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Abstract

The previously developed eigenvalue method for computing the size effect of cohesive crack model is
extended to the cohesive crack model with a finite residual stress. In this model, the structure size for which
a specified relative length of kink-band corresponds to the maximum load is obtained as an eigenvalue of a
homogeneous Fredholm integral equation. This new method is direct and much more efficient than the
classical finite element approach in which the entire load-deflection history must be computed to obtain the
maximum load. A secondary purpose of the paper is to apply the new method to the effect of structure size
on the compressive strength of unidirectional fiber—polymer composites failing by propagation of kink-
band with fiber microbuckling. The kink-band is simulated by a cohesive crack model with a linear
compressive softening law and a finite residual stress. The simulation shows that the specimens tested have
a negative—positive geometry, i.e., the energy release rate of the kink-band for a unit load first decreases but
at a certain length of propagation begins to increase. Finally the effect of shape of the softening law of
cohesive crack on the size effect curve is studied by using the new eigenvalue method. It is shown that, for a
negative—positive geometry, the size effect on the peak load depends on the entire softening curve if the
specimens is not too small.
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1. Introduction

For quasi-brittle materials such as concrete, fiber composites, ice, rocks and tough ceramics,
one of the most important practical consequences of fracture mechanics is the size effect. This
effect distinguishes fracture mechanics from the classical failure theories based on elasticity and
plasticity [11]. Since the early studies of size effect for concrete [2,3], the importance of size effect
has become gradually acknowledged for all quasi-brittle materials.

The objective of this paper is twofold: (1) To formulate a new method for computing the size
effect curve of cohesive crack model for problems with a finite residual stress—a method that is
much more efficient than the classical finite element approach with small load increments, and (2)
to demonstrate application of the new method in a study of the size effect due to kink-band
propagation in unidirectional fiber composites under compressive loading. Stability of kink-band
propagation will also be analyzed and comparisons with the experimental data on size effect in
kink-bands will be made.

Recently various fracture mechanics aspects of the kink-band compressive failure of composites
came to light. Based on strain measurements at the flank of the kink-band, the experimental
studies of Sutcliffe and Fleck [27] and Fleck et al. [16] demonstrated that the axial normal stress
across the band decreases with the distance from the kink-band front and reaches a plateau equal
to about 50% of the maximum stress. Consequently, the diagram of the axial normal stress versus
the axial relative displacement across the kink-band exhibits softening and terminates with a
residual yield plateau at about 50% stress reduction. Such crack-like behavior of the band was
demonstrated by Fleck et al. [16] and was further confirmed by Moran et al.’s [24] discovery of the
phenomenon of band broadening, which is analogous to the increase of crack opening with the
distance from the crack tip.

To determine the size effect associated with the kink-band failure of composite materials,
Bazant et al. [13] conducted a set of scaled tests using carbon-PEEK specimens. The observed size
effect was quite significant. As an extension of the size effect studies in [2-6,10-12], the size effect
was described in [13] by an asymptotic size effect formula based on approximations of the J-
integral and of the equivalent linear elastic fracture mechanics (LEFM) in which the residual
stress of the kink-band was taken into account. The formula was then verified by classical finite
element analysis of the cohesive crack growth under small load increments.

2. Eigenvalue analysis of cohesive model with residual stress
2.1. The cohesive crack model

Adapting to concrete the cohesive crack model pioneered by Barenblatt [1], Hillerborg et al.
[20], Hillerborg [19] and Petersson [25] analyzed mode I cohesive fracture by condensing out from
the structural stiffness matrix all the nodes other than those on the crack line and at the load
point. Thus they obtained the compliance matrix (or matrix of Green’s function) for the crack
surface nodes and the load point (see also Bazant and Planas [11]). The governing equations were
then obtained from the crack compatibility condition coupled with the condition of finite stress at
the crack tip, which is the same as the condition that the stress intensity factor must vanish.
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The energy aspect of the cohesive crack model was studied by Bazant and Li [8,9]. Their energy
based stability analysis showed the relation of the crack compatibility condition and the zero
stress intensity factor condition to the complementary energy of the structure with cohesive crack.
In their formulation, the structure size for which a given relative (dimensionless) crack length
corresponds to the maximum load is obtained as the eigenvalue of a homogeneous Fredholm
integral equation. This represents an efficient method for calculating the failure loads in which the
load-deflection history for a growing cohesive crack need not be calculated.

Bazant and Li’s [8,9] eigenvalue method will now be generalized to include a finite residual
stress in the cohesive crack, which is a characteristic of kink-bands (as well as mode II shear
cracks causing dry-slab snow avalanches or mud slides). When an initial stress oy is present on the
crack surfaces, the crack compatibility condition and the condition of zero stress intensity factor
(or smooth closure condition) read:

w(x) = — /a C (x,x)a(x')dx' — aoC?(x) + onC™N (%) (1)

ao

/” k(xX)o(x)dx' + k°(a)oy + kN (a)on = 0 (2)

ao

where x = coordinate along the kink-band, w = crack opening displacement, a = length of co-
hesive crack, ao = length of the initial notch (or stress-free crack), C°(x,x’), C(x), C°N(x) =
compliances of the structure, on = nominal stress (= load divided by D and by unit thickness),
o = stress on cohesive crack, and k(x), k°, kN = stress intensity factors for unit loads. For the sake
of generality, we consider, with no significant complication, a more general case where the faces of
preexisting crack may be loaded by uniform fluid pressure oy (Fig. 1). In the case of notched
specimens, we of course have oy = 0.

Eq. (1) is the condition that the crack opening indicated by the softening stress—displacement
law must be compatible with the elastic deformation of the structure and Eq. (2) is the condition
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Fig. 1. Sketch of stress distribution along cohesive crack.
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that the stress intensity factor at the crack tip must vanish (because the stress must be finite). Note
that C*(x) = [;* C(x,x')dx’". For the sake of simplicity of calculation, the kink-band is simulated
as a crack running orthogonally to the fibers.

2.2. Dimensionless formulation
We introduce dimensionless variables defined as

¢=x/D, D=oiD/Ew.=D/2ly,, w=w/w,

a=a/D, oy=ay/D,

C” =Ebc”, C =CE/D, T =CNE/D, (3)
k=kvD, kK =k/VD, kN=kN/VD,

=oa/or Gy =0¢/0r, ON = ON/Of

al

Here D = characteristic size of structure, ¢ = dimensionless coordinate along the kink-band,
D = dimensionless structure size, [, = Ew./20r = constant analogous to Irwin’s characteris-
tic length in the case of a triangular softening law with zero residual stress, oy = material strength,
w = dimensionless crack opening displacement, w, = critical opening displacement at which the
cohesive stress attains the final residual stress value, ¢ = dimensionless cohesive stress, oy =
dimensionless length of notch, « = dimensionless length of cohesive crack (or kink-band), C =
dimensionless compliance corresponding to the dimensionless nominal stress Gn, C = compliance
corresponding to the dimensionless initial uniform stress o, applied on the faces of a preexisting
crack in the interval [0, o), C” = compliance for concentrated force pair applied on the crack
faces, i.e., w at & caused by a unit stress & applied at &, and k, £ and kN = dimensionless stress
intensity factors due to unit value of the corresponding stresses or forces (e.g. Bazant and Planas
[11]).

Upon substituting the dimensionless variables into (1) and (2), one obtains the following di-
mensionless formulation of the cohesive crack model:

w(¢) =D / T, 8)5(¢)de —DayC™ (&) + DonC™ () )
[ K@ + B+ B =0 5

The terms 560600(5) and £°3, in (4) and (5) take into account the possible initial uniform stress
(fluid pressure) on the faces of a preexisting crack (for a notch, G, = 0). Note that these terms
would not need to be included if the integral spanned the range [0, o rather than [o, ], in which
case the stress step at the notch tip would have to be considered in the integration. The general
equations would then be more compact. However, inclusion of these terms is convenient for the
eigenvalue formulation in the next section.
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To obtain the entire load-deflection curve, the discrete forms of Egs. (4) and (5) may be solved
for subsequent small loading increments as the crack grows along the assumed crack path. For
each loading step, the problem is reduced to a linear matrix equation. The computation is most
efficient and accurate if one prescribes the crack tip location at subsequent nodal points and solves
the corresponding load and the load-point displacement. The condition of zero-stress intensity
factor is satisfied by setting the stress at the cohesive crack tip equal to the given finite material

strength o¢. To obtain a compact form, the integration range may be taken as [0, «|, and then the
discrete form of (4) is
oN
{w} + D[C][T){a}A¢ = DGN{C } (6)

where [T] is a tridiagonal matrix characterizing the stress distribution [21]. To solve (6), the matrix
equation is divided into two parts: the completely separated cracked zone in which the surface
traction is known, and the failure process zone in which the stress—displacement relation (the
softening law) is known. For the detailed solution procedure, see e.g. Bazant and Planas (Section
7.4.3 [11)).

2.3. Reduction to eigenvalue problem

Using the aforementioned classical analysis in which small crack advances are analyzed, the
computation of the size effect curve from the discrete crack compatibility condition (6) is a time
consuming process, since the entire load-deflection history must be calculated for each specimen
size. A much more efficient approach is provided by the discrete formulations of Li and Hong [22],
Li and Liang [23], and Li and Bazant [21] and the subsequent continuous energy-based refor-
mulation of Bazant and Li [8,9]. In this approach, computation of the load-deflection history is
bypassed by formulating the problem of maximum load as an eigenvalue problem.

To express the conditions of continuing equilibrium and compatibility, we start by differenti-
ating the dimensionless integral crack compatibility condition (4);

=D [ [CTeeyae)+ T (6. £).4¢)]a¢ - DO (€. mpte) - DAL ()
i, N (f)+566%“c (&) (7)

where the third term and the last term are recognized to be zero because C(&,a) = 0 (i.e., the
opening at crack tip vanishes) and because, at maximum load, doy/do = 0. In the derivation, we
will need the following well-known relations between the compliance derivatives and the stress
intensity factors [11,28] used by Bazant and Li [§];

T opee )
oo
0 e o)

oo
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7662(5 ) k(&) (10

Substitution into (7) furnishes
= —D/ (&NdE — 2Dk (& {/ k(&Ya(E)dE + k%G + KNox (11)

The last (bracketed) term of this equation vanishes because of the condition of zero-stress in-
tensity factor (5). Thus Eq. (11) simplifies to the following homogeneous Fredholm integral
equation:

‘/ O () Wa(E)E = L, (2) (12)

1
%0 D

Same as Bazant and Li [8], the inverse of 1/D of the dimensionless size D for which a specified
relative crack length o corresponds to the maximum load is an eigenvalue of this equation and w,
is the eigenfunction. It can further be shown [9] that 1/D is the first eigenvalue. Eq. (12) is a
continuous version of the discrete eigenvalue formulation of Li and Bazant [21], which was de-
rived indirectly by matrix manipulation from the stability limit of potential energy (and without
the need for the zero-stress intensity factor condition and the relations (8)—(10)). When (12) is
discretised, @ ; becomes a diagonal matrix and w, the eigenvector. Note that the initial stress g
and the residual stress o, do not affect the eigenvalue of the cohesive crack because @, = 5,, where
5(x) =@(x) — o, denotes the cohesive stress in excess of the residual stress, i.e., d(x) = 5(x) +
o, = total cohesive stress.

The nominal strength ¢y can be obtained from the crack compatibility condition (4). To this
end, (4) may be multiplied by @ ;,(&)w,(¢) and integrated over the interval [oy, of;

/M:W(é)iw(i)fv@(é)déz / [ / )7a(~f)dé]dé’

_ Doy / T ()5 5(E),(E)de
+ Do / TN ()5 () ()de (13)
-/ o(&)Wa(&)dE — Do, / (O OWa(O)de

Doy [ O Galomao: (14)

where the integration variables ¢ and & are interchanged in the second term of (13). From this
relation, the dimensionless nominal strength is obtained as
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L ma({F %) ~3(0) Jde + Dy [ T (@7 (@wa(9)dE )
Y D [} T (&)7a(&)ma(8)de

When the softening law of cohesive crack up to the critical opening displacement w, is linear, Eq.
(15) can be further simplified. For the linear softening law with zero residual stress, we have

Go=—1, wto=1 (16)

and then Eq. (15) reduces to the expression

— [2 WO+ DTy [2 TV (E)wa(E)dE
D [2 T (&wa(8)de

OoN —

(17)

Note that the Eq. (17) applies only to positive geometries (i.e., the geometries of structure and
loading such that the stress intensity factor for constant load increases as the crack propagates).
The reason is that, for the negative—positive geometries, the fracture process zone (FPZ) can
get fully developed before reaching the maximum load, i.e., the case 7, = 0 when w > w, can be
attained. However, Eqs. (12) and (15) are valid for both positive geometries and negative—positive
geometries since the eigenfunction of (12), da/dw, is finite for all smooth softening laws. The effect
of the residual stress acting on the notch faces is included in expression (15) for the nominal
strength.

Because (12) is the continuous version of Li and Bazant’s [21] discrete formulation, almost the
same algorithm as in that work may be used to obtain the size effect. With a slight improvement,
the algorithm is as follows.

(1) Prescribe the location of the cohesive crack tip « at successive nodes on the crack path.

(2) Estimate the eigenvalue of Eq. (12) corresponding to the dimensionless size D (the estimate
can simply be the value in the previous step).

(3) Compute the dimensionless opening w and dg/dw from the crack compatibility condition (4)
or (6) for the current relative crack length.

(4) Solving the eigenvalue problem (12), compute the dimensionless size D using the values of w
and do/dw obtained in the step 3. The first eigenvalue is taken as 1/D [9].

(5) Compute the dimensionless nominal strength oy by (15).

(6) Repeat steps 3—5 until D converges, according to a specified tolerance.

(7) Calculate and output the actual size D = Ew.D/o; and the corresponding actual nominal
strength on = ofon.

(8) Return to the step 2 and start the analysis for the next dimensionless crack length a.

All the computations are of course conducted in a discrete form corresponding to the chosen
nodal subdivisions of the crack path. In the discrete form, the integrals are approximated by sums
and thus (12) becomes a matrix eigenvalue problem, which is then solved by a standard linear
algebra subroutine.
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3. Application to previous size effect tests of kink-band failure
3.1. Test description

The eigenvalue method just formulated will now be applied to the analysis of the size effect on
the compressive strength of fiber composites failing by kink-band propagation. First it is neces-
sary to review the recent experimental investigation of Bazant et al. [13]. In this investigation, the
growth of kink-band was stabilized by providing a rotation restraint of specimen ends. The re-
straint allowed the kink-band to grow stably, under increasing load, for a considerable distance.
This means that the specimens have a negative—positive geometry, i.e., a geometry for which the
derivative of the stress intensity factor for a unit load with respect to the kink-band length is first
negative and later changes to positive.

To exclude the effect of random variation of material strength over the specimen volume
(known to cause Weibull-type size effect), the specimens (shown in Fig. 2(a) and (b)) were pro-
vided with notches. The notches ensured the failure to begin in one desired place, preventing the
failure from starting at diverse locations at which the material may be statistically the weakest. To
avoid bifurcation of the equilibrium path due to asymmetric propagation [7], a one-sided notch
(on which ¢, = 0) was introduced instead of two symmetric notches.

The kink-band failure is often combined with axial splitting-shear cracks and delaminations.
Such combined failures are difficult to analyze because the contributions of the microbuckling and
of the shear-splitting delamination failures in the kink-band are not easy to separate. It was found
that this problem can be eliminated by making the starter notch inclined (Fig. 2(b)), with the same
angle as that preferred by a long out-of-plane kink-band. This inclination was found by trial tests
to be about 25.4°. This novel experimental feature made it possible to eliminate in most tests the
axial splitting-shear cracks and thus obtain pure kink-band failures.

unit: [mm]

Steel end cap
o L 5
l_a= v %
o e D.3D
o L 77|
D=64 > 32 QI 16
N o L2
7 7 2 77y
© © O’JT

(a)

:

(b)

Fig. 2. (a) Geometrically similar single edge notched carbon-PEEK specimens tested, and scheme of loading, and (b)
transversely slanted notches used in tests, achieving pure kink-band failure (Bazant et al. [13]).
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The test specimens are shown in Fig. 2(a). They were scaled in two dimensions, in the ratio
1:2:4, the thickness b in the third dimension being kept constant. The specimens had the thickness
b = 12.3 mm, and were made of 100 plies. The end caps were glued by epoxy. A notch of length
ao = 0.3D (where D is the specimen width, taken as the characteristic dimension of specimens) was
machined in each specimen, using a banded diamond blade saw. The detailed fabrication pro-
cedure of the specimens is described in Bazant et al. [13].

After the specimens had been cut from the molded sheets, they were provided with massive end
caps (made of 1040 hot rod steel), to which they were glued by epoxy. An extra length of the
specimen beyond the similarity length (whose effect will be discussed later) was provided in order
to allow embedment of specimen ends within the end caps (Fig. 2(a)). The end caps were
restrained so as to prevent any end rotations. All the specimens were tested under a controlled
stroke rate. After the kink-band had initiated at the notch tip, it was seen to propagate stably on
both the front and back sides of the specimen.

Fig. 3 shows the nominal strength oy versus the size D. If there were no size effect, as currently
assumed in design and exhibited by all the existing formulae for the kink-band stress expressed in
terms of stress or strain, the plot in Fig. 3 would have to be horizontal. Any theory based on
plasticity, or any theory in which failure is indicated by some critical values of stress or strain,
predicts a horizontal plot. In the tests, however, the trend was clearly seen to be downward. So,
despite the use of PEEK matrix, which is relatively ductile, the size effect for these large, albeit not
extremely large, specimens is strong.

One of the small specimens, corresponding to the highest peak load in Fig. 3 (shown as an
empty circle), did not develop a kink-band across the specimen but failed by a vertical shear crack
that started from the notch tip and produced axial splitting. Inclusion of this specimen in the
analysis is, therefore, questionable. In the previous work [13], the data point for this specimen was
nevertheless included because of the argument that the failure load corresponding to a pure kink-
band mechanism could not have been smaller than the measured load. However, a later exam-
ination revealed a rather anomalous shape of the load-deflection diagram for this particular

600
o)

= 500 1
[a W}
2,
7] 400'
4 [ ]
5 \
—~ [ ]
g 300+
E °
=] [ )
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200 T T T T LI I

10 100

Size, D [mm]

Fig. 3. Results of the tests of nominal strength of carbon-PEEK specimens tested; test data (symbols), in which the
empty circle represents the specimen failed by shear splitting, and fitting by the cohesive crack model (solid line).
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specimen, indicating that some of the test conditions were not controlled properly. Therefore, this
data point (the empty circle in Fig. 3) is here deleted from the analysis.

The diagrams of the applied load P versus the stroke of the piston for the individual specimens
are shown in Fig. 4(bottom). All these load-deflection diagrams exhibit post-peak softening rather
than a horizontal yield plateau at peak load. This fact alone suffices to demonstrate that a
fracture-type approach is required. Furthermore, these diagrams exhibit a terminal yield plateau,
which confirms the existence of a finite residual stress across the kink-band.

The larger the scatter of test results, the broader must be the size range of test specimens needed
to determine the size effect. The scatter of the results in Fig. 3 is quite large. This is, however,
typical of compression failure of fiber composites (because of microbuckling and its strong sen-
sitivity to fiber misalignment; [14,15]). In view of the scatter, the size range of 1:4 appeared just
about the minimum for being able to clearly demonstrate the size effect (to reduce the relative
width of the scatter band, the ratio of the sizes of the smallest and largest specimens should be
increased in future testing).

Compared to the case of loading through a pin, which would allow free rotations at the ends,
the present boundary condition of restraint against rotation complicates the test evaluation be-
cause a statically indeterminate bending moment develops at the ends, causing the compression
resultant to shift laterally during kink-band propagation. However, the end restraint has the
advantage that the test becomes much more stable. This made it possible (1) to demonstrate that a

1600 —
= 12004°"
Q-‘ -
=
2 800 —
s, 0]s
A 4009% N
- : WC
0 T L I T I T I
0 0.075 0.15 0.225
Crack opening [mm)]
300
= 200 —
=]
g i medium
Q
= 100

T T T T T T
0 0.4 0.8 1.2 1.6

Stroke [mm]

Fig. 4. The optimum fit of the test data by the numerical analysis with the cohesive crack model; the triangular
softening law determined (top) and the load-deflection diagrams simulated versus experimental results (bottom) in
which the thin lines represent the test data and the thick lines the simulations by the cohesive crack model.
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stable propagation of a long kink-band is possible (which had been doubted by previous re-
searchers), (2) to observe the post-peak deformations well beyond the peak load, and (3) to ap-
proach the residual stress plateau and observe the residual stress (Fig. 3).

3.2. Identification of model parameters from test data

Aside from the program for the eigenvalue analysis of the size effect, a computer program for
computing the entire load-deflection history for a cohesive crack with residual stress has also been
written. The calculation of load-deflection history is based on solving the discrete form of the
crack compatibility condition (6).

It is appropriate to discuss the role of the extra length of embedment of test specimens into the
end caps, which was neglected in the previous analysis by Bazant et al. [13]. This extra length,
which was needed to attach the massive end cap to each specimen (Fig. 2(a)), did not adhere to
geometric similarity of specimens of different sizes. If the dissimilar extra length were sufficiently
small, the effect of embedment would have been negligible. But this was not the case. Whether or
not the effect of such embedment is negligible can be checked by comparing the initial slopes of the
measured curves of P versus displacement # (or nominal strength oy versus dimensionless dis-
placement u# = u/L). Since there is no size effect in linear elasticity, these initial slopes would have
been identical for all the specimens if the deformation in the dissimilar embedment were negli-
gible. However, these initial slopes are seen (in Fig. 4(bottom)) to be quite different when all the
data are plotted together. It follows that geometrical similarity does not hold.

Because of the lack of similarity, different compliance matrices are needed for the three sizes (or
geometries) tested. The aspect ratios of the specimens including the embedment length are 1:3.00
for the large size, 1:3.47 for the medium size, and 1:4.12 for the small size (Fig. 2(a)). The cor-
responding compliance matrices were computed by two-dimensional elastic finite element anal-
ysis. In view of symmetry, only a half of each specimen was modeled. Because of the superior
stiffness of the end caps (Fig. 5), the embedded portion of each specimen was assumed to be in the
state of plane strain, while the rest of each specimen was considered to be in the state of plane
stress.

For the sake of simplicity, the softening law was assumed to be linear (triangular) up to the
critical crack opening displacement w, (Fig. 4(top)). Although other softening laws, such as a

2D
plane strain .
elements __ >

2D 2
plane stress

elements

405 elements

Fig. 5. The two dimensional finite element mesh for the calculation of the compliance matrices and the boundary
conditions.
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bilinear law or an exponential law, could be considered, the data fits would be expected to be
equally good since the scope of data is limited.

From the test data, the residual stress o, has been easily identified as a uniform stress balancing
the final residual force carried by the specimen at the end of test; g, = 347 MPa. As for the
softening law, Guinea et al. [17,18] showed that its determination from the size effect tests alone is
an ill-conditioned problem. But this is true only for positive geometries, for which the maximum
load depends almost exclusively on the initial slope of the softening law. Since the present
specimens represent a negative—positive geometry, identification of the remaining two parameters,
the compressive strength ¢ and the critical crack opening displacement w., has been possible. It
has been done by optimum fitting of the entire load—deflection histories of the individual speci-
mens to the test data (Fig. 4(bottom)). This provided the compressive strength of g = 1,216
MPa, and the critical crack opening displacement of w, = 0.06 mm (Fig. 4(top)), while the
Young’s modulus was £ = 7.20 GPa.

3.3. Neglect of out-of-plane displacement in the kink

The microbuckling of compressed fibers in the kink-band [14] happens in the out-of-plane
direction, making the deformation of specimen three-dimensional. Then why don’t we need a
three-dimensional finite element program?

The reason can be explained by a simple estimation based on beam theory. For the sake of
simplicity, we imagine narrow vertical strips of the specimen to act independently, like beams that
are fixed at the end caps and bend in the out-of-plane direction (Fig. 6(b)). The kink-band width,
denoted as 26 (and measured as 1.5 mm) is a constant, representing a property of the composite.
Neglecting the out-of-plane bending moment in the beam at the kink-band face, we have a
cantilever fixed at the end cap. The out-of-plane displacement at the kink is w = dsin® where
¥ = fiber inclination in the kink when the axial stress in the kink-band is reduced to the residual
value o, (¥ =~ 45°, as seen in experiments). This causes out-of-plane forces on the kink-band,

(b)

Fig. 6. (a) Out-of-plane deformation of a unidirectional composite which fails by compression and (b) force equilib-
rium of the kink-band.
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F = 3(Eh*/12)(dsin¥)/L?, where L, h = half-length and thickness of specimen respectively. Based
on the moment equilibrium condition of an element of the kink-band, the axial force required to
balance force F is

AP = F(5cos®)/(dsind) or AP = Edcosdh’ /4L’ (18)

For the specimens of the smallest size, one thus gets corrections AP =~ 104-147 N/mm, which is
less than 3% of the maximum axial force and thus insignificant. For the longer specimens, the
correction is much less, since AP oc L73. Therefore, the effect of out-of-plane forces can be ne-
glected.

3.4. Development of failure process zone and size effect

In LEFM, the axially loaded prismatic fracture specimen with a one-sided notch is known to
represent a positive geometry [11], i.e., the stress intensity factor for unit load increases with the
crack length. However, this is true only if the specimen is sufficiently slender, or if the ends are free
to rotate. The present specimens, though, represent, a negative geometry, i.e., the stress intensity
factor for unit load initially decreases. The negative geometry is useful for achieving a more stable
response, as well as for exploring the entire softening curve.

Because of the rotational restraint, the location of the axial load resultant is statically inde-
terminate and its location shifts away from the center during loading. Consequently, the loading
for different specimen sizes and the kink-band lengths at maximum loads are not geometrically
similar. This means that corrections need to be introduced into the simple size effect law for
positive geometries. These corrections have been worked out, on the basis of equivalent LEFM
[13], but a compact simple formula does not exist.

The computed stress profiles across the smallest specimen at P,y are plotted for three stages of
loading in Fig. 7. The maximum load Py, for positive geometries depends only on the initial
segment of the softening stress—displacement curve of the cohesive crack model [17,18,26]. The
reason is that, for positive geometries, the stress at the notch tip at P,y is still above the tail

1500

Ligament [mm]

Fig. 7. Stress profiles along the width of the carbon-PEEK specimens before, at and after the maximum load in the
small specimen, which is chosen for better graphical resolution.
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portion of the softening curve. For negative geometries, however, this is not true, and the stress
profiles in Fig. 7 confirm it.

The profiles in Fig. 7 were computed by solving, under the assumption of linear softening up to
the residual stress plateau, the compatibility condition of crack band formulated in terms of the
compliance matrices. The solutions were computed for subsequent small increments of the dis-
placement at the top of specimen. The maximum loads obtained by this much more tedious
analysis agreed with those calculated by the present eigenvalue approach (e.g. Fig. 8(c)), which
provided a check on the correctness of this approach.

In the computed profiles, one can see the location of the FPZ during the loading process.
Further one should note that the locations of the compression resultant at P, for the three
specimen sizes are dissimilar, which was shown already in Bazant et al. [13]. For the small size
specimen, the location of this resultant is shown in Fig. 7 by arrow 2. Aside from the embedment
length, this is another reason for geometrical dissimilarity among the three sizes, which was al-
ready taken into account in the previous work [13].

The fact that the geometry is initially negative is manifested by the fact that the FPZ (i.e., the
zone of softening) becomes detached from the notch tip before P, is reached. But this is gen-
erally true only if the specimen is not too small. Fig. 7 demonstrates that this situation is achieved,
i.e., the residual stress value is attained at P.,,, even for the smallest specimen. This fact is the
reason why P, is influenced not only by the initial portion of the softening curve, as in normal
fracture specimens, but by the entire softening curve.

1600 — 1600 —
= 1200 < 12004
g o] 2
— 800 — — 800\
5 . S 1+
e = .o
»n 400 — »n 400 — Seao oo
0 T I T I T I T I 0 T I T I T I T I
0 01 02 03 04 0 01 02 03 04

(a) Crack opening [mm] (b) Crack opening [mm)]

[e2]

(=3

(=]
]

N X
(=]
(=T )
1 1

Nominal Strength [MPa]
P W
s 8

300 T o T 1

1 10 30
(c) Size, D [mm)]

Fig. 8. (a) The triangular softening law determined by the data fitting, (b) a bilinear softening law chosen with the same
initial slope as the triangular one and (c) the size effects corresponding to the two softening laws, in which the solid line

is for the former, the dashed line is for the latter and the symbols represent nominal strengths obtained by the classical
method.
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The size effect curves, shown in Fig. 8(c), were alternatively computed (by the present eigen-
value method) also for the case of the bilinear softening law shown in Fig. §(b), for which the
initial tangent is the same as for the linear softening law (Fig. 8(a)). The solid size effect curves in
Fig. 8(c) are for the linear law, the dashed for bilinear. As expected, both size effect curves coincide
for small sizes, but deviate significantly at large sizes.

The calculations confirm that, for specimens of negative—positive gecometry such as the present
ones, the maximum load depends not only on the initial segment of the softening curve of the
cohesive crack model (as is the case for positive geometry specimens) but on the entire softening
curve. However, the case of very small specimens is an exception because the softening at max-
imum load does not attain the residual stress value.

The fact that the stress at notch tip is reduced to o, also implies that the size effect curve must be
affected by the total fracture energy corresponding to the area under that softening curve and
above the residual stress line.

4. Conclusions

(1) The eigenvalue method for calculating the maximum loads for the cohesive crack model is ex-
tended to softening stress—displacement curves that terminate with a finite residual stress. The
eigenvalue of the cohesive crack is characterized by the excess of the residual stress. The re-
sidual stress or the initial stress on the notch does not affect it.

(2) The proposed extended method allows an efficient calculation of the size effect curves of the
cohesive crack model with residual stress, for both positive and negative—positive geometries.

(3) Application of the cohesive crack method to kink-band failure of unidirectional fiber compos-
ites yields good agreement with the previous measurements.

(4) The results demonstrate that the size effect for negative—positive geometries is affected not
only by the initial tangent of the softening curve but by the entire softening curve of cohesive
crack. However, this does not need to hold true for very small sizes.
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