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Scaling of Strength of
Metal-Composite Joints—Part I:
Experimental Investigation
Knowledge of the size effect on the strength of hybrid bimaterial joints of steel and fiber
composites is important for new designs of large lightweight ships, large fuel-efficient
aircrafts, and lightweight crashworthy automobiles. Three series of scaled geometrically
similar specimens of symmetric double-lap joints with a rather broad size range (1:12)
are manufactured. The specimens are tested to failure under tensile displacement-
controlled loading, and at rates that ensure the peak load to be reached within approxi-
mately the same time. Two series, in which the laminate is fiberglass G-10/FR4, are tested
at Northwestern University, and the third series, in which the laminate consists of NCT
301 carbon fibers, is tested at the University of Michigan. Except for the smallest speci-
mens in test series I, all the specimens fail by propagation of interface fracture initiating
at the bimaterial corner. All the specimens fail dynamically right after reaching the
maximum load. This observation confirms high brittleness of the interface failure. Thus,
it is not surprising that the experiments reveal a marked size effect, which leads to a 52%
reduction in nominal interface shear strength. As far as the inevitable scatter permits it to
see, the experimentally observed nominal strength values agree with the theoretical size
effect derived in Part II of this study, where the size exponent of the theoretical large-size
asymptotic power law is found to be �0.459 for series I and II, and �0.486 for series
III. �DOI: 10.1115/1.3172254�
Introduction
Hybrid structures consisting of metals and fiber composites of-

er many advantages for the design of large lightweight ships �1�
nd fuel-efficient aircrafts. Metal-composite joints are a crucial
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element of such designs. Because of the cost of failure tests of
large structures, laboratory tests must, in many situations, be con-
ducted on a much reduced scale. Thus, it is essential to have a
correct method to extrapolate the results obtained from small
laboratory specimens to much larger structural parts.

For purely metallic structures, such extrapolation is relatively
easy, since there is no deterministic size effect and the statistical
size effect, which is relatively weak, is well understood. However,
fiber composites are quasibrittle materials, which were shown
�2–5� to exhibit, in general, a deterministic energetic size effect
�6–10�. This size effect is much stronger than the statistical size

effect observed in fatigue-embrittled metals.
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In fracture mechanics of bimaterial joints, significant advances
ave already been made �11–16�. The same can be said of adhe-
ive layers between two dissimilar materials �17–20�. However,
he scaling of the strength of these joints does not seem to have
een studied.

One complication in fracture mechanics of these joints is that
he singularity exponent of the stress field at the tip of an interface
rack is a complex number. In linear elastic fracture mechanics
LEFM�, a nonzero imaginary part implies an oscillating crack
pening profile with interpenetration of the opposite crack faces.
fter protracted debates, two conclusions eventually emerged

21,22�: First, the distance from crack tip over which LEFM pre-
icts interpenetrations to occur is generally much smaller than the
ize of the fracture process zone �FPZ�, which means that the
nterpenetrations are outside the range of validity of the LEFM
olution. Second, in spite of the interpenetrations, the complex
ingularity field does give the correct energy release rate of a
ropagating interface crack �17,23,24�, which is what really mat-
ers.

Another complication in hybrid joints is that the fracture ini-
iates from the stress singularity at a reentrant corner. The same
omplication, of course, occurs for reentrant corners in homoge-
eous materials. For a finite corner angle, the real part of the
xponent of the corner tip stress singularity in bimaterial, as well
s homogeneous situations, is larger than − 1

2 . This implies the
nergy release rate at the corner to vanish, and so it is impossible
o satisfy the energy balance for a sharp �LEFM� crack initiating
rom the corner. The way around this problem is to recognize that
finite FPZ must form at the corner first.
One way to approximate such an FPZ is to postulate an equiva-

ent LEFM crack at the corner �25,26�. Together with the crack tip
ingularity, this introduces a pair of stress field singularities lo-
ated very close to each other. But then a rigorous LEFM analysis
ecomes difficult and messy.

A better and more physical approach is to admit at the outset
hat both singularities actually lie within the domain of one FPZ,
hich envelops both the corner and crack tip. A realistic approxi-
ate way to deal with it is to consider that a cohesive crack with
given softening stress-separation relation emanates from the cor-
er. Combining the exact corner and crack tip singular fields with
he finite element analysis of cohesive fracture, Bažant and Yu
27� presented an accurate solution of this problem for symmetri-
ally loaded corners of various angles in a homogeneous material,
nd derived by means of asymptotic matching the law of size
ffect in fracture at such corners �27�. However, for reentrant cor-
ers in bimaterial joints, the size effect appears to be unknown. To
etermine it is the goal of this two-part study.

The first part of this study presents experimental evidence of
he size effect in hybrid joints. The second part, which follows,
eals with the analytical formulation of the size effect, based on
imaterial interface fracture mechanics. Computational simulation
f the size effect in hybrid joints is planned for a subsequent
aper.

Choice of Test Specimens
Two types of specimen geometry and composition have been

nvestigated—one at Northwestern University and another at the
niversity of Michigan. The geometry of the double-lap metal-

Fig. 1 Geometry of double-lap hybrid joint
omposite joints tested is shown in Fig. 1.
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In each hybrid joint, there are eight bimaterial corners: four
interior and four exterior. Based on the singularity exponent, the
interface crack should start at the interior ones. The test results
confirm it.

The nominal strength �N is a load parameter with the dimension
of stress, and is here defined as �N= Pmax /bD. Here, Pmax is the
maximum load �which must be the failure load if load control is
used�, b is the width of the joint �in the third dimension�, and D is
the characteristic size �or dimension� of the joint �any in-plane
dimension can be chosen as D since only the relative sizes mat-
ter�. For this study, D is the length of the interface.

2.1 Specimen Dimensions. The greater the size effect ratio
compared with the width of the scatter band, the lower is the
ambiguity in identifying the size effect. For the typical random
scatter in the testing of fiber composites, it is found that the size
range must be at least 1:8 to produce a sufficient size effect range,
and thus achieve unambiguous test results with a small enough
error �8,28,10�.

To avoid manufacturing specimens of variable sizes, which is
normally more costly, some researchers tried to exploit the LEFM
energy release rate function g��� to deduce the size effect indi-
rectly from specimens of one maximum cross section dimension,
but different in shape or different in notch depth. Unfortunately,
this method is fraught by large statistical error because the range
of the so-called brittleness number �8,10� achievable by varying
the geometry at constant maximum size is too limited �29�.

Two series of geometrically similar specimens using the same
type of laminate were manufactured and tested at Northwestern
University �see Figs. 2�a� and 2�b��. A third series with a slightly
different geometry was manufactured and tested at the University
of Michigan to explore the size effect for a different type of lami-
nate �see Fig. 2�c��.

In the first two test series, the steel blocks at each end are
enlarged to accommodate the connectors of the steel chain
through which the tensile load is applied. For the third test series,
an additional 38.1 mm length is added to the steel bars at both
ends so that wedge grips can be used for loading. Except for the
aforementioned support parts, all the specimens within each test
series are geometrically similar �which means the dimensions of
D, Ds, Lc, Ls, t, and s have the same ratios for all the sizes�. Such
scaling makes detection and calibration of the size effect particu-
larly easy because the material failure criteria expressed solely in
terms of stresses and strains predict no size effect, i.e., the same
with the nominal strength �N, regardless of the specimen size
�6–9�.

The specimens of series I and II were loaded in tension through
chains at both ends to ensure that the tension resultant is centric.
However, the specimens of series III were fixed at both ends
against rotation and loaded at both ends by wedge grips. In gen-
eral, such end fixtures could lead to tensile force eccentricity.
However, thanks to careful attention to the alignment of end sup-
ports, the strain gauges on the opposite sides of the specimen gave
nearly identical readings. This confirms that the resultant was
centric.

The size ratios have been selected as 1:4:12 for series I and II,
and 1:3:9:12 for test series III, both of which suffice to meet the
aforementioned required breadth of the size range. There are three
specimens in series I, and nine specimens in each of series II and
III. In test series I there is thus only one specimen for each char-
acteristic size D. In test series II there are three for each size, and
in series III there are three for the two larger sizes, two for the
smaller size, and one for the smallest size. The specimen dimen-
sions in all the series are listed in Table 1. In series I, the smallest
specimen was found to fail by tensile fracture of the laminate

rather than by shear fracture along the interface, and to avoid it,
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he relative laminate thickness in series II has been doubled. The
ther dimensions for series I and II are the same; the width b
20 mm in series I and II, and b=25.4 mm in series III. The

Fig. 2 Specimens of „a… test series
III
ptimal selection of Ds, s, Lc, and Ls was determined by finite

ournal of Applied Mechanics
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element simulation �30� in order to ensure that: �1� the singular
stress fields introduced by bimaterial corners would not apprecia-
bly interfere with each other, and that �2� the steel block would

„b… test series II, and „c… test series
I,
still be in the elastic range when the hybrid joint fails.

JANUARY 2010, Vol. 77 / 011011-3
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2.2 Properties of Composites. The metal and the laminate
re the same for series I and II. The metallic part is made of 1018
old rolled steel having elastic modulus E=200 GPa and Pois-
on’s ratio �=0.3. The composites of the hybrid joint are
berglass-epoxy laminates �G-10/FR4 Epoxy Grade procured
rom McMaster-Carr, Inc.�. The G-10/FR4 Garolite, manufactured
y continuous weaving, is a glass-cloth laminate with epoxy resin
inder. Although excellent tensile strength and high impact resis-
ance is expected for the G-10/FR4 Garolite, the supplier does not
rovide precise information about its material properties, which
re essential for theoretical analysis and numerical simulation. To
etermine these properties for series I and II, three types of test
re carried out.

�1� The uniaxial tensile test is used to obtain the in-plane
Young’s modulus E11 and Poisson’s ratio �13. Among dif-
ferent standard tensile test methods for composite materi-
als, the Composites Research Advisory Group �GRAG�
method 302, used to test axially orthotropic woven fiber-
reinforced laminates �31�, is selected. Accordingly, three
specimens of length L=260 mm, width W=20 mm, thick-
ness t=1.588 mm, and tab length Lt=50 mm are cut from
one and the same G-10/FR4 Garolite sheet �see Fig. 3�. To
measure the longitudinal and transverse strains, a strain
gauge is glued at the center to each specimen.

�2� The uniaxial compressive test is used to obtain the through-
thickness Young’s modulus E22 and Poisson’s ratio �21. In
contrast to the in-plane elastic properties and transverse
shear modulus G12, there exists no recognized national or
international standard for measuring E22 and �21. The rea-
son seems to be partly that strain and stress gradients are
introduced by fabrication of thick sections �32�, and partly

Table 1 Dimens

Specimen
s

�mm�
Ls

�mm� �

I-S-1 2.5 2.5 2
I-M-1 10 10 9
I-L-1 30 30 27
II-S-1,2,3 2.5 2.5 2
II-M-1,2,3 10 10 9
II-L-1,2,3 30 30 27
III-SS-1 3.175 6.35 1
III-S-1,2 9.525 19.05 4
III-M-1,2,3 28.575 57.15 14
III-L-1,2,3 38.1 76.2 19

I: test series I; II: test series II; III: test series III.

Fig. 3 Tests giving basic material properties of lamin

test, and „c… V-notched beam test

11011-4 / Vol. 77, JANUARY 2010
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that the through-thickness properties are dominated by the
polymer matrix, which is isotropic. For the compressive
test, three laminate prisms, with dimensions of 35�15
�15 mm3, are cut from the same G-10/FR4 Garolite block
and then bonded to a 50�35�35 mm3 steel block at each
end �see Fig. 3�. The strains of two gauges, glued at the
opposite sides of each specimen, are averaged to eliminate
a possible effect of compression eccentricity.

�3� The Iosipescu V-notched beam test is used to obtain the
through-thickness shear modulus G21. Three flat rectangu-
lar specimens with dimensions 76�19.05�4 mm3 are
made, and two 90 deg angle notches, with faces oriented at
�45 deg to the longitudinal axis, are cut to the depth of
3.81 mm at the center of both edges �see Fig. 3�. Biaxial
strain gauges are bonded between the notches to measure
the shear strains.

The following in-plane and through-thickness material proper-
ties of G-10/FR4 Garolite are obtained: E11=30.0 GPa, v13
=0.17, E22=9.5 GPa, v21=0.20, and G12=3.0 GPa.

The adhesive, which glues the steel and G-10/FR4 Garolite
together, is the E-60HP metal-plastic bonder procured from
McMaster-Carr, Inc. Although E-60HP provides high shear
strength and peel resistance, its strength varies widely with the
surface treatment. In test series I, the steel surface is sandblasted
by extra coarse aggregate with glass beads �procured from Potters
Industries, Inc.�. In test series II, the steel surface is smooth.

In series III, the metallic part is the same as in series I and II.
The composites are made using Newport NCT301 carbon lami-
nates, which is a unidirectional tape laminate with an epoxy resin
matrix, and the adhesive is NB1101 0.030 psf epoxy film adhe-

s of specimens

�
Ds

�mm�
t

�mm�
D

�mm�

5 0.794 10
20 3.175 40
60 9.525 120

5 1.588 10
20 6.35 40
60 19.05 120

75 1.5875 0.2413 6.35
25 4.7625 0.7366 19.05
75 14.2875 2.1844 57.15

19.05 2.9718 76.2

s: „a… tensile test, „b… through-thickness compressive
ion

Lc
mm

2.5
0
0
2.5
0
0
5.8
7.6
2.8
0.5
ate
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ive. Both laminates and adhesives are produced by Newport Ad-
esives and Composites, Inc. According to the material data sheet,
he properties for the uniaxial composites are: E11=125.5 GPa,
12=�31=0.304, E22=9.0 GPa, and G12=5.6 GPa.

Size Effect Test
All the specimens are loaded under displacement control by a
aterial Testing Systems, Inc. �MTS� servohydraulic testing sys-

em. To ensure centric tensile load, a steel chain is connected to
he specimen by a cylindrical pin for series I and II; see Fig. 4�a�.

ig. 4 „a… Test setup at Northwestern University; „b… test setup
t the University of Michigan

Fig. 5 Load-displacement deformation curves

series III, and „d… tensile fracture in laminates an

ournal of Applied Mechanics
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In test series III, the specimens are fixed at both ends by wedge
grips �Fig. 4�b��.

To isolate the rate dependence from the size effect, the fracture
process zone in specimens of different sizes should get fully de-
veloped within about the same time �28�. To meet this require-
ment, the loading rates �rates of the stroke of loading piston� are
chosen as 0.09 mm/min, 0.3 mm/min, and 0.9 mm/min for differ-
ent sizes in test series I. At these rates, the peak loads are reached
within 7–10 min. In test series II, the loading rates were 0.2 mm/
min, 0.5 mm/min, and 0.8 mm/min, and the peak loads were
reached within 5–6 min for all the sizes. In test series III, the
loading rates were 0.152 mm/min, 0.456 mm/min, 0.760 mm/min,
and 1.216 mm/min, and it took 3–6 min for all the specimens to
reach their peak loads. Unlike test series I, in which only the load
and stroke data were recorded, two linear variable displacement
transducer �LVDT� devices in series II �Fig. 4�a�� and four strain
gauges in series III �Fig. 4�b�� are installed at the opposite sides of
each specimen to measure the relative displacement or strains and
monitor a possible load eccentricity.

All the specimens failed in a brittle manner, which is docu-
mented by a sudden load drop after the specimens reached their
peak loads in the load-displacement plots �see Figs. 5�a�–5�c��.
The failure was dynamic and it occurred right after the peak load
had been reached, and in the largest specimens there was a loud
boom. All the specimens plotted in Figs. 5�b� and 5�c� exhibited
interfacial failure.

Beside the interfacial failure in medium and large size speci-
mens, another type of failure occurred in test series I. As shown in
Fig. 5�d�, the laminates of the smallest specimen failed by tensile
fracture across the laminate, and a crack along the metal-

… of test series I, „b… of test series II, „c… of test
„a

d shear fracture in bimaterial interface

JANUARY 2010, Vol. 77 / 011011-5
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omposite interface could not develop fully. Therefore, the failure
ata for the smallest specimens are not comparable, and only the
ata for the medium and largest specimens of series I can be used.
bviously, the laminate thickness was too small in relation to the

nterface length, and it was for this reason that the laminate thick-
ess was doubled for series II. Tensile fracture of the laminate
lso occurred in several of the smaller specimens in test series III.
o identify the size effect exclusively on the interface shear
trength, these tests had to be ignored.

Interpretation of Experimental Results
As known from the theory of crack interactions and stability

33�, the fractures propagate from all the four inner corners simul-
aneously in a stable manner while the load is increasing �except
or small differences due to inevitable random deviations from
erfect symmetry�. After the peak load, only one of the four in-
erface cracks can grow, while the others must unload. The obser-
ations from the tests support this kind of fracture evolution.

The recorded peak loads for all the specimens of series I, II, and
II are listed in Table 2 �only two peak loads are listed for the
argest specimens of series II, because the electronic equipment

alfunctioned in one test�. The corresponding plots of log �N
ersus log D, as shown in Figs. 6 and 7, for all test series, display
conspicuous size effect. For a fourfold size increase, the nominal

trength reduction is significant �52% in series II and 40% in
eries III�. In series I, the �N value for the smallest specimen,
hown by a solid circle, cannot be used to calibrate the size effect
aw because the failure occurred in the laminate rather than the
nterface. Nevertheless, the �N value that would correspond to the
nterface failure must be higher than the solid circle point, and
hus, series I, too, confirms a strong size effect.

The test data may be fitted by the size effect equation

�N = �0�1 + D/D0�� �1�
hich is derived by asymptotic matching from fracture mechanics

n Part II of this study; �0, D0, and � are constants. D0 is called
he transitional size, which generally equals the material charac-

Table 2 Rec

Specimen
P

�kN� Specimen
P

�kN�

I-S-1 6.00a I-M-1 28.09
II-S-1 8.19 II-M-1 21.85
II-S-2 7.89 II-M-2 27.90
II-S-3 8.51 II-M-3 20.57
III-SS-1 11.60 III-S-1 31.51
– – III-S-2 37.48
– – – –

aFailed by tensile fracture of laminate.

ig. 6 Measured nominal strength values compared with opti-
um fit by size effect formula „solid curve…: „a… test series I and
b… test series II

11011-6 / Vol. 77, JANUARY 2010
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teristic length �8,10� times a geometry dependent factor obtainable
from the equivalent LEFM. Since the size range is not broad
enough and the scatter is not small enough to determine the ex-
ponent � purely experimentally, the values �=−0.459 for series I
and II, and �=−0.486 for series III, which give the asymptotic
slopes in logarithmic size effect plots, are derived theoretically in
Part II of this study �34�. They are seen to agree with the present
test data.

Using nonlinear statistical regression of the test data, one finds
�0=47.8 MPa and D0=20.77 mm for test series II, with �
=8.7%, and �0=98.0 MPa and D0=18.75 mm with �=10.5%
for series III �where � is the coefficient of variation of the regres-
sion errors, i.e., the standard error of regression divided by the
data mean�. When plotted in the double-logarithmic scales �Figs. 6
and 7�, the negative curvature documenting the transition from
quasiplastic behavior at small sizes to the LEFM for large sizes is
clearly apparent. For test series I, the data exist for only two sizes,
which is not statistically sufficient to fit a formula with two free
parameters. However, the large-size asymptote of slope �0.459
agrees with series I data �see Fig. 6�.

Figure 5�b� shows the load-displacement curves of series II
specimens, all of which failed due to fracture propagation in the
bimaterial interface. Note the sudden dynamic load drop after the
peak for all the sizes. This means that the post-peak equilibrium
path exhibits a snapback �i.e., runs to the left of the load drop�.
For all quasibrittle materials, the snapback takes place when the
large-size asymptote is approached closely enough. In the fracture
testing of concrete, the size above which the snapback occurs is
quite large. The fact that here the snapback occurs even for the
smallest specimen available means that, compared with other qua-
sibrittle materials such as concrete, the stress-separation diagram
of the cohesive interface crack must have a relatively steeper de-

ed peak load

Specimen
P

�kN� Specimen
P

�kN�

I-L-1 46.49
II-L-1 –
II-L-2 50.01
II-L-3 45.40

III-M-1 76.81 III-L-1 83.66
III-M-2 78.01 III-L-2 83.87
III-M-3 78.77 III-L-3 81.27

Fig. 7 Measured nominal strength of test series III compared
ord
with optimum fit by size effect formula
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cent, and the FPZ must be narrower �8,28� �a similar conclusion
or fracture within laminates is also obtained in a previous study
35��.

Before the peak load, the FPZ must grow simultaneously at all
he corners. But after the peak, the interface crack propagates
rom one corner only. From which one? This is decided by the
orner singularity exponents. In the analytical study �34�, which
ollows in Part II of this study, the stress singularity at the inner
imaterial corners �the corners closer to the center of test speci-
en� is much stronger than that at the outer corners. Thus, the

rack should propagate from one of the four inner corners, or
enerally from a corner at which the stiffer bar �in this case the
teel bar� terminates. This is confirmed by studying the damage
attern of the laminates after the failure test �see Fig. 8�a��. The
ormation of the cohesive interface fracture can be inferred from
he delamination marks, which form because the crack advances
n jumps. In the laminates of the small- and medium-size speci-

ens of series II, the delamination marks are seen only in the
egion near the interior corners, while at the exterior corners, the
aminates are almost intact. The crack development in the bima-
erial interface is further documented by the laminate damage pat-
ern in the large specimens of series II �see the photo in Fig. 8�a��,
hich shows the delamination to start from the inner corner and

hen gradually grows through the whole interface. A similar evo-

Fig. 8 „a… Delamination pattern observed in test serie
in test series II, and „c… strain differences at opposite
ution of the delamination is also observed in series III.

ournal of Applied Mechanics
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For perfectly centric axial tensile loading, no bending moment
will develop until the fracture localizes into one of the four inter-
faces in the hybrid joint. This means that the LVDT or strain
gauges on opposite sides should give similar readings. The read-
ings were not identical, but their difference was small enough to
be attributed to inevitable errors in the alignment and material
fabrication.

Figure 8�b� shows, by solid and dashed lines, the evolution of
displacement differential with increasing load. Note that the small
displacement nonuniformity in the small-size specimens has al-
most no effect on the peak load. For the two large-size specimens,
one specimen displays a negligible displacement difference �a
long horizontal portion of the dashed line�, and the other shows
substantial nonuniform displacement �ascending dashed line�.
Nonetheless, the peak load difference between these two speci-
mens is insignificant compared with the coefficient of variation in
the nonlinear size effect regression, which is �=8.7%.

Unlike series I and II, the specimens of series III are loaded by
wedge grips at both ends. This is a support condition which might
introduce axial load eccentricity, with asymmetric stresses in the
opposite laminates. Nevertheless, according to the readings of the
four strain gauges bonded to the opposite sides of specimens, the

, „b… differences in readings of opposite LVDT gauges
ecimen sides recorded in test series III
s II
sp
difference between the strains at opposite sides was negligible,

JANUARY 2010, Vol. 77 / 011011-7

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



w
w
s

5

s
s

s
s
s

p
i
t

s
f
t
p
c
r
u
g

A

t
f

R

0

Downlo
ith no appreciable effect on the nominal strength �see Fig. 8�c�,
hich shows the typical strains due to bending moment for all the

izes�.

Conclusions
The strength of metal-composite hybrid joints exhibits a strong

ize effect. A fourfold increase in size may cause the nominal
trength to drop by more than 50%.

Experiments on geometrically similar specimens of different
izes agree with the theoretical size effect law �34�, representing a
mooth transition from quasiplastic behavior in the theoretical
mall-size limit to brittle �LEFM� behavior in the large-size limit.

Observation of the damage patterns in the failed specimens sup-
orts the theoretical prediction that the interface fracture should
nitiate at the corner, at which the stiffer of the two joined bars
erminates.

The documented presence of size effect implies that the
trength of metal-composite hybrid joints cannot be calculated
rom material models with failure criteria expressed solely in
erms of stress and strain, which have been typical of elastic,
lastic, and plastic-damage models. Rather, cohesive fracture me-
hanics or nonlocal damage mechanics, in which the failure crite-
ion involves some type of energy or material length, must be
sed. Otherwise, the strength of large hybrid joints would be dan-
erously overestimated.
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Scaling of Strength of
Metal-Composite Joints—Part II:
Interface Fracture Analysis
The effect of the size of hybrid metal-composite joint on its nominal strength, experimen-
tally demonstrated in the preceding paper (part I), is modeled mathematically. Fracture
initiation from a reentrant corner at the interface of a metallic bar and a fiber composite
laminate sheet is analyzed. The fracture process zone (or cohesive zone) at the corner is
approximated as an equivalent sharp crack according to the linear elastic fracture me-
chanics (LEFM). The asymptotic singular stress and displacement fields surrounding the
corner tip and the tip of an interface crack emanating from the corner tip are calculated
by means of complex potentials. The singularity exponents of both fields are generally
complex. Since the real part of the stress singularity exponent for the corner tip is not
� 1

2 , as required for finiteness of the energy flux into the tip, the interface crack propa-
gation criterion is based on the singular field of the interface crack considered to be
embedded in a more remote singular near-tip field of the corner from which, in turn, the
boundaries are remote. The large-size asymptotic size effect on the nominal strength of
the hybrid joint is derived from the LEFM considering the interface crack length to be
much smaller than the structure size. The deviation from LEFM due to finiteness of the
interface crack length, along with the small-size asymptotic condition of quasiplastic
strength, allows an approximate general size effect law for hybrid joints to be derived via
asymptotic matching. This law fits closely the experimental results reported in the pre-
ceding paper. Numerical validation according to the cohesive crack model is relegated to
a forthcoming paper. �DOI: 10.1115/1.3172152�
Introduction

The preceding first part of this study �1� presented experimental
vidence of a strong size effect on the strength of hybrid joints of
etal to polymer-fiber composite. The objective of the second part

s a mathematical analysis of the observed size effect.
In the past four decades, extensive analytical studies have been

evoted to the effect of structure size on the strength of structures
ade of quasibrittle materials. These are brittle heterogeneous
aterials, which include concrete, as the archetypical case, fiber

omposites, sea ice, rocks, tough ceramics, stiff cohesive soils,
igid foams, wood, paper, bone, etc., and all brittle materials on a
ufficiently small scale. In quasibrittle structures, the maximum
oad is reached after a stable development of either a large crack,
r a large fracture process zone �FPZ� with distributed cracking.
he latter case leads to Type 1 energetic size effect, which transits

n the large-size limit to the Weibull statistical size effect. In the
ormer case, the pre-existing crack is approximately equivalent to
notch, which leads to Type 2 energetic size effect �2,3�.
Williams’ solution �4� showed the dependence of the stress sin-

ularity exponent on the angle of a corner in a homogeneous
ody. A general approximate size effect law was recently derived
or fracture emanating from a reentrant corner of arbitrary angle,
rovided that the loading is symmetric and the body is homoge-
eous and isotropic �5�. This size effect formulation now needs to
e extended to a corner at the interface between two different
aterials, one of which is orthotropic. Compared with a reentrant

orner in a homogeneous material, the analysis of a reentrant bi-

1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the
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cript received April 13, 2009; published online October 1, 2009. Review conducted

y Robert M. McMeeking.

ournal of Applied Mechanics Copyright © 20
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material corner is complicated by the fact that the stress singular-
ity exponent can be a complex number if the material mismatch is
severe enough.

The size effect is defined for geometrically similar structures
and represents the effect of structure size D �or characteristic di-
mension� on a load parameter of the dimension of stress. This
parameter is normally chosen as the nominal strength, which is
defined as �N= Pmax /bD, where Pmax=maximum load, b=width
of the structure �in the third dimension�, and D=characteristic
dimension, which may be chosen arbitrarily since only the ratio of
�N values matters. Here we chose D=interface length �Fig. 1�a��.
To avoid small secondary effects of the length of crack front edge
in the third dimension �stemming from a transition from plane
strain to plane stress along the edge�, it is better to consider two-
dimensional similarity, i.e., b=constant.

According to elasticity with strength limit, nonsoftening plas-
ticity or any theory in which the material failure criterion is char-
acterized solely in terms of stresses and strains, �N is independent
of structure size D �6,7,2� when geometrically similar structures
are compared. Any deviation from this classical situation is called
the size effect. The Weibull statistical size effect is negligible
when the FPZ or the crack length at failure is large, and also when
the crack can initiate at one point only �the corner�. Therefore, the
size effect in the joints is energetic �i.e., nonstatistical�, being
caused by the presence of material fracture energy Gf or material
characteristic length l0 in the material failure criterion.

Similar to the previous size effect analysis for many other qua-
sibrittle structures �5,2,3,8,9�, the size effect law will be asymp-
totically anchored at the large-size limit in linear elastic fracture
mechanics �LEFM�. The transition to small-size behavior and ex-
tension to various corner angles in the joint will be approximated
by asymptotic matching. For reentrant corners �or V-notches� in a
homogeneous body, this kind of approach has already been shown

to lead to good agreement with experiments �5�.

JANUARY 2010, Vol. 77 / 011012-110 by ASME
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Stress Singularity Exponent
In the double-lap joint considered here, both the structure and

he loading are symmetric. Before the peak load is attained, the
lastic field must be symmetric as well. Therefore, we analyze
nly one quarter of the specimen �Fig. 1�b��. In this quarter, there
re two critical bimaterial corners where the corner geometry and
aterial mismatch cause singularity and stress concentration. To

dentify the critical corner from which the crack propagates, the
tress singularity exponents must be calculated.

The stress singularity exponents for bimaterial wedges have
een extensively studied for isotropic materials �10,11�. For gen-
ral orthotropic-orthotropic interfaces or orthotropic-isotropic in-
erfaces, various numerical approaches, such as the finite differ-
nce method with eigenvalue analysis, and the finite element
terative method, have been used to determine the singularity ex-
onent and the surrounding asymptotic elastic field �12–14�.

In this study, an analytical approach using the complex field
ethod is adopted to calculate the singularity for bimaterial
edges �shown in Fig. 2� �15�. Under plane loading condition, the

lastic field in each layer of material �including the displacements,
oundary tractions, and stress fields� may be represented by two
olomorphic functions f1�z1� and f2�z2�, where zj =x+� jy�j
1,2�; � j is the root with positive imaginary part of the fourth
rder equation

��4 + 2��1/2�2 + 1 = 0 �1�

ere �=s11 /s22 and �=0.5�2s12+s66��s11s22�−1/2; sij refers to the
lements of the general material compliance matrix, and sub-
cripts i and j refer to Cartesian coordinates xi�i=1,2�. When the
onditions of equilibrium and compatibility are imposed and the
ingularity lies on the left side as the observer travels in the posi-
ive, or counterclockwise, direction of the arc, the corresponding
isplacement, stress, and resultant forces on the arc can be repre-
ented by these two functions as follows �16�:

Fig. 1 Geometry of double-lap hybrid joint
Fig. 2 Geometry of bimaterial wedge

11012-2 / Vol. 77, JANUARY 2010
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ui = 2 Re�
j=1

2

Aijf j�zj� �2�

�2i = 2 Re�
j=1

2

Lijf j��zj� �3�

�1i = − 2 Re�
j=1

2

Lij� j f j��zj� �4�

Ti = − 2 Re�
j=1

2

Lijf j�zj� �5�

where matrices A and L are defined as

A = � s11�1
2 + s12 s11�2

2 + s12

s21�1 + s22/�1 s22�2 + s22/�2
� �6�

L = �− �1 − �2

1 1
� �7�

Near the corner tip, the displacement field as a function of polar
coordinates �r ,�� �Fig. 2� may be assumed to be separable, and
the dependence on radial coordinate r to be a power law of some
exponent �, which can be either real or complex. The correspond-
ing stress field has a singular term proportional to r�−1. Hence, the
complex potentials near the bimaterial corner tip may be ex-
pressed, for both materials, as follows �15�:

fk�zk� = �kzk
� = �kr

��cos � + �k sin ��� �k = 1,2� �8�

To write these potentials in a more compact form, we define for
each material the vectors: �= ��1 ,�2�T, Z= �z1 ,0 ;0 ,z2�, and F
= �f1 , f2�T �where T denotes a transpose�. For each material, the
corresponding displacements and resultant forces can be written in
the matrix form as

u = �u1,u2�T = A · F + A · F = A · Z� · � + A · Z� · � �9�

− T = �− T1,− T2�T = L · F + L · F = L · Z� · � + L · Z� · �

�10�

where the overbar denotes the conjugate of a complex matrix.
Finally, one needs to impose the boundary conditions: a

traction-free exterior boundary ��=a ,−b :T=0�; and the continu-
ity of displacements and tractions at the interface between two
materials; �=0: TA=TB and uA=uB. This results in a system of
linear equations, with the matrix form

K���	 = �
YA 1 0 0

0 0 YB 1

1 1 − 1 − 1

BA − BA − BB − BB

	

�L��A

�L��A

�L��B

�L��B

� = 0 �11�

where 1= �1,0 ;0 ,1� and 0= �0,0 ;0 ,0�. Submatrices Yk and Bk

�where k=A, B=labels of materials A and B� are defined as

Yk = Lk�Zk��k��−�Lk
−1Lk�Zk��k���Lk

−1 �12�

Bk = iAkLk
−1 �13�

where i2=−1. It may be noted that the submatrix Yk defined above
cannot be directly applied to isotropic materials ��k= i� because
Lk is not invertible. However, one can calculate Yk by taking the
limit of �k→ i �Bk is well defined for isotropic materials� �15,17�.
The displacement singularity � must be solved from the condition
det�K�=0. To solve it numerically, it is the easiest to seek the
value of � for which the condition number of matrix K becomes

very large.
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Three test series have been reported in the preceding paper �1�.
he orthotropic elastic constants of the fiber composite used in

est series I and II are E1=30 GPa, E2=9.5 GPa, 	12=0.2, and
12=3.0 GPa. The elastic constants of composite used in test

eries III are E1=125.5 GPa, E2=9.0 GPa, 	12=0.3, and G12
5.6 GPa. For steel, which is isotropic, E=200 GPa and 	=0.3.
igure 3 shows in the complex plane the plot of det�K� for the
isplacement singularity. For the joint used in test series I and II,
he displacement field at the left corner �at which the stiffer ma-
erial terminates� is found to exhibit singularities with exponents
eing a pair of complex conjugates �=0.541
0.06i and, at the
ight corner �at which the softer material terminates�, a real dis-
lacement singularity �=0.781. For the joint used in test series III,
he displacement at the left corner exhibits two real displacement
ingularities: �1=0.514 and �2=0.641, while at the right corner
here is a real displacement singularity with �=0.736. So, for all
he joints tested, the singularity at the left corner is much stronger
han it is at the right corner. Hence, the crack is expected to start
ropagating from the left corner, which agrees with the experi-
ental observations �1�. The left corner is that which governs the

trength of the hybrid joint, and so the fracture needs to be inves-
igated only for that corner.

Fracture of Bimaterial Corner and Size Effect Law
symptote
Various fracture criteria have been proposed to characterize the

rack initiation for general bimaterial corners �18–20�. Due to the
ature of mix-mode fracture at bimaterial corner, the use of stress
ntensity factors as a fracture criterion generally necessitates an
mpirical equation involving the stress intensity factors for differ-
nt modes �21�. As an empirical approach to certain situations,
uch as bimaterial butt joints, one may simply use a critical value

ig. 3 Exponent of displacement singularity of hybrid joint: „a…
est series I and II and „b… test series III
f the stress intensity factor as a fracture criterion �22–24�. A more

ournal of Applied Mechanics

aded 08 Oct 2009 to 199.74.99.41. Redistribution subject to ASME
general and effective approach is to consider the energy release
rate or the corresponding fracture energy as the failure criterion
�25�.

Consider a bimaterial corner with the strongest stress singular-
ity �=�
 i�. The corresponding near-tip stress field can be writ-
ten as

�ij = Re�Hri�ij����r� �14�

where H is the stress intensity factor, and ij is the distribution of
stress. Both of them are complex, in general. Dimensional analy-
sis shows that H must have the form

H =
P

bD
D−��h��,���ei��−� ln D� �15�

where P is the applied load, b is the width of the joint, D is the
characteristic size of the joint �chosen as the interface length�,
h�� ,�� is the dimensionless complex stress intensity factor, � is
the effective loading angle �which combines the effects of loading
angle and boundary conditions�, and � is the phase angle of
h�� ,��.

For a general bimaterial wedge, the exponents of displacement
singularities can be either a pair of complex conjugates, a single
real number or two unequal real numbers depending on the degree
of material mismatch and the geometry. For the former two cases,
Eq. �14� represents the entire singular stress field �19,26�, while
for the latter case, Eq. �14� represents only the singular stress field
corresponding to the strongest stress singularity. The entire singu-
lar stress zone may be written as �ij =H1r�1ij���+H2r�2�ij���.
For symmetric structures made of homogenous materials, �1 and
�2 correspond to the symmetric and antisymmetric modes of frac-
ture �Modes I and II� �the simplest example is the homogenous
reentrant corner analyzed in Ref. �5��. Depending on the loading,
it is possible that only one of them governs the entire stress field.

Because of the lack of symmetry of bimaterial joints, the sym-
metric and antisymmetric modes do not exist, and �1 and �2 al-
ways coexist. Many studies showed the importance of considering
both singularities to properly obtain the entire singular stress field
for a bimaterial joint �21,27,28�. Nevertheless, for the large-size
asymptotic size effect, only the singular stress field corresponding
to the strongest singularity is relevant. So, in what follows, only
the corner tip singular field corresponding to the strongest stress
singularity is considered.

Once the crack initiates from the corner tip, it will propagate
along the path that corresponds to the highest energy release rate
or the lowest fracture energy dissipation. The adhesive layer con-
necting the fiber composite and the steel is as thin as possible and
is generally much weaker than both materials in normal hybrid
joint designs. So, the crack is expected to propagate along the
interface.

The initiation of a crack, or macrocrack, requires formation of a
microcracking zone of a certain finite characteristic length lFPZ
within �and possibly near� the adhesive layer. This zone, called the
fracture process zone �FPZ�, develops stably and transmits cohe-
sive stresses. As soon as the full FPZ develops, the maximum load
is attained. After that, the equilibrium load is expected to de-
crease, which requires the geometry to be positive �9�, i.e., the
stress intensity factor to increase with the crack length when the
load is constant. A positive geometry is normally satisfied but, of
course, needs to be verified.

In analogy to the derivation of the size effect law for cracks in
homogenous solids �2�, we may assume that, not too close to the
FPZ, the effect of a finite-size FPZ on the elastic field is approxi-
mately equivalent to the effect of an interface crack, whose length
cf is proportional to length lFPZ of the FPZ, and is roughly lFPZ /2�
�2,9,29�. Therefore, what matters at maximum load is the
asymptotic field close �but not too close� to an interfacial crack,
rather than to a corner. It has been shown �17� that the stress

singularity exponent of an interfacial crack must have the form

JANUARY 2010, Vol. 77 / 011012-3
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�crack = − 1
2 + i�� �16�

In the foregoing, a distinction is made among �1� the near-tip
symptotic field of the imagined effective crack assumed to have
similar global effect as the actual FPZ; �2� the near-tip field of

he corner prevailing not too close to the tip of the crack so that it
an envelop the near-tip field of the crack; and �3� the far-away
eld affected by the boundary conditions �Fig. 4�. These three
elds are here matched energetically, through the strength of the
ingularities. Note that the second field corresponds to what has
een conceived as the intermediate asymptotic—an important
oncept conceived and rigorously developed by Barenblatt
30,31�, which has apparently not yet been used in fracture me-
hanics.

The intermediate asymptotic is attained if D�D�� lFPZ �where
� is the size of the corner tip singular field�, and the near-tip field
f a crack is applicable only if the radial distance from the crack
ip r� lFPZ �Fig. 4�, i.e., in the large-size asymptotic limit. In this
imit, the asymptotic near-tip field of the hypothetical interfacial
rack of length cf, substituted for the FPZ, must be surrounded by
he singular stress field of a bimaterial corner tip corresponding to
he strongest stress singularity �except if the laminate thickness
ere too small, which has been checked not to occur in practical

ituations�. Therefore, the stress intensity factor K at the interfa-
ial crack tip will depend on the stress field, whose magnitude is
haracterized by the stress intensity factor H of the corner tip. By
imensional analysis, the two stress intensity factors may be re-
ated as follows �19,22�:

Kcf
i�� = Hcf

�+0.5cf
i�� �17�

here � is the dimensionless complex number. Such a relation has
een analytically derived for the case of a crack emanating from a
omogeneous notch tip �32,33�. For the interfacial crack, the near-
ip stresses on the crack line ahead of the tip and the opening
isplacements �or crack face separations� behind the tip can be
xpressed as �17,34�

�yy + i�xy = K�2�r�−1/2ri�� �18�

−1�y + i�x =
K

E
�r/2��1/2ri��m �19�

here �i=ui�−r ,0+�−ui�−r ,0−�=displacement jump behind the
rack tip, m is the dimensionless complex number characterizing
he geometry of the structure, E is any one of the elastic moduli of
ither material, and  is the constant reflecting the material orthot-
opy.

The energy release rate G represents the energy flux into the
rack tip. The flux can be obtained as the work required for the
rack to advance by an infinitesimal distance, �, divided by �.

ig. 4 Interfacial crack embedded in the singular near-tip field
f corner
herefore,
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G = lim
�→0

1

2�


0

�

��yy�x��y�� − x� + �xy�x��x�� − x��dx �20�

Noting Eqs. �18� and �19� and introducing the dimensionless vari-
able �=x /�, one obtains

G =
�K�2�m�

2E 
0

1�1 − �

�
cos��� ln�1 − �

�
� + ��d� �21�

The foregoing integral can be shown to be a constant �35,36�.
Therefore, the energy release rate function for an interfacial crack
can be always written as

G =
CKK̄

E
�22�

Upon substituting Eqs. �17� and �15� into the foregoing equation,
one obtains

G =
�2D−2�

Ecf
−1−2� �g�2 �23�

where �=nominal stress= P /bD and �g�=C����h�. Within the
LEFM framework, a crack can propagate once G reaches a certain
critical value Gf, called the fracture energy, and this also repre-
sents the condition of maximum load P. From Eq. �23�, one ob-
tains the LEFM expression of nominal strength �N�=Pmax /bD� of
the bimaterial joint

�N = �g�−1�EGfcf
−�−0.5D� �24�

This equation represents the large-size asymptote of the size effect
law. Clearly, this asymptote is a power scaling law, with an expo-
nent directly related to the real part of the exponent of the stron-
gest stress singularity at the bimaterial corner.

Evidently, Eq. �24� applies to fracture of a certain single mode.
Let us now rewrite this equation for the case of a reentrant corner
made of a homogenous material under symmetric tensile loadings,
which is mode I fracture. In this case, only one real stress singu-
larity governs the entire singular stress field �for a homogeneous
reentrant corner under general loading conditions, there are two
unequal real stress singularities, which correspond to symmetric
and asymmetric fracture modes�. The effective size of FPZ can be
expressed as cf =�l0, in which l0=EGf / f t�

2=Irwin’s characteristic
length. Equation �24� may then be written in an alternative form

�N = f t�k�D/cf�� �25�

where k= ��g����−1, and f t� is the tensile strength of the material.
This equation has the same form as the large-size asymptote of the
general size effect law for a reentrant corner under symmetric
tensile loading �Eq. �16� in Ref. �5��, which has recently been
derived on the basis of the strength criterion; i.e., the peak load is
attained when the tensile stress at the center of FPZ reaches the
material tensile strength. The equivalence between Eqs. �25� and
�16� in Ref. �5� is to be expected, since the strength criterion for
single-mode fracture must be a special case of the present energy
criterion.

4 General Size Effect Law Via Asymptotic Matching
A general approximate formula for the size effect on the nomi-

nal strength �N, spanning all the sizes and a range of corner
angles, can be obtained through asymptotic matching �2�. The
geometry of a hybrid joint with various corner angles is shown in
Fig. 5.

A general approximate size effect equation has recently been
developed for symmetrically loaded reentrant corners in homog-
enous materials of various corner angles. In that case, the entire
singular stress field is governed solely by one real stress singular-
ity �5�. For the general case of bimaterial joints in which the

singularities are either a pair of complex conjugates or two un-
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qual real numbers, the aforementioned analysis shows that only
he real part of the strongest singularity exponent matters for the
nergy release rate at the large size limit. Therefore, an equation
f similar type can be used to approximate the general size effect
aw for the hybrid joint

�N = �0�1 +
D

D0�
�����

�26�

here �0 and D0� are parameters yet to be determined, � is the
eal part of the exponent of the strongest stress singularity at the
imaterial corner, which is a function of corner angle �. The fore-
oing equation has been set up to match the following three es-
ential asymptotic conditions.

�1� For D / l0→0, there must be no size effect since the FPZ
occupies the whole structure �what matters in that case is
solely the material strength, and not the energy release be-
cause the failure is quasiplastic�.

�2� For D / l0→�, Eq. �26� must match Eq. �24� as the large-
size asymptote of the size effect law.

�3� For �→� �smooth surface, no corner�, the size effect of
this type must vanish �in that case, a cohesive crack ini-
tiates from a smooth surface, which leads to another type of
size effect, Type 1 �2,3,37�, which does not represent the
limit case of the present size effect�.

Note that the foregoing equation does not apply for the limiting
ase �→0. It is found that, in this limit, the structure may have a
egative geometry �i.e., the derivative of the energy release rate
unction with respect to the crack length at constant load is nega-
ive�. In that case, the maximum load does not occur at crack
nitiation, since the crack grows stably at increasing load, and the
ize effect is different �known as Type 3 size effect law �2,3��.

On the other hand, Eq. �26� for �→� does not continuously
pproach the Type 1 size effect law either. A generalization would
e needed to describe the transition to Type 3 size effect law �3�
for �→0� and to Type 1 size effect �for �→��.

By matching asymptotic condition 2 for arbitrary corner angles,
ne further obtains

�0���
D0�

� =
�EGf���

�g����cf
�+0.5 �27�

arameters �0��� and D0� can be easily obtained by calibrating
he model on the basis of available size effect data. Nevertheless,
t is impossible to obtain the fracture toughness, Gf���, and the
ffective size of FPZ, cf, since, for a certain joint angle, there is
nly one matching condition involving these two fracture param-
ters. Note that, in general, the fracture toughness Gf��� can vary
ith the joint angle � due to mode mixity. The dependence of Gf
n the mode mixity can be expressed as �17,34�

Gf = F�GI,GII,�� �28�

here GI and GII denote the mode I and mode II fracture tough-
ess. Phase angle �, characterizing the degree of mode mixity, is

ig. 5 General geometry of hybrid joint with varying joint
ngle
efined for interfacial crack problems as �17,34,38�
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� = tan−1� Im�Kli���

Re�Kli���
� �29�

where l is an arbitrary length scale, which might be chosen as the
fracture process zone size �or multiple of atomic dimensions �38��.
The stress intensity factor for the interfacial crack K is given by
Eq. �17�. The dimensionless complex number � in Eq. �17� de-
pends on the geometry �21,22�. Hence, the phase angle � varies
with the geometry �joint angle�. Therefore, these two fracture pa-
rameters, Gf and cf, cannot be determined merely by fitting of the
experimental size effect data, even if two sets of size effect data
for two different joint angles are considered.

To overcome this obstacle, Gf needs to be estimated by numeri-
cal simulation with the cohesive crack model �39�, where the co-
hesive law may be calibrated by the available experimental size
effect data reported in the preceding paper �1�. Then the effective
fracture process zone size cf can be obtained from Eq. �27�.

5 Numerical Evaluation of Model Parameters
In the foregoing calibration by Eq. �27�, the model parameter

�g� needs to be determined by finite element analysis. To illustrate
the numerical procedure, let us consider the joint used in test
series II. In the numerical model, all the elastic moduli of the
composite are normalized relative to the elastic modulus of steel,
taken as E=E�steel�=1, and the applied force P and the charac-
teristic dimension D are chosen as 1.

Parameter �g� can be obtained by calculating the energy release
rate at the tip of the interfacial crack, which lies well within the
singular stress field characterized by H. This parameter can be
calculated in two steps, as follows.

First, the singular stress zone is obtained by finite element
analysis of the joint. In the linear elastic finite element model,
eight-node quadrilateral elements are used for both materials, as
shown in Fig. 6�a�. To obtain the singular field, normally ex-
pressed in polar coordinates, the regions near the bimaterial cor-
ners are meshed by numerous rings of elements, which are pro-
gressively refined on approach to the tip so that the ratio between
the smallest and largest element sizes is about 1: 100.

Figure 7 shows, in the logarithmic scale, the profiles of magni-
tude of normal and shear stress ���� and �r�� along the interface,
for both corners. For the left corner of the joint �Fig. 7�a��, the

Fig. 6 „a… Finite element model of hybrid joint and „b… finite
element model of ancillary boundary layer problem
slopes of the asymptotes of ����� and ��r�� in the logarithmic scale
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lot are not the same. This difference is due to the fact that the
xponent of stress singularity at this corner is complex. The
symptotic stress field is given by Eq. �14�, which can further be
xpressed as

�ij = �H��ij����r� cos��ij + � ln r� �30�

t is obvious that the dependence of �ij on r is not a simple power
aw. Due to the unknown variable �ij, which characterizes the
ode mixity, it is impossible to determine the complex exponent

f stress singularity simply by matching the stress profile along
he interface only, and so the reach of the singular stress zone is
ot known. As for the stress profile oscillation, which must occur
ufficiently close to the corner tip, its region is normally very
mall due to the very small value of the imaginary part �. It is for
his reason that this oscillation is not generally reflected in finite
lement results.

At the right corner of the joint, the asymptotes of ����� and ��r��
re seen to have the same slope �Fig. 7�b��. This indicates that the
tress singularity at that corner must be real and the near-tip stress
eld is given by �ij =Hr�ij��� �26�. By matching the asymptotic
tress field, the stress singularity exponent is found to be �0.219,
nd so the corresponding displacement singularity exponent is
.781. This validates the previous calculations made by the com-
lex potential method.

Second, one needs to solve an ancillary boundary layer problem
hich couples the inner stress field caused by the interfacial crack

o the outer singular H-field. The boundary layer problem consist-
ng of a semicircular region �fiber composite� and a quartercircu-
ar region �steel� �Fig. 6�b�� is subjected to displacements of the
symptotic H-field, which can be directly obtained from the FEM
nalysis in the step 1. Since the exact reach of the H-field is not
etermined, the H-field displacement is extracted at a reasonably
mall radius �r /D�0.01�. The interfacial crack length l is chosen
o be very small compared with the dimension of the boundary
ayer. This ensures the crack to lie well within the H-field. The
nergy release rate G at the interfacial crack tip is directly calcu-
ated via the J-integral using the commercial FEM software
BAQUS �40�. When the loading, dimension, and elastic constants
re normalized, one may rewrite Eq. �23� as follows:

log G = �1 + 2��log�l� + 2 log�g� �31�

pon considering various small crack lengths l, one obtains the
elationship between log G and log l �Fig. 8�. It is seen to follow a
traight line, whose slope is 0.082. This agrees well with the value
f �1+2��. One can then easily obtain the value �g�=1.042.

Conclusions
With the help of asymptotic matching, a general approximate

ig. 7 Normal and shear stress along the interface: „a… left
orner and „b… right corner
ize effect law for the strength of hybrid metal-composite joints
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can be derived from the near-tip asymptotic stress fields of a bi-
material corner and of an interface crack emanating from this
corner.

The size effect law derived is validated by comparison with size
effect experiments on metal-composite joints with two kinds of
fiber-polymer composites.

The size effect in hybrid joints is quite strong. Thus it is unsafe
to design large hybrid joints on the basis of classical material
failure criteria expressed in terms of stresses or strains, or both.

Neither it is safe to extrapolate from small-scale laboratory tests
of hybrid joints to large structure sizes without considering the
size effect.
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