research (Křístek et al. 2006) has revealed extreme sen-
sitivity of box girder deflections to the differences in the rates of
shrinkage and drying creep between the top and bottom slabs.
Because Model B3 is physically based, the differences in its param-
eters between top and bottom can be assessed realistically, based on
the known drying rates.

These rates are characterized by the shrinkage half-times, for
which the diffusion theory gives the equation τ sh ¼ ktðksDÞ2
[see Eq. (1.11) in Bažant and Baweja (2000)]; ks = a shape param-
eter (¼ 1 for plates), and kt = a permeability parameter for which a
crude empirical estimate exists; kt ¼ 0:03∕C1 [see Eq. (28.12) in
Jirásek and Bažant (2002)] where C1 ¼ kaP1 = diffusivity, ka≈
constant, and P1 = permeability of concrete, which depends on tem-
perature and the extent of cracking.

The mean temperature of the bottom slab and webs was prob-
ably 25°C (77°F), but during the day the top slab with the roadway
layer—exposed on top to intense tropical sunlight—was probably

Fig. 1. Three-dimensionally meshed model of KB bridge and grouped
segments
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some 20°C (36°F) warmer. According to the curves for the temper-
ature effect on permeability in Fig. 10.3(b, c) of Bažant and Kaplan
(1996), this likely caused a tenfold decrease of τ sh for the top slab.
Furthermore, although no cracking could have occurred in the com-
pressed bottom slab and webs, the top slab must have developed
hairline cracks because it was under tension due to the excessive
prestress loss. On the basis of the experiments reported (Bažant
et al. 1987), cracks of 0.15-mm width will increase the drying rate
by a factor of about 3. The same may be assumed for the top slab,
and so, according to Eq. (1.20) of Bažant and Baweja (2000), the
value of kt ¼ 19:2 is used for the bottom slab and the webs, and the
value of kt ¼ 19:2∕30 ¼ 0:64 for the top slab. In calculations of
deflections, the stiffness of the pavement layer is entirely neglected
because it is unreinforced and in tension. However, because the
pavement tends to decelerate the drying rate of the top slab, its
effective thickness is taken into account in shrinkage modeling.

If V = volume and S = surface of a cross-section slice of the
whole box, it used to be commonplace to consider one V∕S value
as a characteristic of the whole cross section, i.e., to take
D ¼ 2V∕S. In that case, D was a property of the whole cross sec-
tion, resulting in supposedly uniform shrinkage and supposedly
uniform creep properties. However, Křístek et al. (2006) showed
that, to avoid serious errors (which usually lead to overoptimistic
interpretation of small, early deflections), differences in the drying
rate attributable to different thicknesses Di (i ¼ 1,2,3) of the top
slab, the bottom slab, and the webs must be taken into account.

A simple way to do that, demonstrated in Křístek et al. (2006), is
to apply a model such as B3 separately to each plate of the cross
section. Since the drying half-times are proportional to the square
of slab thickness, the thickness differences then yield different
shrinkage and different drying creep compliance in different plates.

According to models such as that of ACI, a thickness increase
allegedly scales down the creep and shrinkage through a certain
constant multiplicative factor, including the alleged final value
for infinite time. However, in reality (except for a small multipli-
cative reduction due to a higher degree of hydration reached in
thicker slabs), a thickness increase causes a delay, properly mod-
eled as deceleration and characterized as an increase of the shrink-
age half-time, which is proportional to the square of thickness
(e.g., if the ultimate shrinkage for a slab 0.10 m or 4 in. thick is
reached in 10 years, for a slab 1 m or 40 in. thick it is reached
in 1,000 years, that is, virtually never).

Because of excessive prestress loss, the top slab is found to get
into tension after the first year. Although no large tensile cracks
were observed by JICA (1990), ABAM Engineers Inc. (1993) re-
ported sparse fine cracks in the first six segments from the midspan.
Calculations show that if the tensile strength limit, f 0t, is ignored, the
tensile stresses in the top slab would in subsequent years reach the
stress of about 2f 0t, where f 0t = tensile strength, estimated as
6 psi

ffiffiffiffiffiffiffiffiffiffiffiffi
f 0c∕psi

p ¼ 3:0 Mpa ¼ 433 psi. The most realistic model
would be the cohesive crack model with rate-dependent softening,
applied to growing parallel cracks of uniform spacing, with the
material between the cracks considered as viscoelastic (Bažant
and Li 1997). However, implementing this model with ABAQUS
has been found to be virtually impossible.

After trying various simplifications with ABAQUS, the compu-
tations were eventually run under the simplifying assumption that
the effective incremental modulus, E″, for the current time step
(which includes the effect of creep and is used in Steps 2 and 3
of the Appendix) gets reduced to E″∕4 when the tensile stress
exceeds 0:7 f 0t (Fig. 2). With this simplification, the maximum
computed tensile stress in the top slab is about 3.0 MPa, and
the corresponding strain is 1.83 times larger than the actual
strain at peak tensile stress. With hardening due to positive E″∕4

compensated by the 70% strength reduction, the tensile stress
resultant happens to be about the same as that obtained with a more
realistic model consisting of a bilinear softening stress-strain rela-
tion with an unreduced tensile strength limit and the softening
modulus of about �E″∕3. The error compared with this more real-
istic model is estimated as< 1% of the deflection. In comparison, if
unlimited tensile strength were assumed, the computed deflections
would have been about 4% smaller.

Combined with the steel stiffness, the softening of concrete
would have resulted in overall tension stiffening, which would have
been easy to implement had all the computations been pro-
grammed. But in the algorithm with ABAQUS, the tensile soften-
ing turned out to be intractable because it would have interfered
with the programming of the exponential algorithm for creep. This
is why a positive modulus E″∕4 had to be adopted.

Creep Analysis and Rate-Type Model Based on
Kelvin Chain

The traditional characterization of concrete creep by the creep co-
efficient, giving the creep-to-elastic strain ratio, must be avoided
(Bažant 1975, 1982; RILEM 1988; Bažant and Baweja 1995;
Jirásek and Bažant 2002) because, due to pronounced short-time
creep for durations > 0:0001 s, the definition of “elastic modulus”
is ambiguous. Significant errors have often been caused by combin-
ing the creep coefficient with an incompatible value of the conven-
tional elastic modulus. Thus, the analysis must properly be based on
the compliance function Jðt; t0Þ, defined as the total strain ϵxx at age t
caused by a sustained uniaxial stress σxx ¼ 1 applied at age t0.

An individual material constitutive law corresponding to every
different creep and shrinkage prediction model has been developed
for the user subroutine umat of ABAQUS. The three-dimensional
generalization is obtained under the assumption of material isot-
ropy; and a time-independent Poisson ratio, ν (Bažant 1975,
1982; RILEM 1988); ν ¼ 0:21 is used here, based on core sample
tests (Berger/ABAM 1995). Linear viscoelasticity implies the prin-
ciple of superposition in time, the direct application of which gives
the stress-strain relation in the form of a history integral. However,
major deviations from the principle of superposition are caused by
tensile cracking and by time variations of humidity and temperature
(and also by triaxial damage in compression, which, however, can be
ignored for service states). Therefore, the history integrals are
inapplicable and the corrections for cracking, for example, must be
introduced after converting the compliance function to an equivalent
rate-type creep law, which is here based on the Kelvin chain model.
This conversion also greatly improves computational efficiency.

In the case of Model B3, conversion of the compliance function
of basic creep to a rate-type creep law is particularly easy. It can be
done according to the solidification theory (Bažant and Prasannan
1988, 1989a, b; Jirásek and Bažant 2002), in which the aging is

Fig. 2. Strain-stress relation if tensile strength is exceeded
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taken into account by means of volume growth of the solidifying
component and by a gradual increase with age of the flow term
viscosity. Thus, it is possible to use a nonaging compliance func-
tion for the solidifying component, for which one can uniquely
determine a continuous retardation spectrum. This spectrum can
be readily obtained fromWidder’s formula (Tschoegl 1989), a sim-
ple, explicit formula that is based on the inversion of the Laplace
transform (Bažant and Xi 1995). The parameters of the Kelvin
chain model are in this case constant (i.e., nonaging) and are simply
obtained as a discrete representation of the continuous spectrum.

For empirical models, such as those of ACI, CEB, JSCE, and
Gardner-Lockman (GL) (ACI 2008), such an approach is impos-
sible because a nonaging constituent in the sense of the solidifica-
tion theory cannot be identified for these models. Therefore,
compliance curves that change with the age at loading must be
used, as defined by Jðt; t0Þ. This problem was handled in the
1970s by considering the retardation (or relaxation) spectrum to
be age-dependent, which meant that the spectrum of elastic moduli
EμðtÞ (μ ¼ 1,2,3,…) of the Kelvin (or Maxwell) chain model had
to be considered as age-dependent, too (Bažant 1975, 1982;
RILEM 1988). Unfortunately, the least-squares identification of
these moduli as functions of age appeared to be an ill-conditioned
problem because different functions EμðtÞ provided almost equally
good fits of Jðt; t0Þ, even if they were not increasing monotonically
as required by aging.

An age-independent spectrum can nevertheless be used within
each sufficiently short time step, such that the creep properties, in-
cluding the moduli and viscosities of the Kelvin chain model, could
be considered to be approximately age-independent, corresponding
to concrete age tn�1∕2 in the middle of the time step. Indeed, for the
stress changes within a short enough time step, the concrete may be
considered to behave as a nonaging, linearly viscoelastic material
characterized by the Kelvin chain moduli and viscosities corre-
sponding to age tn�1∕2, which depend only on the compliance curve
Jn�1∕2ðtÞ ¼ Jðt; tn�1∕2Þ. This curve corresponds to one retardation
spectrum and is approximated by one Kelvin chain, having constant
moduli Eμðtn�1∕2Þ (μ ¼ 1,2,3,…), applicable to the current time
step only.

For the average age tn�1∕2 corresponding to every time step, the
compliance curve Jn�1∕2ðtÞ corresponding to, for example, the ACI,
CEB, or GL model, one must identify the corresponding retardation
spectrum corresponding to age tn�1∕2. This can be done according to
Widder’s explicit formula (Bažant and Xi 1995), before starting the
step-by-step finite-element analysis of the structure. This continuous
retardation spectrum is approximated by a set of discrete spectral
values, Eμ, a different set for each time step. These spectral values
are then used in the individual time steps of Bažant’s exponential
algorithm based on the Kelvin chain (as described in Bažant
1971, 1975, 1982; RILEM 1988; Jirásek and Bažant 2002).

For example, the ACI compliance function (ACI 1971), which
reads Jðt; t0Þ ¼ ψðt0Þf ðξÞ, where ξ ¼ t � t0 and f ðξÞ ¼ ξ0:6∕
ð10þ ξ0:6Þ, can be approximated by a continuous retardation spec-
trum (Bažant and Xi 1995) for a fixed value of the given aging
function, ψðt0Þ:

Aμ ¼ ψðt0ÞLðτμÞΔðlog τμÞ ln 10;

LðτμÞ ¼ � lim
k→∞

ð�kτμÞk
ðk � 1Þ! f

ðkÞðkτμÞ
ð3Þ

where k = a positive integer, and f ðkÞ = a kth-order derivative of
function f ðξÞ (k ¼ 3 usually suffices for good accuracy).

In Fig. 3 (top), two sets of constant moduli of the Kelvin chain
obtained by approximating the continuous spectrum are used to

approximate the compliance function, Jðt; t0Þ, corresponding to
sustained stress applied at age t0 ¼ 7 days (diamond points) or
210 days (circle points). The difference from the Jðt; t0Þ curves
is negligible compared with the ACI model. In advance of the
step-by-step finite-element analysis, the spectrum and the corre-
sponding set of Kelvin chain moduli, Eμ, are identified from the
given compliance function for the center of each time step.

The corresponding spectra Aμ (μ ¼ 1,2,3,…) are also plotted in
Fig. 3 (middle). Note that in each case the spectrum, Aμ, approaches
0 as the retardation time, τμ, increases. The reason is that the creep
strain expressed by the ACI model is bounded, with the creep rate
essentially vanishing after 10 years [this is, of course, contradicted
by long-term creep test results, as reported by, Brooks (1984,
2005), for example]. The surface of the continuous spectra,
Aμ ¼ 1∕Eμ, that closely approximates the ACI compliance func-
tion for different ages at loading is exemplified in Fig. 3 (bottom),
where the coordinates are the retardation times, τμ, and the ages t0.
For the CEB, JSCE, and GL models, the procedure is similar.

For Model B3, which is based on solidification theory, the
moduli of the Kelvin chain are constant but only for basic creep.
As demonstrated in Fig. 4 (top), the creep compliances for ages,
t0 ¼ 7 days (diamonds) and 210 days (circles), can be closely ap-
proximated by the same nonaging spectrum, which is plotted in the
middle of Fig. 4. In addition to the basic creep, there is in Model B3
a separate drying creep term, which captures the Pickett effect. This
term applies only to the in-plane directions, so different compliance
functions had to be obtained for the in-plane and transverse direc-
tions of the plates. The drying creep term of Model B3 applies only

Fig. 3. Retardation spectra of ACI model
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to the normal strains and causes no Poisson effect. These distinc-
tions cannot be made for the other models. Unlike the basic creep,
which is unbounded, the drying creep is bounded. Like the shrink-
age, it depends on humidity and cross-section thickness.

The microprestress-solidification theory (Bažant et al. 1997)
would have been more realistic for representing both the drying
creep and aging. However, it would have required calculating
the distributions of pore relative humidity across the thickness
of each slab, which would have necessitated not one but at least
six finite elements over the slab thickness.

In Model B3, the drying creep is approximated by the compli-
ance function

Cdðt; t0; tcÞ ¼ q5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�8HðtÞ � e�8Hðt0Þ

p
;

HðxÞ ¼ 1� ð1� hÞ tan h
ffiffiffiffiffiffiffiffiffiffiffiffi
x� tc
τ sh

r ð4Þ

where t = current age of concrete, t0 = age at loading, tc = curing
time, h = relative humidity, and τ sh = shrinkage halftime. As shown
in Eq. (4), a nonaging spectrum cannot be identified to approximate
the drying creep. Therefore, an age-dependent spectrum similar to
Eq. (3) is calculated. The spectrum Aμ, describing the drying creep,
is plotted in Fig. 4 (bottom). This age-dependent spectrum
approaches zero as the retardation time, τμ, increases because
the drying creep is bounded. Contrary to the nonaging spectrum
for basic creep, it reaches a finite value as τμ increases. Therefore,
the overall asymptotic long-time creep predicted by Model B3 will
follow a constant slope when plotted in the logarithmic scale.

In previous research (Bažant 2000) and the current study, the
models other than B3 exhibit some serious deficiencies, theoretical
as well as practical. One deficiency, especially for the ACI and
CEB models, is that the long-time creep is strongly underestimated.
Other deficiencies of the ACI model and, to a lesser extent, the CEB
model, are that the drying creep, which is very sensitive to the cross-
section thickness, is not separated from the basic creep and that the
effects of thickness on shrinkage and on drying creep are described
by a scaling factor rather than by a time delay (Bažant 2000).

After the Kelvin chain moduli for the current time step, Δt, and
the current integration point are obtained, the exponential algorithm
(Bažant 1975, 1982; RILEM 1988; Jirásek and Bažant 2002) is
implemented. It was derived as the exact solution for stress varying
linearly within Δt (Bažant 1971). Although the standard central or
backward difference algorithm becomes numerically unstable for
Δt exceeding the shortest τμ, this algorithm is unconditionally sta-
ble. The initial time steps, Δt, after the hinge installation at mid-
span were 0.1, 1, 10, and 100 days. After that,Δt was kept constant
at 100 days up to 19 years. For the deflection prediction up to
150 years, all the subsequent time steps (Δt) were 1,000 days.
Although time steps increasing in geometric progression would
have been computationally more efficient, they would not have
matched the times of deflection measurements.

Comparison to Bending Theory with Plane
Cross Sections

The existing computer programs for creep effects assume that the
prestressed concrete box girders follow the engineering theory of
bending, which presumes the cross sections of the box to remain
planar and normal to the deflection curve. However, this theory is
too simplified to capture the 3D deformation of box girders. The
main deficiency is that it misses significant shear lag effect in the
top slab, in the webs, and in the bottom plate, each of which is
different for the self-weight and for the prestress loads from tendon
anchors. Fig. 5 shows the distribution of normal and shear stress in
the cross section located at 14.63 m (48 ft) from the main pier under
self-weight and in the cross section at 60.35 m (198 ft) from the
main pier under prestress.

Fig. 4. Retardation spectrum of Model B3

Fig. 5. Stress distribution in the cross section at different locations
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A strong sensitivity to errors occurs because the bridge deflec-
tion represents a small difference between two large, statistically
uncertain, numbers—the downward deflection caused by the
self-weight and the upward deflection attributable to the prestress.
The shear lag plays a relatively more important role in the former.
The error caused by neglecting the shear lags is thus magnified.

Fig. 6 shows that the discrepancy between the full 3D analysis
and the analysis based on the engineering theory of bending is sig-
nificant. The deflections and prestress losses for both cases are
compared using the B3 and ACI models. Compared with the 3D
analysis, the analysis using the classical bending theory is found
to underpredict the deflection by about 20%.

In the KB Bridge design, an approximate correction for the shear
lag in the top slab attributable to self-weight was introduced (Khaled
Shawwaf, former structural analyst on KB Bridge design team
and currently a director at Dywidag Systems International USA,
Bolingbrook, Illinois; personal communication, September 18,
2008) through the classical effective width concept (Reissner 1946;
Benscoter 1954; Abdel-Samad et al. 1968; Malcolm and Redwood
1970; Richtlinien 1973). However, these classical formulas are not
veryaccurate andstillmiss the shear lags in thewebsandbottomslabs
and those due to prestress forces. This causes a significant error.

Cyclic Creep and Its Structural Effect

In discussions at various conferences it has often been claimed that
the cyclic creep caused by repeated traffic loads may explain the
excessive long-time deflection. Let us examine this claim.

As argued in Bažant and Kim (1992), the cyclic creep caused by
repeated traffic loads may best be represented as an acceleration of
the basic creep attributable to the sustained load. The acceleration
of creep by a compressive stress cycled between limits σmin and
σmax may be represented as a forward shift, ΔtN , of the time for
which the deformations are evaluated. A recent investigation
(not yet published) found that the empirical formula proposed in
Bažant and Kim (1992) was contaminated by lack of separation
of fatigue data for high stress levels. The corrected empirical for-
mula for the time shift can be expressed as

ΔtN ¼ kcNΔqσp
maxf

0�q�p
0 ð5Þ

where f 00 = compressive strength at the time of loading (estimated
as 25.2 MPa, or 3,658 psi for the KB Bridge); Δ ¼ σmax � σmin;
N = total number of cycles during t � t0; q and p = dimensionless
constants; kc = constant of the inverse unit of supplied frequency,
e.g., day. When kc ¼ 0:0038 day, p ¼ 0, and q ¼ 3:54, Eq. (5)
gives the best fitting of test data for sealed specimens.

At the centroid of the bottom slab at the face of the pier, σmin ¼
7:50 MPa (1,088 psi). The most important traffic loads are heavy
trucks, considered to weigh about 20 tons (44,092 lb). The stress
caused by each of them is calculated to be about 0.21 MPa
(30.5 psi), so σmax ¼ 7:71 MPa (1,118.5 psi). It is estimated that
only about 1 million such trucks passed over the KB Bridge within
18 years (i.e., N ¼ 106). For the KB Bridge, the intervals between
such heavy trucks were so long that the time average of the cyclic
stress component was negligible and �σ≈ σmin = stress caused by

Fig. 6. Comparison of deflections obtained by full 3D analysis with deflections obtained according to the bending theory with cross sections re-
maining plane
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all permanent loads (self-weight, prestress, and additional dead
load). Substitution of these numbers into Eq. (5) yields

ΔtN ¼ 106 × 0:0038 days × ð0:21∕25:2Þ3:54 ¼ 0:00017ðdaysÞ
ð6Þ

Thus, the effect of cyclic creep attributable to the heavy trucks is
equivalent to extending the duration of static creep by about 14 s. In
this calculation, it was assumed that only one 20-ton truck would
appear at the midspan at a given time. The number of simultaneous
occurrences of two or three such trucks at themidspan is estimated to
be N ¼ 10;000 or 1,000, respectively (during 18 years), and similar
calculations then show that the cyclic creep produced is equivalent to
extending the static creep duration by 1.67 s or 0.7 s, respectively.

Traffic observations further showed that about 200 regular cars,
of about 3 tons each, passed over the bridge per hour during day-
time. This gives N ¼ 16 million car passages in 18 years. Similar
calculations give the extension of 0.3 s.

All these extensions together amount to about 17 s of static
creep for the cross section at the face of the pier. From this, one
can determine the additional cyclic creep strain in the bottom plate.

Similar calculations can be repeated for the forward time shifts of
cyclic creep strain history at various points of theweb and top plate of
the cross section at the face of the pier. Because both σmax andΔ are
smaller, the forward shift of the creep history at these points will be
less than 17 s. Hence, 17 s is the upper bound for the forward shift of
the curvature history of the girder at this cross section.Calculations for
the quarter-span cross section give a slightly longer time shift, but the
effect of curvature increase on the midspan deflection is, for the
quarter-span cross section,much smaller than it is for the cross section
at the pier face. Consequently, the upper bound on the forward time
shift of the midspan deflection history should be roughly the same as
the upper bound on the shift of the curvature history in the cross sec-
tion at the pier face. Looking at the terminal slope of the deflection
curve of the bridge in Fig. 4 of Part I, which is about 1 m per
15,000 days, one concludes that the cyclic creep increased the mid-
span deflection by not more than 1m × 0:0002∕15;000≈ 0 m.

For bridges of shorter spans, in which the self-weight represents
a smaller portion of the load, the stress cycles span over a greater
portion of stress range and their effect is magnified by high expo-
nent q in Eq. (5). Then the cyclic creep effect can be more impor-
tant, although hardly major. For example, the Nusle Valley Bridge
in Prague (Bažant 1968a, b), which has spans of 102 m and carries
a much heavier traffic load (subway trains inside the box in addition
to cars on top) was analyzed (by a different method) in 1966. It was
concluded that the cyclic creep would increase the deflection of that
bridge by only 4 cm (Bažant 1968b).

The present model of cyclic creep analysis was formulated in
Bažant and Panula (1979), refined in Bažant and Kim (1992),
and improved recently. Eq. (5) was also validated by comparisons
with the main existing data (Gaede 1962; Kern and Mehmel 1962;
Whaley and Neville 1973; Suter and Mickleborough 1975; Hirst
and Neville 1977). Note that the present cyclic creep correction
cannot be applied to the ACI, CEB, and JSCE models. They would
give a zero effect of cyclic creep because the creep load-deflection
curve terminates with a horizontal asymptote.

This analysis also brings about another interesting point.
Because (aside from the nonlinear corrections for drying and crack-
ing) the principle of superposition is the basis of creep analysis, the
time average of traffic loads should be included in the permanent
loads. So, the effect of cyclic creep, which can be neglected for
traffic loads of low frequency and small amplitude, might be non-
negligible for bridges with many lanes, with both a highway and a
railroad, or with a dense traffic of heavy trucks.

Lessons Learned and Recommendations

1. As a purely predictive tool, none of the available material mod-
els for predicting creep and shrinkage is satisfactory.

2. The 1971 ACI model (reapproved in 2008) (ACI 2008) and, to a
somewhat lesser extent, the CEB and JSCEmodels, severely un-
derestimatemultidecade deflections aswell as the prestress losses
and give an unrealistic shape of deflection histories. The recent
GLmodel (ACI 2008) gives better predictions but not sufficiently
better. None of thesemodels has free intrinsic input parameters to
be updated from experiments or to explore the range of possible
responses, and none can take temperature into account.

3. Model B3, which is, to a large extent, theoretically based and
has been calibrated by filtering out the database bias for short
durations and ages, gives significantly better multidecade pre-
dictions of the deflection history and its shape, and of the de-
flection growth rate.

4. Even Model B3 is unsatisfactory when its input parameters are
estimated from the composition of concrete or taken at their de-
fault values. However, because of its free parameters, Model B3
can be made to fit the measurements perfectly with input para-
meters that are within their realistic ranges, agreeing with the
long-termtestdata that exist.Thus, the formofModelB3appears
to be correct, and the problem iswith the empirical formulas pre-
dicting the input parameters from the composition of concrete.
Obviously, these formulas should be improved.

5. The box girders are thick-walled shells for which the beam-
type analysis is inadequate. Three-dimensional analysis must
be used. Its main purpose is to capture the shear lag effects,
which are different for self-weight and for the loads from pre-
stressing tendons, and occur not only in the top slab but also in
the webs and the bottom slab. At the piers, the self-weight pro-
duces large vertical shear forces in the web, while the prestress
does not; the loads from tendon anchors produce shear lags
mainly in the top slab. The shear lag for the self-weight is
stronger than it is for the prestress. Because the total deflection
is a small difference of two large statistically uncertain
numbers—one for the downward deflection caused by self-
weight and the other for the upward deflection caused by
prestress—small percentage errors in each (typically�10–15%)
will result in a far larger percentage error in the total deflection.

6. For box girders wider than the KB Bridge (which had only two
lanes), the difference between the beam-type analysis of creep
and shrinkage and the 3D analysis, which captures the shear
lag effects, must be expected to be larger.

7. The effect of thickness differences among the webs and the top
and bottom slabs on the drying shrinkage and drying creepmust
be taken intoaccount.This leads tononuniformcreepandshrink-
age properties throughout the cross section,manifested as differ-
ential drying creep compliances and differential shrinkage.

8. For the tendons embedded in the top slab, the periodic heating
by sunlight may significantly intensify the steel stress relaxa-
tion, which in turn may appreciably increase the deflections.

9. In the creep and shrinkage prediction model, the drying creep
should be separated from the basic creep, because the former is
thickness-dependent and approaches a finite terminal value,
whereas the latter is thickness-independent and unbounded.
Only Model B3 has this feature. As evidenced by the KB
Bridge, the thickness-induced differences in the compliance
functions for drying creep can be more important than those
in shrinkage.

10. The prestress loss in box girders can be two to three times high-
er than predicted by simple textbook formulas or lump esti-
mates. It can also be much higher than that calculated by
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the theory of beam bending, in which the cross sections are
assumed to remain plane. It should be calculated as part of
the 3D finite-element analysis of stresses and deflections.

11. When dealing with large, creep-sensitive structures, the creep
and shrinkage prediction model must be updated by means of
short-time tests of the creep and shrinkage of the given con-
crete. The updating is effective only if the curves of creep
and shrinkage growth have correct shapes for short times,
which is the case only for Model B3.

12. The shrinkage tests must be accompanied by simultaneous
measurements of water loss caused by drying (Bažant and
Baweja 1995, 2000); otherwise, the extrapolations can have
errors of the order of 100% [the value of such tests has been
demonstrated for some recent large bridges; Navrátil (1998)].
B3 is a model that has been specifically formulated to allow
easy updating by linear regression, whereas the updating pro-
blem is nonlinear for other models.

13. Large bridges should be designed not for the mean but for the
95% confidence limit on the predicted deflection (in other
words, having to repair or close only 1 among 20 similar
bridges is acceptable, but 10 is not). The necessary statistical
analysis is easy. It suffices to repeat a deterministic computer
run of structural response about 10 times, using random sam-
ples of the input parameters. Since the distribution of structural
response can be assumed to be normal, it suffices to obtain
from the structural responses only the mean and the coefficient
of variation.

14. As observed in a previous study (Křístek et al. 2006), the de-
flection evolution of large box girders is usually counterintui-
tive. The deflections at first grow slowly or are even negative,
which may lead to unwarranted optimism, but after a few years
a rapid and excessive deflection growth sets in. The early de-
flections of the KB Bridge were not measured, but according to
the present computer simulations with nonsymmetric drying,
the deflection growth of this bridge must have been very slow
during the first year (Fig. 3 in Part I).

15. In design, it is prudent to minimize deflections and prestress
losses by the following measures, most of which are well
known though often not followed: (1) avoid midspan hinge;
(2) choose a concrete with a low long-time creep; (3) use a
tendon layout that minimizes deflections (Křístek et al. 2008);
(4) give concrete more time to gain strength before prestres-
sing; (5) increase the level of prestress, preferably so high
that an upward deflection be predicted; (6) use stiffer (deeper)
girders; and (7) install empty ducts for possible later installa-
tion of additional tendons.

Appendix. Algorithm and Numerical Implementation

Algorithm Utilizing ABAQUS (Applicable to
All Creep Models)

1. For each integration point of each finite element, specify effec-
tive slab thickness, tb, relative humidity, h, and temperature, T
(but, if h and T vary, they must be updated at the start of each
time step). For curing time t ¼ tc, initialize the 6 × 1 vector
(column matrix) of shrinkage strains ϵ0s . For t ¼ t0, initialize
the internal variables γð0Þμ ¼ 0 (μ ¼ 1;…;N) and Jðt0; t0Þ ¼
1∕E0 (E0 = conventional short-time elastic modulus, except
that for the B3 model E0 ¼ 1∕q1 = asymptotic modulus. Select
the discrete retardation times τμ ¼ 10μ�7, μ ¼ 1; 2;…;N,
where, for lifespan< 250 years, N ¼ 13 satisfies the condition
that 10N�7 ≈ 10 × lifespan (see Note I).

2. Loop over time steps (separated by discrete times
tn; n ¼ 1; 2;…). Set Δt ¼ tn � tn�1, and tn�1∕2 ¼ t0þ
½ðtn � t0Þðtn�1 � t0Þ�1∕2 for n > 1. For n ¼ 1, t1∕2 ¼
ðt0 þ t1Þ∕2.

3. Loop over finite elements and their integration points.
4. Calculate the increment of 6 × 1 shrinkage strain vectorΔϵs ¼

ϵsðtnÞ � ϵsðtn�1Þ from tb, h, and T in user subroutine uexpan.
5. Supply current stress σðn�1Þ and strain increment Δϵ ¼

Δϵtotal �Δϵs calculated by ABAQUS to the user material sub-
routine in umat, in which Bažant’s exponential algorithm is
implemented.

6. Use Widder’s formula LðτμÞ ¼ �limk→∞ð�kτμÞkCðkÞðkτμÞ
½ðk � 1Þ!��1 to calculate the continuous retardation spectrum;
here CðkÞ = kth derivative on t of the creep part Cðt; tn�1∕2Þ of
compliance function, C ¼ J � 1∕E0 (usually k ¼ 3 suffices
for good approximation). Determine the discretized spectrum
AðτμÞ ¼ LðτμÞ ln 10Δðlog τμÞ ¼ LðτμÞ ln 10. Calculate βμ ¼
e�Δt∕τμ, λμ ¼ τμð1� βμÞ∕Δt, Dμ ¼ ½AðτμÞð1� λμÞ��1; in-
cremental modulus E00ðtn�1∕2Þ ¼ ½E�1

0 þP
N
μ¼1 D

�1
μ ��1.

7. Compute the inelastic (creep) strain increment vec-
tor Δϵ″ ¼ P

N
μ¼1ð1� βμÞγðn�1Þ

μ .
8. Supply to ABAQUS for this integration point the 6 × 6 incre-

mental quasielastic matrix stress-strain relation Δσ ¼
E″DðΔϵ�Δϵ″Þ where D is a constant 6 × 6 matrix for isotro-
pic material with given Poisson ratio ν.

9. Check the tensile strength limit σi ≤ f 0t (σi = principal stresses,
i ¼ 1, 2, 3). If exceeded, reduce the stress according to the spe-
cified postpeak behavior (although usually unnecessary, the
compressive damage could also be included here).

10. End of loops over finite elements and over their integration
points.

11. Run with ABAQUS the elastic finite-element analysis, in
which each integration point has generally a different elastic
moduli matrix and different inelastic strains.

12. Update the internal variable vectors γðnÞμ ¼ λμΔσD�1
μ þ

βμγ
ðn�1Þ
μ .

13. End of loops over finite elements and their integration points,
and go to Step 2 and begin the next time step.

14. End of loop over time steps.
Note I: The number N of internal variables could actually

be reduced to about five to seven, but then the first LðτμÞ
would have to be computed as the integrated area under the
spectrum up to �∞ in the log-time scale (the reason is that
Kelvin units with τμ ≪ Δt behave as springs, the compliances
of which can thus be combined into one compliance). Using
N ¼ 22 for Model B3 and N ¼ 13 for other models increases
the demand on computer time and storage but is simpler to
program. The spectral values LðτμÞ for τμ ≫ t can be ignored
because the corresponding Kelvin units behave as per-
fectly rigid.

Exponential Algorithm Simplifications for Model B3

The foregoing algorithm can be used for Model B3 if jðt; t0Þ is com-
puted for each integration point. However, for basic creep, there
exists a simpler exponential algorithm (Bažant and Prasannan
1989a, b), which needs only the compliance rate _Jðt; t0Þ and is ap-
plied only to the nonaging viscoelasticity of the nonaging constitu-
ent of growing volume. The following steps are then modified:

In Step 1, μb ¼ 1; 2;…;Nb, τbμ ¼ 10�15þμb
, and

μd ¼ 1; 2;…;Nd, τdμ ¼ 10�7þμd
. Here Nb ¼ 22 and Nd ¼ 15

(τb, τ d = retardation times for basic creep and drying creep).
In Step 6, for basic creep, replace Aðτμ) with

Abðτ bμÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∕tn�1∕2

p þ q3∕q2Þ × AðτbμÞ, where AbðτbμÞ is the dis-
cretized spectrum for basic creep.
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In Step 7, Δϵ″ ¼ P
Nb

μ¼1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∕tn�1∕2

p þ q3∕q2
�
× ð1�

βμÞγðn�1Þ
μ þP

Nd

μ¼1ð1� βμÞγðn�1Þ
μ .

After Step 7, add the strain increment due to the viscous
flow: Δϵ″ ¼ Δϵ″ þ q4σðn�1ÞΔt∕tn�1∕2.

Implementation Example Using ACI-209 Model

For the ACI model, Jðt; t0Þ ¼ ð1þ φðt; t0ÞÞ∕Eðt0Þ, φðt; t0Þ ¼
2:35γcðt � t0Þ0:6∕½10þ ðt � t0Þ0:6�, where γc = empirical factor
accounting for age t0 at loading, humidity, slab thickness, slump
of fresh concrete, and contents of fine aggregates and of air. In
ABAQUS, the exponential algorithm is used in the user material
subroutine:
1. At t ¼ t0, initialize the internal variables: γ

ð0Þ
μ ¼ 0, Jðt0; t0Þ ¼

1∕Eðt0Þ where t0 = time when the first load is applied.
Select τμ ¼ 10�7þμðμ ¼ 1; 2;…; 13Þ. Use Widder’s formula
to calculate the continuous spectrum: d3φ∕dξ3 ¼ ψðξÞ ¼
2:35γc½0:336ξ�2:4ð10 þ ξ0:6Þ�1 þ 0:528ξ�1:8ð10 þ ξ0:6Þ�2þ
0:432ξ�1:2ð10þ ξ0:6Þ�3 � 1:296ξ�0:6ð10þ ξ0:6Þ�4�, where
ξ ¼ t � t0; LðτμÞ ¼ 2:35γcð3τμÞ3ψð3τμÞ∕2, where γc is calcu-
lated using tn � 1∕2.

2. Obtain the discretized spectrum: AðτμÞ ¼ LðτμÞ ln 10∕
Eðtn � 1∕2Þ, and calculate βμ ¼ e�Δt∕τμ , λμ ¼ τμð1� βμÞ∕
Δt, Dμ ¼ ½AðτμÞð1� λμÞ��1. The effective modulus then is
E00�1ðtn�1∕2Þ ¼ E�1ðtn�1∕2Þ þ

P
N
μ¼1 D

�1
μ .

3. Calculate the creep strain increment: Δϵ″ ¼ P
N
μ¼1

ð1� βμÞγðn�1Þ
μ . The stress-strain relation for this integration

point to be supplied to ABAQUS: Δσ ¼ ϵ″ðtn � 1∕2Þ
DðΔϵ�Δϵ″).

4. Update the internal variables γðnÞμ ¼ λμΔσD�1
μ þ βμγ

ðn�1Þ
μ , and

go to the next time step.
To check programming, the following results should be

obtained: For γc ¼ 1:25ðt0Þ�0:118, Ee ¼ E28

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t∕ð4þ 0:85 tÞp

where E28 ¼ 30 GPa, and σ ¼ 1 MPa applied at t0 ¼
7 days, the results are ϵ ¼ 4:92 × 10�5 for t ¼ 8 days; ϵ ¼
9:68 × 10�5 for t ¼ 100 days; ϵ ¼ 0:00012 for t ¼ 1;000 days
and ϵ ¼ 0:000129 for t ¼ 10;000 days. These are almost
the same results as those obtained directly from the ACI
formula.
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