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applicability of principle of superposition
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This technical note is a specific contribution related to the subject of the ConCreep-5

Conference reported in this issue, page 370.

A recent RILEM symposium paper [1] based on J.-H.
Shen’s dissertation at Darmstadt University [2]
concluded that ‘some well-known concrete creep
functions are mathematically unsuitable for the
application of the superposition principle’ and ‘the creep
formulations in many building codes should therefore be
reconsidered”. These conclusions served as the
justification for a subsequent proposal for a nonlinear
creep formulation in [3]. If these conclusions were
correct, it would necessitate a sweeping change in the
building codes and recommendations for creep analysis
of concrete structures. However, the mathematical
argument that led to these conclusions is not valid. It is
important to clarify that, because some engineers might
be tempted to accept these conclusions without checking
the correctness of the mathematical argument.

In [2] and [1], various simple functions used for the
description of creep curves, such as the power function.
hyperbolic function or logarithmic function are
considered. The function is differentiated at constant
stress. The original function is then used to eliminate
some variables. This yields, for the strain history, a
differential equation which is satisfied by the function for
the creep curve at constant stress. [t is noted that this
differential equation is nonlinear (in strain). On that basis
it is argued that the superposition principle is inapplicable
and that the nonlinear differential equation obtained
should be used to predict the response at general
time-variable stress histories.

This argument is erroneous. Since the nonlinear
differential equation was obtained under the assumption
of constant stress, it does not follow that this equation
should be valid generally at variable stress. The
differential equation obtained is only one of an infinite
number of possible differential equations or integral
equations whose solution for constant stress gives the
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original function for the creep curve at constant
stress.

To illustrate this, Shen’s argument in the case of a
power function goes as follows. At constant uniaxial
stress o, the corresponding creep strain is written as

e=ocC(t — )" )]

in which ¢ i1s the time (age of concrete), t, is the time at
the moment of applying the constant stress, and m and
C are constants (Equation 5.59 in [2] and Equation 9
in [1]). It is then noted that Equation 1 satisfies the
following differential equation
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see Equation 5.61 of [2] and Equation 10 of [1]. Then
it is claimed that, because of the nonlinearity of this
differential equation, the superposition principle cannot
be applied to the power function in Equation 1. This
claim is not justified. The reason is that the superposition
principle is used to obtain the creep response at variable
stress, whereas Equation 2 has been obtained under the
assumption of constant stress and is therefore proven
valid for constant stress only.

Shen [1, 2] then makes arguments of the same kind
for the hyperbolic function (Equations 5.65-5.67 of [2]
and Equations 15-21 of [1]), the logarithmic function
(Equations 5.68-5.70 of [2] and Equations 22-24 of [1]),
the exponential function (Equations 25-30 of [1]), and
so forth. All these arguments are invalid.

The error in Shen’s argument can be. demonstrated
simply by bringing it ad absurdum in various ways. For
example, one can check that Equation 1 satisfies not only
the differential equation in Equation 2 but also the
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following differential equations:
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where r is any number. Using Shen’s kind of argument,
one could claim that any one of these equations should
apply at variable stress. This would obviously be
inadmissible because these differential equations are
different and give different responses to a given history
of variable stress. Thus, the material behaviour would be
non-unique. In fact, one can deduce from Equation 1 by
this kind of erroneous argument an infinite number of
different differential equations. Moreover, since creep can
equivalently be described by integral equations, one can
show similarly that different integral equations could be
deduced by this kind of erroneous argument.

Among the foregoing differential equations, Equations
3 and 4 are linear, while the others are nonlinear.
Equation 3 may be generalized to variable stress as
é(t) = a(t)(t — to)™~*. But this is not the only possible
generalization that yields Equation | when ¢ is constant.
Another such generalization to variable stress has the
form of a linear Voiterra integral equation obtained by
applying to Equation 1 the principle of superposition:
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(Stieltjes integral), where E is the elastic modulus. Indeed,

substituting the time variable stress a(t) as a Heaviside

step function a(t) = 6,H(t — t,) one obtains Equation 1

from Equation 9.

Alternatively, the power function in Equation 1 can be
obtained as the integral of a system of first order
differential equations that correspond to the Kelvin chain
model with a certain retardation spectrum. To obtain
Equation 1 from the retardation spectrum exactly, one
must consider the number of these differential equations
(and the number of the retardation times) to be infinite,
which is the well known case of a continuous retardation
spectrum. This retardation spectrum is obtained,
according to Tschoegl [4] (or [5]), by means of Widder’s
explicit formula for the inversion of a Laplace transform
[6]. In engincering practice, the linear formulation for
variable stress which yields the power function in
Equation 1 need not be known exactly. It suffices to
represent the power function with an error not exceeding

approximately 1%;. In that case, considering a time range
of four orders of magnitude of the elapsed time ¢ — ¢,
(sufficient for most practical purposes), one may use a
Kelvin chain model with only four Kelvin units whose
elastic moduli are given in BaZant and Prasannan [7]
(which is referenced as No. 11 in [2]).

The nonlinear differential equations 5-8 can be
generalized to variable stress by other ways than by
replacement of constant ¢ with variable o(:). For
example, Equation 1 may be obtained by substitution of
o(t) = aoH(t — to) or [a(t)]* = 62H(t — t,) into each of
the following nonlinear integral equations:
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Equations 11 and 12 have the form of the quadratic term
in the Fréchet expansion of a nonlinear functional. An
infinite number of different integral equations with
single integrals or multiple integrals, all of which can be
reduced to Equation 1, are possible.

A compliance function in the form of a power function .
(Equation 1) is of course widely used in non-ageing linear
viscoelasticity of polymers. The principle of superposition
has been verified by extensive numerical results as valid
for many polymers. Now it should be noted that if Shen’s
argument ([1-3]) were applicable to concrete, it would
also be applicable to polymers. Linear viscoelasticity
would have to be abandoned as the theory for polymers.
This consequence is absurd, and the validity of the
principle of superposition in the viscoelasticity of
polymers is further confirmation of the incorrectness of
Shen’s argument.

Another questionable aspect in applying. Equations 1
and 2 to concrete is that they do not take into account
the aging. To take it into account, one must replace
constant C by a function C(t,). Then, however, Equation
2 cannot be considered as a general constitutive law
applicable to variable stress o(t). There is simply no way
of generalizing the function C(t,) to arbitrary time
histories if these are first order differential equations. For
example, if ¢, is considered as the time of first loading
for a variable time history, one inevitably violates the
requirement of continuity. Consider, as one history, stress
o = 1 to be applied at age t, = 100 days. Then consider,
as one history, stress ¢ = 0.001 to be applied at age
10 days, and then increased to ¢ = 1 at age 100 days. The
second history must yield nearly identical response, but
using t, = 10days one would get a very different
response.
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From the fundamental viewpoint, Shen’s argument is
based on a misconception. It does not distinguish between
a possible mathematical representation of a particular
curve, describing the response to a particular loading
history, and a constitutive equation which must apply to
every loading history. The adjective ‘nonlinear’ is used
incorrectly: not in the sense of nonlinear dependence of
the response history upon the loading history (which
inciudes dependence on the stress magnitude) but in the
sense of the temporal description of a particular response.
In fact, speaking of the ‘linearity of the creep function’,
as stated in [2] and [1], makes no sense in the theory
of constitutive modelling of materials. The notion of a
creep (compliance) function (defined as ¢/0, where o, is
the constant applied stress) implies linearity to begin with.
One may speak of the linearity or nonlinearity of material
behaviour or the constitutive model, but not of the creep
function. Thus, it makes no sense to claim (p. 207 of [1])
that ‘linearity of the creep function is a prerequisite for
the application of the superposition principle.’

The concept of linearity is the basic result of functional
analysis which emerged around 1900 from the works of
Volterra, Fréchet, Riesz and Hadamard [8-15], not
quoted by Shen. The most general and indeed the only
way to express the linearity of a functional (the
constitutive model for material behaviour) is (for uniaxial
stress) to express the response (strain history) by means
of a simple integral of the input (stress history) and a
function of the current time and the time as integration
variable. No linearity of the dependence of this function
in any sense (such as Shen’s) is required. The
nonlinearity of a functional (i.e., of time-dependent
constitutive model) is expressed either by the dependence
of the kernel (i.e. the creep function) on the input variable
(stress), in addition to time (as in the foregoing Equation
10), or by multiple history integrals [8], as in the
foregoing Equation 11 or 13. Many studies of such
nonlinear time-dependent constitutive models exist
[16-22].
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