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Uncertainty Analysis of Creep and Shrinkage Effects in Concrete

Structures
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by Henrik O. Madsen and Zdengk P. Bazant

A simple probabilistic model, which allows calculation of simple sta-
tistics for shrinkage and creep effects for structural elements, is pre-
sented. The statistics can be, in particular, the mean value function and
the covariance function (including the variance function), which seem
to be the most interesting statistics for serviceability analysis. Any de-
terministic creep and shrinkage formula can be the basis for probabi-
listic creep and shrinkage models. The formulas are randomized by in-
troducing the entering parameters as random variables and by further
introducing random model uncertainty factors to characterize the in-
completeness or inadequacy of the deterministic formulas. Statistics
for the model’s uncertainty factors are derived by a comparison be-
tween available test data and predictions for these tests by the formu-
las. The creep and shrinkage formulas developed by Batant and Pan-
ula (BP model) are chosen.

Structural analysis can be carried out by any conventional deter-
ministic method. In this paper, the analysis is performed by a matrix
method which gives essentially exact results if the time discretization is
close enough. A large number of examples of practical relevance dem-
onstrates the potential of the method. Some of the examples show that
structural effects which in a deterministic anayisis almost vanish can
have a very large uncertainty, which should be taken into account in
practical design.

Keywords: concrete construction; creep properties; mathematical models; prob-
ability theory; reliability; shrinkage; structural analysis; structural members;
viscoelasticity.

The analysis of uncertainties in the prediction of
shrinkage and creep effects in concrete structures has
gained wide interest in recent years. This is quite natural
since concrete strength and elasticity are already being
treated as random properties while actually the scatter in
these properties is not as large as the scatter in shrinkage
and creep properties. Although many sources contrib-
ute, there are basically two types of uncertainty related
to the shrinkage and creep processes. These are referred
to as the external uncertainty and the internal uncer-
tainty.! The external or parameter uncertainty arises
from the uncertainty in the influencing parameters such
as those representing environment and concrete compo-
sition. The internal uncertainty is that inherent in the
microscopic creep processes or creep. mechanisms. The
external uncertainty is generally believed to be the main
type. Models for the description of internal uncertainty
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are proposed in References 1 and 3. However, only a few
test results exist for validation of these models and for
parameter estimation.

If no internal uncertainty was present, deterministic
relations between the environmental and concrete com-
position parameters, and shrinkage and creep should in
principle exist. Due to the complexity of the phenomena
these relations have not quite been determined so far.
Many approximate relations have been proposed on the
basis of physical considerations and test results. No
matter which relation is chosen, a model uncertainty is,
however, introduced and must be taken into account.

The proposed creep and shrinkage formulas are based
on test results obtained with fairly small test specimens,
usually loaded uniaxially in pure compression. In struc-
tural analysis concrete is usually considered homoge-
nous although there exist within the cross sections large
variations in pore relative humidity, temperature, and
degree of hydration, giving rise to self-equilibrated
stresses, microcracking, and cracking. The creep and
shrinkage formulas can therefore give only some aver-
aged properties of the cross section and an additional
uncertainty is thus introduced.

Other important sources of uncertainty come from
sttuctural analysis. For practical reasons a linear creep
law is normally adopted so that the principle of super-
position can be used. This may often be a good approx-
imation for service stresses less than 40 to 50 percent of
the ultimate compressive strength, but this still adds to
the uncertainty of the predictions.

Even assuming homogeneity of concrete, linearity of
the creep law, and validity of the ordinary bending the-
ory, calculation of structural effects may still be too
complicated. In addition to the highly accurate numeri-
cal methods based on time step integration, various sim-
plified methods are therefore used; these especially in-
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clude the effective modulus method and the rate-of-flow
method. Additional uncertainty caused by using one of
these simplified methods is reported in Reference 4.

This paper investigates the external uncertainty in the
shrinkage and creep functions and the model uncertain-
ties related to choosing one specific set of shrinkage and
creep formulas. A practical method for calculating sim-
ple statistics for shrinkage and creep effects for struc-
tural elements is presented. The probabilistic method
adopted is very simple and, in principle, only requires
averaging of a certain number of results from determin-
istic calculations.

The main objective is to quantify the effect that the
correlation between the parameters in different cross
sections of the same concrete structure has on the total
uncertainty. This effect is illustrated by a number of rel-
evant examples. .

Loads, geometrical parameters, and steel parameters
are assumed to be deterministic and known; only the in-
fluence of varying concrete and environmental parame-
ters is analyzed.

SHRINKAGE AND CREEP FORMULAS

Many prediction formulas for shrinkage and creep
have been suggested both in literature and in national
and international codes. A common feature of all the
formulas is that none of them predict creep and shrink-
age perfectly, although some formulas are definitely
more accurate than others. The amount of information
on the input parameters such as environmental condi-
tions and concrete composition varies considerably from
formula to formula. This is not bad because ideally a hi-
erarchy of formulas should be available, demanding in-
creasing amounts of information on the input parame-
ters and in return giving more reliable predictions.

In this study the formulas developed by BaZant and
Panula (BP formulas®) are chosen. In comparisons of
test results with predictions from different formulas,
these formulas showed the best agreement.® The BP for-
mulas are to a greater extent based on physical consid-
erations than other formulas. Two main advantages of
the BP formulas are that they are equally reliable for a
large variety of concrete compositions and environmen-
tal conditions and that they predict future developments
of creep and shrinkage with good accuracy if one or two
short-time measurements have been made.
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The BP formulas are given in detail in Reference 5. In
short, they are, for shrinkage

esh(t) to) = €shoo kh S(t: ta) (1)

and for creep

1
Ji,t') = E + C,(4,t")

+ Cd(tJt’)to) - Cp(t)t’:to) (2)

Here ¢, = shrinkage strain; ¢, = age of concrete when
drying begins; J(t,t') = compliance function (also called
the creep function) = strain at age f caused by a uniaxial
unit stress acting since concrete age ¢'; E, = asymptotic
modulus (= 1.5 E. where E. = conventional elastic
modulus of concrete); Cp, C,, C, = functions describ-
ing basic creep (creep at constant temperature and hu-
midity), increase of creep during drying, and decrease of
creep after drying; C,(¢,t') = (¢,/Ey) (' " + o) (-1')"
(double power law) where ¢,, m, n, and « = parame-
ters, depending on the type of concrete; C, = function
similar to S; and C, = function similar to C,; k, = func-
tion of relative humidity A, definedas 1 - A2 if h <
0.98, or else — 0.2; and S = empirical function of the
variable (¢-£,)/1, where 1, = shrinkage-square half
time, proportional to the square of the dimension of the
cross section, S(4,7,) = [1 + 7.,/(t-t,)]~ " where 1, =
shrinkage-square half time = const. X (k;D)*, D = 2 X
volume-to-surface ratio, and k; = factor taking into ac-
count the shape of cross section.

The influences of the type and composition of con-
crete and of environmental variables (relative humidity
h and temperature T) are described by empirical or
semiempirical formulas® which yield coefficients &, €.,
Tas Eo, &1, m, n, and o and functions S, C,, C,, and C,.
These formulas involve the basic variables listed in Ta-
ble 1. A computer program for determining all these
variables and functions according to the BP formulas is
available.”

The mean 28 day cylinder strength is calculated by
Bolomey’s formula

E(f) =.27 ('1— - 0.5> MPa 3)
w/c

Table 1 — Assumed coefficients of variation for
influencing parameters

Coefficient of
Parameter variation
h mean relative humidity of environment 0.2
h, initial relative humidity at which the ~0
specimen was in moisture equilibrium
before time ¢,
T mean environmental temperature 0.1
D effective thickness of specimen ~0
(2 x area/perimeter of cross section)
ks shape factor for specimen 0.05
c cement content in kg/m’ 0.1
w/c water-cement ratio, by weight 0.1
s/¢  sand-cement ratio, by weight 0.1
g/c gravel-cement ratio, by weight 0.1
q, parameter depending on cement type 0
f! 28 day cylinder strength 0.1
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Fig. 1 — Sample curves with different model uncer-
tainty formats
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where E denotes expectation and IMPa = 145.04 psi.

In probabilistic analysis, each variable is represented
by its expected value and the coefficient of variation.
The numerical values for the coefficients of variation
listed in Table 1 were not selected on the basis of precise
data, which do not seem to exist, but on an intuitive
judgement.

The BP formulas do not predict shrinkage and creep
perfectly, and so the resulting model uncertainty will
now be analyzed.

MODEL UNCERTAINTY FACTORS
Model uncertainty is accounted for by applying a ran-
dom factor to each term: shrinkage, basic creep, and
drying creep. The formula for shrinkage is then

E,,,(t, to) = ‘I,l €shoo kh S(t: to) (4)

where ¥, is the model uncertainty factor. Other formats
for dealing with model uncertainty could have been cho-
sen, such as applying an additive random variable inde-
pendent of time

Esh(t)to) = ‘I’l + €sheo kh S(t’to) (5)

or applying a multiplicative or additive random func-
tion of time

enltst) = ¥i(1) €4 K S(1,1,) (6)
e:h(tJta) = ‘I’l(t) + €shoo kh S(t’ta) (7)

With the formats of Eq. (4) or (5), a measured curve
ought to correspond to one value of ¥, independent of
time [see Fig. 1(a) and (b)]. With the formats of Eq. (6)
and (7), measured and predicted curves can differ much
more in their shape [see Fig. 1(c)]. A comparison be-
tween predicted and measured curves suggests that Eq.
(4) provides a sufficiently good description. The mean
value and coefficient of variation of a time averaged
value of ¥, are estimated in Reference 6 in which the test
data are represented by a hand-smoothed curve and are
compared to the predicted curve at discrete times, usu-
ally one or two time points per decade in the logarithmic
time scale.

The model uncertainty for the creep function is as-
signed in a similar way and the formula for the creep
function is then

J(l,tl) = \I,Z[Ei + Co(t:tl)]

o

+ ‘I,BICd(IJt”ta) - Cp(t’t,)to)] (8)
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The mean values and coefficients of variation of the ¥-
factors [of Eq. (4) and (8)] reported in Reference 6 are

ElV]=1; V,, =017
El¥,] =1, V, =024
EN]=1; V,=0.16 ©9)

Due to the way the statistics for the ¥-factors are de-
termined, they reflect three sources of uncertainty and
each V¥ is consequently written as

¥, =¥V, ¥, (=123 (19

where ¥ = factor due to inadequacy of the prediction
formula; ¥, = factor due to internal uncertainty; ¥, =
factor due to measurement errors and uncertainty in the
laboratory (or site) environment. The factors to be used

in Eq. (4) and (8) are ¥, and the coefficients of varia-

tions in Eq. (9) must therefore be corrected. The factors
in Eq. (10) are assumed independent, and the relation
between the coefficients of variation is*

A+ V) =0+VNA0+V)d+Vy
(i=1,2,3) (11)

Since the test results were hand-smoothed and the
laboratory test conditions were well controlled, the
coefficient of variation Vy; is estimated as 0.05. Scant
data are available for the estimation of V_, but the re-
sults in References 11, 12, aud 13 indicate that a value
between 0.06 and 0.10 is reasonable for test specimens.
In the examples reported later in this paper, the follow-
ing corrected values obtained from the foregoing infor-
mation and from Eq. (9) are therefore used

Shrinkage  E[¥,] =
Basic creep  E[V,]
Drying creep E[V,}

I, V,, =0.14
1; V,, =023
1, Vi, =0.13

(corrected
values)

von

(12)

The coefficients of variation V, reported in Reference
6 are based on numerous test series involving a large va-
riety of external parameters. Leaving out some test se-
ries would reduce the coefficients of variation drasti-
cally, but to do that would be a dubious matter. Instead,
a weighting procedure for the individual test series, in
which the weights would be assigned according to the
similarity with the particular concrete and environmen-
tal parameters at hand, should be developed. It appears
that this could be done within a Bayesian framework.
(This approach, presently pursued by J. C. Chern at
Northwestern University, is, however, beyond the scope
of this paper.)

CALCULATION OF STRUCTURAL EFFECTS
Creep law is assumed linear. The principle of super-
position is then valid and the uniaxial relation between
stress ¢ and strain ¢ is®

e(r) — (1) = [ J(t,t") do(t’) (13)
ACI JOURNAL / March-April 1983



in which ¢ = time representing the age measured from
the set of concrete; J(#,¢t') = compliance function (also
called creep function) = strain at time # caused by a unit
constant stress acting since time ¢’; and ¢° = stress-in-
dependent strain due to shrinkage and thermal effects.
With this creep law the solution of structural analysis
problems leads to Volterra integral equations. In Refer-
ence 4 various methods giving exact and approximate
results are compared. To obtain accurate results, nu-
merical step-by-step methods are most efficient. In these
methods the time interval(z, , t,)of interest is divided
by discrete times ¢, £,, . . ., I, into time steps A, = f;, —
t.,. The integral relation in Eq. (13) may then be approx-
imated by
L1
6 — € = E 5 W) + Jut,)] A, (14)

j=1

where subscripts i, j refer to times ¢, ¢; or to time steps
ending at these times, e.g., ¢, = €(t)), and Ag; = o(2)) —
o(t,.,). The principles for choosing the division points are
given in References 8 and 15. Eq. (14) is applicable even
when some stress increments are instantaneous, in which
case the corresponding time step is of zero duration. Ac-
curacy of the method is generally very good even for a
small number of time intervals. For a moderate number
of time points, the results can be considered as exact so-
lutions of the integral equations.®!*!¢

Structural analysis with the stress-strain relation in
Eq. (14) may be reduced to a succession of incremental
elastic analyses for the individual time steps.*®!>'¢ The
solution from Reference 4 will be applied here in a ma-
trix form,'” convenient for the analyst, in which all time
steps are solved simultaneously. In contrast to the usual
step-by-step solution,®**!*'¢ such an approach, admit-
tedly, wastes computer time and storage, but this is un-
important for structures with few unknowns, which are
of interest here.

Grouping ¢; and Ag; in column matrixes ¢ and Ag,* we
may rewrite Eq. (14) as

e —¢ =JAo (15)

in which
1 .
J = [5 V(L) + J(ti’tj.l)]] = (i X i) square matrix

Similarly, g, = ZAo; can be written as
g=LAg (16)

in which ¢ = {0} and L = (1,;;) = a square matrix
whose elements are 1 if / < j, and otherwise are 0. Eq.
(15) may then be written as

e—e=E"'g an

where
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E'=JL"! (17a)

The formal similarity of Eq. (17) with Hooke’s law
reflects the analogy between linearly elastic and linearly
viscoelastic materials.® As demonstrated in Reference 17,
the matrix formulation allows a convenient algebraic
treatment of linearly viscoelastic structures (with not too
many unknowns), similar to that for linearly elastic
problems.

A simple application of the matrix notation may now
be shown. Shrinkage of a plain concrete bar is com-
pletely restrained causing tensile concrete stresses which
are modified by creep. The governing equation is

€(t) = e,(O) + [LJ(t,t)do(t') = O (18)
which in matrix formulation reads
e=€+E'g=0 19)
and from which the concrete stress is found to be

g= - Ec Esh (20)

Due to uncertainties in shrinkage and creep properties,
the matrix E, and the vector ¢,, are both uncertain.

It may be noted that Eq. (17), on which all the present
structural analysis is based, is also applicable for ap-
proximate solution by the age-adjusted effective modu-
lus method. In that case, E,~' becomes a diagonal ma-
trix with diagonal elements 1/E." (1,,10), in which E.”
(¢,,1,) is the age-adjusted effective modulus.® Advan-
tages of this method are that it allows approximate so-
lution of the structural response at a certain time ¢, with-
out solving the response for the preceding times, and
that the matrix inversion and multiplication indicated in
Eq. (17a) need not be carried out. These advantages
make hand calculations feasible; they are, however, in-
significant when a computer is used.

UNCERTAINTY ANALYSIS

Before deciding on the type of uncertainty analysis, a
number of observations can be made. Creep and shrink-
age effects are mainly considered in serviceability anal-
ysis, and interest is therefore in the variations close to the
mean values rather than extreme values. The relation
between creep effects and basic variables is highly non-
linear. The number of basic variables is very large, and
for the set of basic variables, hardly more than second
moment information is available, i.e., means, vari-
ances, and covariances. It then appears that a satisfac-
tory characterization of creep effects consists in achiev-
ing good estimates of the mean value at any time, the
covariances between values at any two times, and for
each basic variable a measure of the relative importance
for the creep effect of variations of this parameter.

Previous work!® gives second moment analysis tools
which are directly applicable in connection with the ma-
trix method outlined here for the calculation of struc-
tural effects. Application of these tools is demonstrated

*Editor’s note — A single line under a Greek letter indicates a matrix quan-
tity.
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in Reference 18; they are even applicable when some
basic variables are uncertain processes rather than un-
certain variables. Although the method is conceptually
very simple, serious computational difficulties arise,
however, when several correlated uncertain matrixes and
their inverse matrixes are dealt with simultaneously, as
is the case of this paper’s examples. Other, simpler un-
certainty analysis methods will therefore be considered.

In the creep and shrinkage models chosen, all basic
variables § = (8,, . . ., 8,) are random variables. Given
the value of 8, any creep effect is then represented as a
function of time. Let the creep effect be denoted X(4,1).
A linearization of X(6,7) around the mean value point
E[8) gives the following mean value and covariance
function’

E{X(6,n] £ X(E18),0) 2D

Cov(X(6,1),X0,1)] L

" ax aX
E %, (E181,1)

k
1 24 (E181,2,) Cov[d,6] (22)
izl j=

where Cov denotes the covariance and the sign L sym-
bolizes the linearization of the right-hand side. Due to
the complex functional relationship between the creep
effects and the basic variables, the partial derivatives in
Eq. (22) are, however, difficult to calculate analytically.
If the partial derivatives are calculated numerically, the
method becomes less attractive than the method which is
proposed next and is based on point estimates for prob-
ability moments.

Let 6 be a random variable with mean value x and
standard deviation s, and let the interest be focused on
the mean value of some function g(f). Possible observa-
tions 8, 0y . . ., 8, Of 8 are chosen together with m
nonnegative numbers p,, p», . . ., P, the sum of which
equals 1. The mean value of g(f) may then be assigned
as

Elg®)] = pig6) + pgBz) + . . . + P&, (23)

1 dimension

3 dimensions

Since the mean value and variance of 8 are given, the §,,
and p, cannot be chosen arbitrarily but must satisfy the
conditions

Ef6] = pibyy + Py + . . .+ Dby = 0 '
E67] = p,#, + DB (24)
+ ...+ p =+ S $

The simplest choice consists in choosing two points
0.y 05 = p = s with both p, equal to ¥ (Fig. 2). Thus,
for two-point estimates, the expected value of g(8) is as-
signed as

E[g0)] = Y2lg(u + 5) + gu — 9)] (26)

Use of this procedure as an aid to assign mean values to
functions of random variables with some mean values
already given was suggested in Reference 14. Reference
10 describes a more formal mathematical setup of a so-
called n-mass uncertainty algebra which also includes
this procedure. The generalization to two and three di-
mensions is also shown in Fig. 2. Extensions to four or
more dimensions are rather straightforward, but there
are here infinitely many possible sets of p-values and it
must be checked that no negative p-values are selected.

It is useful to note the validity of the following rela-
tions from linear regression analysis

E0l6,=pts]=pxp5Gi=12...0027
Var(gl6, = w, £ 5] = £ (1 - o} (28)

where Var denotes the variance, s; are the standard de-
viations of random variables §,, and p; are their correla-
tion coefficients. An intuitive measure of the relative
importance of uncertainty of each parameter is q;, de-
fined as

_ Varlg@)] - E[Varlg@|6]] _ VarlE[z®)lo]
= Var[g(®)] Varlg(@)]
= {Varlg@)] - ¥ (Varlg®|6, = 4, + 5]
+ Var[g(@)|6; = p, — s])}/Var[g(®)] (29

pal el 1491271370 1-0)570,3%0p3
P —o e 8 " ’
!
6=u-s 6, u-s ! !
{ i
EiBl=pn | var () =52 1=3,,%0 3700y ; - |25y
8 : | e y%e g5ty
i : 3
2 dimensions . v Xo
2_dimensions I
L% 1 s er - N
g Y o b -ttt
t & / 8
1- 1+ I / 2s
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Table 2 — Deterministic parameters and mean
values of basic variables

Table 3 — Relative importance factors (in percent)
for creep formula*

t, h h, T| D ki {a | C | w/c| s/c | g/c

10 [ 0.65 | 1.0 20| 100 | 1.15 | 1 1275 | 0.56 | 3.08 | 4.00

where the last equality is valid for the choice of 8s and ps
as shown in the figures.

Applying the procedure involves a calculation of creep
effects for each of the 2* possibilities of 8 (k being the
number of variables). The mean value and the covari-
ance functions are then calculated by the appropriate
weighting of results. For a large &, the number of calcu-
lations is thus very large, but, as will be seen, the relative
- importance factor «; for several basic variables is so
small that these variables can just be taken at their mean
values.

A third procedure, which can always be used, is sim-
ulation. A formal choice of the distribution type of the
set of basic variables § must then be made. Sample s are
then simulated and the corresponding creep effects cal-
culated. The mean value and covariance functions are
obtained by giving each sample the same weight. The
number of simulations necessary to give good estimates
of the mean and covariance functions is not extremely
high, but it is difficult to estimate any relative measure
of importance for each variable.

The point estimate method seems to be the best one
for this application with regard to the information on
the input, computation time, and output.

RELATIVE IMPORTANCE FACTORS

Including the three model uncertainty factors, there
are 11 basic variables in the shrinkage and creep formu-
las, Eq. (4) and (8). The relative importance factor de-
fined in Eq. (29) is for the shrinkage function deter-
mined for each basic variable. For the creep function
this is done only in two cases. The mean values of the
basic variable and the deterministic parameters are listed
in Table 2. These values are chosen somewhat arbitrar-
ily, but very similar relative importance factors were ob-
served for other choices of parameter values. Coeffi-
cients of variation of the basic variables are taken from
Table 1 and Eq. (12).

Tables 3 to 5 show that the relative importance fac-
tors for the temperature T and the shape factor k, are
very small. These two parameters influence the time
scale of shrinkage and creep development rather than the
magnitude. The sand-cement ratio s/c and the model
uncertainty factor for drying creep ¥, also have very
small relative importance factors. In some of the fol-
lowing examples, these four parameters are taken as de-
terministic, thus reducing the number of random vari-
ables and the computer time.

EXAMPLES
We now combine the structural analysis method de-
scribed in Eq. (13) through (20) with the present uncer-
tainty analysis, considering a number of examples of
practical importance. The examples include both non-

ACI JOURNAL / March-April 1983

! 10.00 [ 11.00 [ 14.64 | 31.54 | 110.0 | 473.9 | 2163 | 10,000
A 0 3 a 6 8 0 |1t 10
T 0 0 0 0 0 0 0 0
ks 0 0 0 0 0 0 0 0
c 9 9 9 9 8 8 8 9
wic 4 9 9 | 10 | 10 | 1 |1t | 10
s/c ) 2 3 3 3 4 4 4
g/ 2 3 3 4 4 4 4 4
¥ 8 1 67 | 63 | 59 | 53| 48 | 44 | a4
¥, 0 1 1 1 2 2 3 2
f 2 ! I 1 0 0 0 0

Toal | 96 | 95 | 93 [ 93 | 88 | 87 | 8 | 83

*t, = 10days; ¢’ = 10 days.

Table 4 — Relative importance factors (in percent)
for creep formula*

I3 100.0 | 102.0 | 108.3 | 134.1 | 240.7 | 680.9 | 2498 | 10,000
h 0 3 5 7 10 13 15 15
T 0 0 0 0 0 0 0 0
ks 0 0 0 0 0 0 0 0
C 9 9 9 9 9 8 9 10
w/c 4 7 8 9 10 10 10 9
s/c 1 3 3 3 4 4 4 4
g/ 2 3 3 4 4 4 4 4
v, 78 68 63 57 50 44 39 38
¥, 0 1 ! 2 3 3 4 4
I 2 { 1 1 0 0 0 0
Total 96 95 93 92 90 86 85 84

*t, = 10 days; 1’ = 100 days.

Table 5 — Relative importance factors (in percent)
for shrinkage formula*

t 11.00 | 14.64 | 31.54 | 110.0 | 473.9 | 2163 | 10,000
h 11 11 i1 11 12 13 14
T 1 1 1 1 0 0 0
ks 1 1 1 1 0 0 0
C 2 2 2 2 1 0 0
w/c 44 44 44 44 44 42 41
s/c 0 0 0 0 0 0 0
g/c 12 12 12 13 14 15 15
v, 7 7 7 7 8 8 9
f! 7 7 7 7 8 9 9
Total 85 85 85 86 87 87 88
*1, = 10 days.

composite and composite structures. For a noncompos-
ite structure the age of concrete is assumed to be uni-
form, and so the same creep and shrinkage function is
valid for all parts of the structure. A composite struc-
ture may comprise reinforcement, and the age and com-
position of concrete may vary from one part of the
structure to another. In each example the structural
analysis is briefly described and the values of the vari-
ables listed. Results of the calculations are given as the
mean value function and the standard deviation func-
tion of the structural effects.

Restrained shrinkage in a plain concrete bar

The concrete bar of Fig. 3 is considered. Concrete
stress due to restrained shrinkage is given in Eq. (20).
The parameter values are given in Table 6(a), and results
of the calculations are shown in Fig. 3.

Restrained shrinkage in a frame

Fig. 4 shows a plane frame structure which has a uni-
form cross section and is subjected to shrinkage and
creep which causes development of horizontal forces at
the supports. Relative displacements of the supports due
to shrinkage and the reaction R(?) in the primary stati-
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Fig., 3 — Stresses in concrete bar subjected to shrinkage
and creep

cally determinate system are denoted as §5(f) and 6;(¢),
respectively. Since the supports are fixed, the governing
compatibility condition is 6(f) = 65(f) + 6x(f) = 0. The
displacement due to shrinkage is 6,(¢) = 2 a €,,(?).

According to the ordinary bending theory, in which
shear deformations are neglected, the displacement due
to the reaction R(?) is

84
8x(0) = ‘3—]‘ & J(t,t')YdR(t') 30)
In matrix notation, the governing equation is
- 84
8§ =2a¢,+ — - E'R=0 31
3I
From this equation, the reaction R is calculated
37

Results for a frame witha = 5m (1969 in.)and [ =
2.13 - 107 m* (5117 in.*) are shown in Fig. 4. Parameter
values given in Table 6(b) were used in the calculations.

Simply supported beams made continuous

Fig. 5 shows two identical, simply supported concrete
beams that are loaded at time ¢t = ¢, and coupled (with-
out enforcing any rotations at the beam ends) at ¢ = ¢,

R(t)[kN]
r

02~
o{R(1)}
ERW)
"D[R(1)
o1k [R(D)]

t [aays)

0

102 10?

Fig. 4 — Reaction due to restrained shrinkage in frame

810

0*

to form a continuous beam. The change of structural
system introduces a redundant bending moment M(¢)
governed by the compatibility condition 8,(z) + 6,{f) =

0, ¢ > t.. This equation expresses the fact that the mu-
tual rotation, due to the load g and the redundant mo-
ment M(f), between the two beam ends (in the sense of
M) remains unchanged after time #,. According to the
ordinary bending theory, the two rotations are

gl
5 (0) =2 2TJIJ(M) = J(te1)] (33)
l
(D) =2 3—1 §i, J@,t'ydmt') (34)
In matrix formulation the governing equation is
gl /
27— c+2 E'M=0 35
241 €7 3p @)

where the elements in the column matrix ¢ are the values
J(@t,t) — J(,,t,). The solution for M is

!
- — gl’E.c

M
8

(36)

Table 6 — Mean values E[ ] and coefficients of variation used in examples

Param-
eter h h, |T{ D ks | a C |whic|s/clg/lc| ¥ | ¥, ¥, 1 fl |l
@ El 1[065/1.00/231 50 [1.25]1.0(450 |0.46/1.66]2.071 1 1 — | 8
v 0.2 |0 0f © 0 orior {0 (o1 lo14l0.230013(01—
@y E 1{0.7 [1.00/20{200 |1.25/1.0(350 [04 [2.0 |35 |1 1 1 — | 8
4 02 |0 ol o {0 o 0.1j0.1.10 {0.1 |0.14]0.23]0.13/0.1}—
() El 1/0.65[1.00/20({400 |1.10[1.0({350 [0.6 [2.0 [3.0 | — [1 1 — |30
1% 02 |0 0] 0 0 01101 {0 |01 | — ]0.23]013]0.1}—
@ El 1]{0.65/1.00120(350 |1.00[1.0{385 [0.42]2.1 |27 [ — [1 1 - 7
1% 0.2 |0 o] © 0 0.1/01 |0 |01 | — Jo.23}013]|01]|—
@ EI 11065/1.00120(345 [1.20/1.0{375 |04 }2.0 |3.0 |1 1 1 — |15
v 0.2 |0 o| o 0 o.rjotr o |o1 |o.14]023/013]0.1)—
@ £l 1106511.00]201 956{1.00({1.0|350 [04 120 |35 |1 1 1 — {15
v 0.2 |0 ol o [o |o 0.1/0.1 /0.1 [0.1 |0.14]0.23/0.13]0.1 | —
(@) EU 1]06511.001201250 11.2011.0{350 05 [2.0 |34 | — |1 1 — |28
&y 02 |0 ol o 0 0.1/0.t |0 {01 | — |023]0.13]0.1]—
(hy El 1]0.65{1.001201285 |1.00/1.0(385 [042]21 |27 | — |1 1 — 128
v 0 ol o fo jo o |o |0 |o — l023j0 |o |—
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Fig. 5 — Redundant bending moment frbm coupling of
beams

Fig. 5 shows the results for two different times ¢, of cou-
pling. The parameter values used in the calculations are
given in Table 6(c).

Coupling of cantilever beams of different ages

Fig. 6 shows two opposite cantilever beams of differ-
ent ages, which are connected together at midspan. This
causes development of shear forces and bending mo-
ments in the connection. The load history is simplified as
shown in Fig. 6. The moment M(¢) and shear force V(¢)
may be determined from equations expressing the fact
that the mutual displacement and rotation are zero at the
connection after the time of coupling. These equations
are

1 gL* 1L ,
s I /1(#,60) — J,(270,60)] + 37 fio Ji(L,2")

1 L2 1 gl*
V) = 5 7t TG AME) - g7

[/x(t — 180,60) — J,(90,60)]
1 L
37 fi Jo(t — 180,¢' — 180) dV(t')

1 L?

5T fio Jo(t — 180,t' — 180) dM(t') = 0 G7

ACI JOURNAL / March-April 1983

JIRERNEBRNRNIL
¥ ¥ t = 180
JINRRRRRENRNNIINNENENNREEIL
t = 240

T v
jINEEERNNEERENNEENNRERENL
T ¥ 12270

M(t) fV(l) 270
p t>
E | I )‘t ] L4
L * §

4 L i L

Mgl oo Y1t

10

EIMW),, 004}

oS n

! 0.02

oo

t{days) o t{days]

% 103 104 0 10? 04

Fig. 6 — Redundant sectional forces from coupling of
cantilever beams

1 gL} 1 L2
- 51— VA(460) - J2T0,60)] = 5 = fin St

L 1 gL’

AN+ T S T M) = ‘%

[J(r — 180,60) — J,(90,60)]
2
+ L7 §i0 Jol(z — 180,¢t" — 180) d¥(t')}

+ 7 oo Jot — 180,6' — 180) dM(¢') = 0 (38)

~ NN

In matrix formulation, these equations may be written as

3

L4 1 L
g%(c.—cm ~ = E+EDV

37
1 L?
-3 (Eji—E )M =0 (39)
g 3 1 L?
“ s T(c.+cz)— 27 (E;i—-EDYV
L
+ “(E}N+EHM=0 (40)

7
where ¥V and M are the unknown column matrixes of
V(t) and M(t). E, is determined from J,(t,¢’) and E,
from Jy,(t — 180,¢' — 180) and where the elements in the
column matrix ¢, are J,(¢,60) — J,(270,60) and in the

column matrix ¢, are J,(t — 180,60) — J,(90,60). The so-
lution is
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Fig. 7 — Prestress loss in prestressed beam

V=gL [(Ex\+EDE—ED'(E+E:D)
3 -0
" (E;} - ED)] [; (¢, + ¢)
+ g (E;1+ EC)((ES - ED) ' (e — c.)] 41)
1 3
M= g gL [(E; + E;) - 3 (E;1 - EZ)
(ED+ E)VES-END] e+ ¢)
9
+ g (E;V = EZD(ES + EZD7' (e, — )} (42)

Parameter values used in the calculations are listed in
Table 6(d).

Results are shown in Fig. 6. The curves marked 7 cor-
respond to a situation with identical parameters for both
beams. The curves marked II correspond to a situation
in which water-cement ratio varies in one cantilever in-
dependently of the other, while all other variables are
identical for both cantilevers. The effect of varying wa-
ter-cement ratio on the standard deviation function dif-
fers for the two cross-sectional forces.

Bending moment is determined mainly by (E-! + E])
and (¢, + ¢,) where the terms in each bracket are posi-
tively correlated. When the water-cement ratio varies in
each cantilever independently, the correlation decreases
causing a decrease in the variance. The situation is op-
posite for the shear force, since it is mainly determined
by (E-! — E;}) and (¢, — c,). Here a decrease in the cor-
relation between the terms in each bracket causes an in-
creasein the variance.

Prestress loss in a prestressed concrete beam
Fig. 7 shows a symmetric cross section of a pre-
stressed concrete beam subjected to plane compound
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bending. The prestressing steel consists of one tendon
with cross section area 4, = 3000 mm? at distance y, =
0.52 from the centroidal axis of the concrete cross sec-
tion. The prestressing steel is assumed to be linearly
elastic, with modulus of elasticity E, = 200,000 MN/m?
(29 x 10° psi).

In matrix notation, stress-strain relations are

1
&= E Gpy € = Ec_l g, + € (43)
P

where the subscripts p and ¢ distinguish between pre-
stressing steel and concrete. The concrete strain distri-
bution is assumed to be planar, and the difference be-
tween the steel strain ¢, and concrete strain ¢, at steel
level y = y, is ¢,,, which defines the prestress. Therefore

gc = §co + Ecy) fp = gpp + gcp (44)
Equilibrium conditions relating the normal forces N,
and N. in steel and concrete, bending moment M, in
concrete to the total normal force N, and bending mo-
ment M are

N=N,+N, M=N,)Y,+ M, (45)
where the column matrixes N, N,, M,, N, and M group

the discrete values at times t,.p Since the concrete stresses
must be linearly distributed

1
g = - Nt+ o Mn g, = Np (46)

These equations are solved with respect to the steel force

A, A -
N, = A,E, [1 +(;” + —‘}yz—")E,,E;']

4 c

N My
;épp + €n t+ EJ'(; + Icp) é 47

in which I is the unit matrix. For the cross section of Fig.
7 we have A, = 0.60 m? (930 in.?) and I, = 63.36 - 10-3
m* (152,200 in.*). The prestress strain ¢,, was taken con-
stant in time and equal to 6 + 10~} (bonded reinforce-
ment), and the cross-sectional forces were taken con-
stant in time as N = 0, M = 1 MNm (8851 kip-in.).
Shrinkage and creep parameters are listed in Table 6(e).
Results for the steel force are shown in Fig. 7.

Stress redistribution in steel-concrete composite
beam

Fig. 8 shows a symmetric cross section of a composite
steel-concrete beam subjected to compound bending.
The governing equations in matrix formulation are, with
the notations defined in Fig. 8, as follows.*

Stress strain relations
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Fig. 8 — Changes of steel girder moments in steel-con-
crete composite beam

1
&0) = = o),

ES Ec(y) = Ec_‘ gc(y) + Esn (48)

Strain distribution

&0) =€) =¢ + kY 49

Equilibrium conditions

N=N+N, M=M + N,e, + M, - N.e.(50)
Stress distributions
o) iz + M, )
5 = - - eS ’
T4 T
N, M
o) = ; A 62))

These equations are solved with respect to the steel
force N, and bending moment M,

1. 1\!

N, = <EC - + I~
Ele e

I 1 1 -
+ & (1——~+ E-' —
e \ EA, A,

1 1\-'/M + Ne,

; (E L it —)
EJ, Ic I,

I’f ‘<E Tt es,,>€ (50)

MS=[<EC =/ +Il)
Ele e
1 1\ "7
+-= I— + E-'" —
IE, (&A Ac) ]

{M + Ne, 1\! N
}_e— _<IE‘I + E. ! ; (E;‘ 1*4— +§5,,)

Cross-sectional forces are taken as constant in time,
with N = 0 and M = 0.284 MNm (8851 kip-in.). The
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Fig. 9 — Creep buckling

cross-sectional constants are 4. = 1650 cm?® (255.1 in.%),
A =94.9cm? (14.711in.%), I, = 14210 cm* (341.4in.%), I,
= 33300 cm* (800 in.*), e = 0.279 m (10.98 in.), and the
modulus of steel is E; = 210,000 MN/m? (30.46 x 10°
psi). Shrinkage and creep parameters are given in Table
6(f). Fig. 8 shows the results for the steel bending mo-
ment. Deflections are proportional to the steel bending
moment.

Creep buckling deformations

Fig. 9 shows the deformations at midspan of a slender
concrete beam-column with square cross section. The
column has a small initial sinusoidal curvature of ampli-
tude y,. The beam-column is subjected to an axial load
P and a lateral sinusoidal load of amplitude g,, both of
which can vary in time. Two cross sections, one with and
one without reinforcement, are considered. Ordinary
beam-column theory is used and reinforcement is as-
sumed linearly elastic. If the concrete is modeled as lin-
early elastic and the loads are constant in time, the dif-
ferential equation for the deflection y(x) is then*

(Ed. + EI) "(x) — »,"(0)] =
[2
- Py(x) - ;r_z q(x) (53)

The corresponding matrix equation for linear visco-
elastic concrete and for time-varying loads is
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Fig. 10 — Curvature of 5-layer beam

(El. + ELD D" (;) = »" (x)e] =
- Py(x) - 2 q(x) (54)

where P is a diagonal matrix with elements P(z) and e is
a column matrix with all elements equal to 1. The solu-
tion to Eq. (54) is

o) = (% EJ, + ELI - P)"
P f
[; 909 + Ty EL + ELD e] s5)

Parameter values are given in Table 6(g), and results for
the midpoint deflection are shown in Fig. 9. A consid-
erable reduction of the standard deviation is noted when
reinforcement is added to the cross section.

Beam split in five layers

The effect on the uncertainty of variations of the creep
function across a sectional area is illustrated in this ex-
ample. As shown in Fig. 10, a concrete beam is consid-
ered to consist of five layers of thickness #/5. The creep
function can vary between layers, but the concrete
within each layer is assumed homogeneous. The statisti-
cal properties of concrete in all layers are considered to
be identical. Cross-sectional forces consist of a bending
moment M and an axial force N which can both vary in
time. The equilibrium conditions are, in matrix notation

N=N,+N1+N3+N4+N5,

M=M]+M2+M3+M4+M5 (56)

2h h
+ (Ns = N) S +(N4—Nz)g
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The concrete strain distribution is assumed to be planar,
and the stress-strain relations are

) =E'o) (=12,...5) (57

where g; is the stress in the i-th layer. The concrete
stresses must be linearly distributed

N M i-3
o) = P 3 (y h)

(i=12,...,95) (58)

From these equations the curvature x = E,M/I is cal-
culated

1
v = }[(Ec,-l 1E, + E, + 37E,, + 97E.)

- 12(2Ee$ + Eu - Ec2 - ZEL'I)
(Ecl + Ecz + Ec! + Ec4 + Eci)_l
(E; + 2E; + 3E, + 4E )] (59

h
;M = E(ZE:s + E.- E, - 2E,)
(E.+E,+E,+E,+E,)'N

The parameter values used are given in Table 6(h). For
simplicity, all variables except the model uncertainty
factors ¥, are taken as deterministic and identical for all
five layers. The mean values as well as the coefficients of
variation for the five ¥, factors are taken to be identi-
cal. The ¥, factors are further taken equicorrelated with
correlation coefficient p,.

In Fig. 10 results for the curvature are shown for var-
ious combinations of the cross-sectional forces and for
various values of p,. The value of p, does not affect the
mean curvature but can have a large effect on the vari-
ance of the curvature. The effect is, however, opposite
for the cases of pure bending and pure axial load.

CONCLUSIONS

1. The random variability of creep and shrinkage ef-
fects in concrete structures is often very large and should
be accounted for in design. Determining the variance
functions for the structural variables of interest is prob-
ably sufficient for design.

2. Any chosen deterministic model for predicting
creep and shrinkage can be randomized by considering
the entering parameters as random variables and by also
inserting uncertainty factors that characterize inade-
quacy of the chosen model.

3. Uncertainty in the internal forces and deforma-
tions of the structure can be efficiently obtained by point
estimates of probability moments based on a number of
usual deterministic structural analyses. This can be con-
veniently carried out in a matrix form.

4. Numerical examples show that certain internal
forces or deformations which almost vanish in a deter-
ministic analysis can have a very large uncertainty, which
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should be accounted for in design. In some other cases,
a large uncertainty in the entering parameters may cause
only a small uncertainty in the internal force or defor-
mation. The coefficient of variation can substantially
vary with time.
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CONVERSION FACTORS

Im = 100cm = 39.37 in.
1 MPa = 145.0 psi
1 MNm = 10°Nm = 8.851 1bf X in.

NOTATION
a,c = coefficients defined in Table 1
Cov = covariance
D = effective thickness
F = expectation
E, = elastic modulus of concrete
E. = square matrix in Eq. (17)
FA = standard 28 day cylinder strength
g/c, h, h,, ks = coefficients defined in Table 1
I = centroidal moment of inertia
Ji,t') = compliance function of concrete [Eq. (2) and (13)]
L = square matrix in Eq. (16)

s = standard derivation

s/c = sand-cement ratio (by weight)
t = time = age of concrete

t = age at loading

t, = age when drying begins

discrete times [Eq. (14)]
T = temperature

~
[

Vv = coefficient of variation

w/c = water-cement ratio (by weight)

€, € = strain, and strain at ¢,

€y € = shrinkage strain and inelastic strain

8,0, = random variables

Py = corelation coefficients

o, 0, = stress, and stress at ¢,

v, ¥, = model uncertainty coefficients {Eq. (4) and (8)]
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