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ASSTRACT: The propagation of blunt smeared crack bands through a finite ele
ment mesh in plain or reinforced concrete structures is studied. A previous 
work, which demonstrated (approximate) independence of results from the 
chosen mesh size, is extended by demonstrating the same for the changes in 
mesh orientation with regard to the crack band and to the steel bars. Bond slip 
of bars must also be considered. This is satisfactorily accomplished by extend
ing the previously proposed concept of free bond slip length for the cases of 
skew meshes and skew bars. In the presence of reinforcement, the previous 
formula for the equivalent strength giving approximately the same results as 
the energy criterion must be expanded by a term which corresponds to the 
third term of the asymptotic expansion of displacements near the tip of a sharp 
crack. The energy criterion is shown to give consistent results for different 
types of fracture specimens. However, the equivalent strength calibrated for 
the center-cracked tensile specimen leads to a greater error (about 15%) when 
applied to bent specimens. Thus, the similar equivalent strength approach is 
acceptable only if fine meshes are used although correct convergence appears 
to occur as the mesh size tends to zero. 

INTRODUCTION 

In finite element analysis, it is possible to represent cracking either as 
sharp and isolated interelement cracks or as bands of cracks imagined 
to be continuously distributed over the element. The latter method is 
more convenient for programming since it requires only a change in the 
matrix of incremental elastic constants of the material. For concrete, this 
method is also more realistic since the inhomogeneity of the material 
causes the cracking to be spread over a larger zone. 

To decide whether a distributed (smeared) blunt crack band in a finite 
element mesh would extend, the normal procedure has been to compare 
the tensile stress in the element just ahead of the crack band to a spec
ified tensile strength. Recently, it has been demonstrated, however, that 
this method is unobjective in that the results may strongly depend on 
the chosen element size (1,2,4). An example of a reinforced concrete 
panel in which a four fold decrease in the element size causes the load 
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needed for further crack band extension to drop to one-half has been 
demonstrated. The problem was eliminated by introducing for the crack 
band extension an energy criterion (1,2), which represents a refinement 
of Rice's criterion (5) for the extension of a notch. Further, it was found 
that, for reinforced concrete, objective results can be obtained only if the 
bond slip of reinforcing bars in the vicinity of the crack band is taken 
into account (2). 

Although the aforementioned basic energy criterion (1,2) is general, 
the previous numerical examinations were limited to the special case 
when the direction of cracks coincides with that of the mesh lines and 
the reinforcing bars are normal or parallel to the crack. In this paper, 
we extend the previous work by numerical studies of zig-zag skew crack 
bands in the finite element mesh and of reinforcement which is skew 
with regard to the mesh lines. Furthermore, since the previous numer
ical demonstrations were limited to a center-cracked rectangular panel, 
we examine another typical situation, the case of the three-point bent 
specimen. 

Further, we focus attention on the concept of equivalent strength, i.e., 
a tensile strength criterion in which the strength value is adjusted to 
give the correct energy release rate for any element size. This convenient 
method, which can be readily implemented in the existing finite element 
programs, has so far been numerically examined (1) only for the case 
of a center-cracked rectangular panel and for unreinforced concrete. This 
attractive approach is examined here for other specimen geometries, and 
we find that some refinements as well as a reassessment of applicability 
are found to be necessary. Finally, we indicate some results on the ef
fectiveness of using various types of finite elements. Because of space 
limitation, the questions of applicability of the crack band model for frac
ture of concrete and the determination of material parameters and their 
variation are left to a separate study (3). 

REVIEW OF CRACK BAND PROPAGATION CRITERION 

Consider the two-dimensional situation sketched in Fig. 1 where the 
crack band of initial length a advances by the length of one element, /lao 
The energy release rate, C§, i.e., the energy released by the structure due 
to the cracking per unit length of the crack band, may be approximated 
as C§ = -AU/Aa, in which AU is the energy released by the structure 
into the element that cracks. This approximation is second-order accu
rate if it is referred to the theoretical crack band length a + /la/2. As an 
extension of a previous formula by Rice (6), the energy release may be 
calculated as AU = AWliv + AL in which (1,2) 

AWliv = -J ~ (u;j Eij - E; Eft) dV ................................ (1) 
IiV 

AL == J ~ AT~ (u; - u~) dS + J ~ Af~ (u; - u~) dV ................. (2) 
liS IiV 

The first expression represents the release of energy from the element 
of volume (or area) AV into which the cracks spread; I!,~ and Eij represent 
the stresses in concrete and the strains in volume A V before the crack 
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FIG. 1.-(8) Center-Cracked Panel; (b-d) Types of Quadrilateral Finite Elements 
Examined; (6-g) Mesh Refinements Used In Examples 
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FIG. 2.-( ... c} Straight and Zig-Zag Crack Bands In Parallel and Inclined Finite 
Element Meshes; (d-I) Bond-Slip Length and Its Representation for InClined Rein
forCing Bars 

extension; subscripts i, j refer to cartesian coordinates Xj (i = 1,2); E; = 
Ec for plane stress and E; = Ec/(l - v~) for plane strain, Ec = Young's 
modulus for plain concrete and Vc = Poisson ratio. The second term (Eq. 
2) represents the work of the rest of the structure on the concrete con
tained in volume t:.. V; 5 denotes the boundary of the element of volume 
t:..V; u?, Uj = the displacements before and after the crack extension; 
~ T~i = the surface tractions nece~sary to balance the. initial stresses crt 
If the body would not deform dunng the crack extensIOn; and t:.. f~i = the 
volume forces representing the smeared bond forces between reinforce
ment and concrete needed to balance the initial stresses cr't. In numerical 
implementation, the integrations over t:.. V and t:..S are approximated by 
sums over the nodal values. 
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T~e energy. release rate must satisfy the condition Cfl !5 CflCT in which 
Cfler IS a matenal property representing the critical value of the energy 
~elease rate; Cfl = Cfler indicates crack band propagation. The value of Cfl

CT 

IS not necessarily constant unless the structure is large. The value of 
Cfler, must be determined, however, by other considerations, and in the 
present analysis is assumed to be given. 

For the purpose of analyzing fracture propagation of arbitrary and 
unknown direction, it is proper to require the mesh to be uniform near 
the crack band, since a nonuniformity of element size might favor cer
tain crack directions over others. Therefore, we restrict attention to 
square meshes of finite elements. 

ZIG-ZAG SKEW CRACK BAND AND SKEW REINFORCEMENT 

In the numerical studies carried out so far (1,2,4), the direction of crack 
propagation was assumed to be parallel to the lines of the finite element 
mesh (Fig. 2(a». For general applications, we must allow, however, 
propagation of cracks in any direction, and it is one main attractive as
pect of the blunt smeared crack band modeling that cracks of any di
rection can be easily simulated just by introducing orthotropic elastic 
moduli, with a proper direction of the orthotropy. The objectivity of the 
energy criterion (in the sense of independence of the analyst's choice of 
mesh) has so far been demonstrated only for the case of cracks parallel 
to the mesh lines. The condition of objectivity also requires, however, 
that the results for a given problem must be approximately the same 
when the finite element mesh is rotated with regard to the crack direc
tion, while everything else remains the same. 

In the rotated mesh, the crack band is skew and must have a zig-zag 
boundary. This is strictly a consequence of the modeling; the real bound
ary of the crack band should be imagined to be smooth. Therefore, the 
length of the crack advance, tla, as considered in the energy criterion, 
cannot be considered as the length of the element along the mesh line 
(w in Fig. 2(b and e». Rather, we must measure tla in the direction of 
the crack band, and so we must consider a projection on axis XI (Fig. 
2). Recalling that the approximation t:..U/tla is second-order accurate 
when referred to the crack band length ending at the center of the ele
ment, we define tla for the zig-zag band as the projection of the distance 
between the centroids of two neighboring elements onto the crack di
rection XI (Fig. 2(b and e». (This is correct, of course, only if the crack 
direction is assumed to be such that the cracks are of Mode I type.) 

We should keep in mind, however, that this is not the only reasonable 
pOSSibility. We could, e.g., identify tla with the projection of the distance 
between the element corners farthest in the direction of propagation and 
a with the center of this distance. However, the accuracy of this ap
proach was not investigated since for programming the use of the cen
troid is much more convenient. 

The parallel and rotated square meshes considered for the right half 
of the center-cracked panel, the same panel as that analyzed in Ref. 2, 
are shown in Fig. 3 (cases 1a and 1b). Fig. 3, case 1b, shows the zig-zag 
band. Also shown is the reinforcing grid and the free bond slip length 
for the bars crossing the crack band, which were determined in the same 
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FIG. 3.-Flnlte Element Me.he. and Reinforcing Grid. Considered for Center
Cracked Panels Analyzed In Examples and Refinement of the Element Me.he. 

manner as described in Ref. 2. The dimensions of the panel and the 
material properties are the same as in Ref. 2. Three skew square meshes, 
with element sizes in the ratio 4:2:1, were considered (meshes A, B, and 
C in Fig. 1). For the crudest mesh, the element size was w = b/7 in 
which b = half-width of the panel. 

The results for the three skew meshes (case Ib), showing the value 
of the multiplier a of a unit load for which the crack band propagates, 
are presented in Fig. 4(b). The results from Ref. 2 for the parallel meshes 
are reproduced, for comparison, in Fig. 4(a). We see that the results for 
the three skew meshes are just as close to each other as they were found 
for the parallel meshes. This is true not only for plain concrete (p = 0) 
but also for reinforced concrete with reinforcement ratios p = 1.6% and 
3.2%. 

Fig. 4(c) further shows a comparison of the result with the finest par
allel and skew meshes. We also see that the mutual agreement is quite 
good here, for plain as well as reinforced panels. 

It should be noted that the free bond slip length, defined in Ref. 2, 
was always taken equal to the distance between the nearest mesh nodes, 
and, for this reason, the cross section area of the bars crossing the crack 
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FIG. 4.-Numerlcal Re.ultS for the Center-Cracked Panels Defined In Fig. 3 

band was adjusted according to Eq. 13 of Ref. 2. Because the distance 
between the opposite nodes across the crack band is ~ifferent for .. the 
cases of parallel mesh and skew mesh, the free bond slIp len~th, L" as 
well as the cross section area of the bars within the free bond shp length, 
A" was not the same for the skew mesh as for the parallel mesh. 

hWe should also mention that, due to the need of .limiting the number 
of elements and using an automatic mesh generation, the ~anels. ana
lyzed with the three different meshes had slightly different dlmenslOns. 
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This is why the exact solutions for a vanishing element size (sharp 
cr~ck), known of course only for plain concrete, are slightly different 
(FIg. 6). 

Further results were obtained for the case of a mesh rotated to a 2'1 
incli~ation (angle arctan 0.5), as shown in Fig. 5(a-c). In contrast to the 
preVI?US cases, no symmetry with regard to the vertical axis could be 
explOIted here to analyze only half of the panel. The numerical results 
for plain and reinforced panels are given in Fig. 5(d) for the three dif-
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ferent meshes. Although the agreement between the results for these 
three meshes is not as good as in cases la and lb, the differences are 
acceptable. The larger jumps in Fig. 5(d) correspond to the case when 
the front cracked element moves from one inclined row to the next in
clined row (Fig. 5(c». 

In addition to the comparison between two different mesh sizes (A 
and B in Fig. 5(a and b», Fig. 5(d) also shows a comparison with the 
results for the parallel mesh (case la) and the 45°-inclined mesh (case 
lb). This agreement is also acceptable. 
. The foregoing results verify the objectivity and proper convergence of 

the method with regard to mesh rotation and a change of element size. 
For general applications, we also need to check the performance of the 
method when the reinforcing bars are neither orthogonal nor parallel to 
the crack direction. In this case (Fig. 2(e and f», we need to consider 
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FIG. 5.-Center-Cracked Panel with 2:1 Mesh InClination, Zig-Zag Crack Band, and 
Numerical Results 

the questions of bond slip length and of the free bond slip length giving 
equal stiffness. Is the free bond slip length constant or does it depend 
on the angle between the bond and the cracks? It seems it does and 
should lie between the value w used for orthogonal bars (0: = 0) and the 
value w/cos 0: whose projection onto the normal to the crack preserves 
the length Ls· Numerical computations were made using the value w / 
cos 0:, for which the projection of the free bond slip length onto the 
normal to the crack is kept constant (Fig. 2(f». 

To check objectivity and convergence of the method for inclined rein
forcing grids, the panels shown as cases 2a and 2b in Fig. 3 were con
sidered. The comparisons between the results for various mesh sizes 
and various reinforcements are shown in Fig. 4(e) for the case of a par
allel mesh and Fig. 4(f) for the case of a 45° inclined mesh. The results 
for the finest parallel and inclined meshes are mutually compared in Fig. 
4(d). In all cases, the agreement is acceptable, which confirms the ob
jectivity and proper convergence of the method for the cases where the 
cracks are not normal to the reinforcing bars. 

It is also interesting to compare the results for parallel and inclined 
reinforcements. We see that in the case of inclined reinforcement the 
results for various reinforcement percentages differ from each other 
much less, which seems to be caused by the fact that the inclined rein
forcing grid is less stiff in the direction normal to the crack. This is partly 
due to Poisson's transverse contraction of the panel. 

EQUIVALENT STRENGTH IN PRESENCE OF REINFORCEMENT 

To allow easy application in the existing finite element programs for 
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cracking of reinforced concrete, ~e equiv~len~ st.rength criterion (.1,~) 
was previously formulated. Accordmg to thls .cnte.no~, the strength l~mlt 
for the principal stress normal to the crack dlrectIon m the element Just 
ahead of the crack front must be adjusted according to the element size 
w. For plain concrete, the following criterion was derived; 

~o </. - c .vE~ <!jer •••••••••••••••••••••••••••••• (3) un - tq - --;- ••••••••••••• 

in which a~ = /. indicates that the crack extends, and c is a coefficient 
characteristic of the given element type. For a square element composed 
of two constant strain triangles (Fig. l(b» c = 0.921 (Ref. 1), whlle for 
a square element consisting of four constant strain triangles (Fig. l(c and 
d» c = 0.826 (Ref. 4). . .. . . . 

Numerical studies have so far indlcated that thls cntenon lS satisfac
tory for the center-cracked panel without r~inforce~ent. This is. do~u
mented by the comparisons for the three dlfferent Slze mes~es. m Flg. 
6 where the left diagram shows the results for the energy cnteno!, ~nd 
compares them to the exact solution available for the cas~ of a va~ushm.g 
element size, and the right diagram shows the compansons wlth thls 
exact solution for the equivalent strength criterion. It i.s s~en that the 
deviations of the results for the equivalent strength cntenon are only 
slightly more pronounced and still satisfactory. . . 

For reinforced panels, it is found, however, that the devlatIons of th: 
equivalent strength criterion predictions from those for the ene~gy cn
terion increase with the reinforcement percentage and become quite sub
stantial; see Fig. 6(d) in Ref. 2, revealing an error of ab~ut 15% in the 
predicted load at propagati'?~' This shows .that an e~~resslOn of the t~pe 
of Eq. 3, even with a coefficlent c determmed empmcally so as to gIVe 
the best fit of numerical results, is inadequate. 

A more careful examination of the results for reinforced panels shows 
that the presence of reinforcement significantly decreases the crack 
opening near the crack front (see Fig. 6(a) of Ref. 2), compared. to the 
opening which would be predicted by Eq. 18 o~ Ref. 1 f~om wh~ch the 
equivalent strength criterion was originally denved. Thls equation ex
presses the crack opening at a certain di~tanc~ from the. crack front on 
the basis of the first term of the asymptotIc senes expanslOn of the near
tip displacement field of a sharp crack. One. might at first think that t~e 
as.ymptotic series expansion co~ld ?~ apphed also ,:"he~ the panel lS 
reinforced, but this would be unJustIfled. The expanslO~ lS exact for the 
sharp crack (r ~ 0, Fig. 7(b», and the .pre~ence of remforce~ent can 
have no effect on the asymptotic expanslOn If the free bond shp length, 
L' is considered to be non-zero (which is a necessity). The reason: The 
l~~ding term of the asymptotic expansion must b~ satisfactory within a 
small circle whose radius r is sufficiently small (Flg. 7(b» compared to 
the free bond slip length because all forces coming from ~he. reinforce
ment are then applied at points relative~y remote from thls .Clrcle. 

We should also realize that, if we consldered a smeared remforcement 
with perfect bond (imagined as an adhering continuous layer, Fig. 7(a», 
the asymptotic expansion for a sharp crack tip would of c,?urse not be 
applicable; but, in this case, we would get zero crack openmg near the 
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tip of a sharp crack because the reinforcing layer does not crack. 
The inadequacy of Eq. 3 for reinforced concrete may be explained by 

the fact that the use of the first term of the series expansion is insuffi
cient. Higher-order terms (see Eq. 23 of Ref. 1) are needed to describe 
the displacement field adequately. The second term of the asymptotic 
expansion corresponds to a uniform normal stress parallel to the crack, 
which has no effect on the crack opening and the transverse displace
ment. To improve the representation of displacements, we must con
sider, therefore, the third term, which is proportional to ,3/2; , = the 
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FIG. 6.-Comparl80ns of Numerical Results for Center-Cracked Panel With Exact 
Solutions for Sharp Crack: (.) Energy Crlterlonj (b) Equivalent Strength Criterion 

a .) 

CASE 1. MESH. 

o ... _ __J 

e-O." ~.O.60 

o 

IOL __ ~~~~~. __ ~~ __ ~~~a 
C,ac:1l length (em' 

FIG. 7.-(.) Silt In Concrete Bonded to Uncracked Steel Layerj (b-d) Crack In 
Presenca of Bond Slip; (e) Results of Equivalent Strength Criterion for the Zig
Zag Band from Fig. 5 
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distance from the tip of the equivalent sharp crack. 
On the basis of the first three terms of the asymptotic expansion (5,7), 

it can be shown that the relative displacement normal to the crack be
tween tWo points P and Q of crack band front on opposite sides of the 
crack band (Fig. 7(c» is 

~cr .. ' • Es W up - uQ = 8 --, V W (1 - 8), WIth 8 = cp P , , ........ (4) 
2'ITEc Ec Ls cos as 

in which as = inclination of the reinforcement (Fig. 7(d» and cp = em
pirical dimensionless corrective factor. Note that, in the limit of a sharp 
crack (w ~ 0), Eq. 4 gives up - uQ = 0, which must be so since points 
P and Q become identical to the crack tip when w = o. 

The form of the corrective term, 8, has the following effects: It reduces 
the opening displacement in proportion to the stiffness of the bars rel
ative to concrete (i.e., pEs/E~); it reduces the crack opening displacement 
in proportion to the distance of the points from the crack tip, assumed 
to be fixed relative to w (Fig. 7(c and d»; and it reduces the crack opening 
in inverse proportion to the free slip length projection onto the normal 
of cracks (Fig. 7(c and d». The corrective term satisfies the limiting con
ditions that for p ~ 0, or Es ~ 0, or w ~ 0, L; ~ 00, or as ~ 90°, the 
formula for plain concrete must be recovered. 

To obtain an expression for the equivalent strength fw we may now 
use the approximate relation Cficr = cf f. (up - uQ) in which c[ is an em
pirical factor close to 1.0. Substituting Eq. 4 here and using the approx
imation 1/(1 - 8) = 1 + 8 (for 8 « 1), we obtain for the equivalent 
strength the following formula: 

N~Cficr [ w ] feq = c(am) -- 1 + cp(as) pn , ....................... (5) 
w Ls cos as 

in which n = E.lE;; c and cp are coefficients to be determined empirically 
so as to achieve the best fit of numerical results. We indicate in the for
mula that these coefficients must be functions of the inclination angle 
of the mesh, am' and the inclination angle of the reinforcing grid, as (Fig. 
7(d». Note that the expression 1 + 8 is preferable over 1/(1 - 8) since 
it cannot become negative for large 8, while 1/(1 - 8) can. 

To determine the values of c(am) and c(as) for am = 0°, 45° and as = 
0°,45°, the results for the center-cracked panel obtained with the energy 
criterion were fitted. Optimum fits have been obtained using the Mar
quardt-Levenberg algorithm, which minimizes the sum of squares of the 

TABLE 1.-Coefflclents for Reinforcement Effect on Equivalent Strength 

Optimized 

Coefficient Case 1a Case 1b Case 2a Case 2b Assumed 
(1 ) (2) (3) (4) (5) (6) 

c(OO) 0.75 - 0.74 - 0.74 
c(45) - 0.62 - 0.61 0.62 
cp(OO) 0.61 0.60 - - 0.60 
cp(45°) - - 0.32 0.45 0040 
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deviations from the results of the energy criterion. This was done for 
cases la, 1b, 2a, and 2b, and the results are listed in Table 1 in the first 
four columns. 

We see that the results for .normal and skew reinforcement are quite 
close to each other, which supports the assumed dependence of c on am 
and cp on as. The values of the empirical coefficients which were deter
mined on the basis of these results are indicated in the last column of 
Table 1. The results for the center-cracked panel, plain and with normal 
or skew reinforcement, are plotted in Figs. 8 and 9. We see in these 
figures a satisfactory agreement with the energy criterion. 

Numerical results have also been obtained for case 1c (am = arctan 0.5, 
as = 0°) (Fig. 7(e». In these calculations in which linear interpolation 
between the value c (0) and c (45°) has been assumed, the agreement is 
not too close, but still acceptable for practical purposes. We should also 
realize, however, that for this case the results previously obtained for 
the energy criterion (Fig. 5(d» were somewhat higher than those ob
tained here for cases 1a and 1b, which offsets the error apparent from 
Table 1. 

On the basis of the numerical results for one type of fracture speci
men, namely the center-cracked panel, we of course cannot assert that 
Eq. 5 should be generally valid for arbitrary geometries of the specimen 
or structure. We may expect it, however, based on the fact that Eq. 5 
has its theoretical foundation in Eq. 4. 

VARIOUS TYPES OF CRACKED SPECIMENS 

It is known from fracture mechanics that various types of fracture test 
specimens, which simulate various characteristic situations in structures, 
can often give rather different results. Agreement with all of them, re
quired for any general method, is difficult to achieve. All previous nu
merical work on the blunt smeared crack band approach has been con
fined to the center-cracked panel (1,2,4). Therefore, the method has now 
been applied to another specimen, the three-point bent specimen (Fig. 
lO(a». In this specimen, there is a higher stress gradient throughout the 
ligament in front of the crack band than in the center-cracked tensile 
specimen, and the stresses change sign from tensile to compressive, 
which does not happen in the center-cracked specimen. This type of 
specimen has often been used for fracture tests of concrete. 

Here, we analyze the specimen used by Walsh (7), the largest one of 
his first series, the dimensions of which were (Fig. lO(a» (L = 40 in. 
(1,016 mm); b = 3 in. (76 mm); d = 15 in. (381 mm); a = 5 in. (127 mm); 
the modulus of rupture was 786 psi (5,416 kPa), the compressive 
strength was 3,350 psi (23,082 kPa), and the failure load was measured 
as P = 2,095 Ib (9,323 N). The expression used by Walsh for the stress 
intensity factor of a sharp crack in the specimen is KJ = 3.4Pb-1 (d - a)-lJ 
2. This is an approximate elasticity solution, which is slightly lower (as 
it should be) than the one calculated from the formulas given by Knott 
(5) and Tada (7) for the case of a somewhat more slender beam having 
Lid = 4, for which they give KJ = 3.6Pb-1 (d - a)-I!2. The value used 
by Walsh has been adopted for comparing the finite element results as 
the element size tends to zero. The energy release rate C§ can be ex-
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pressed, as known from fracture mechanics (4), as '§ = K;/E. As the 
applied load, the experimentally measured failure load has been consid
ered and the critical value of the stress intensity factor reported by 
Walsh (in his Eq. 2.5) has been adopted. 

The results for the load multiplier which causes further crack exten
sion are summarized in Table 2 for the three meshes of sizes 4:2:1. For 
an exact agreement with Walsh, the value of load multiplier 0: has to be 
1.0, and so deviations from 1.0 are an indication of the relative error. 
We see from Table 2 that the results for the energy variation criterion 
are, for this type of specimen, again in excellent agreement. This indi
cates that the energy variation method is of general applicability. (It 
should be mentioned that in order to simplify computations the meshes 
in Fig. lO(b-d) were not uniform over the entire length of the beam; the 
meshes are finer in the region surrounding the crack band front.) 

Looking at the results for the equivalent strength criterion in Table 2, 
however, we see more serious discrepancies, both with regard to the 
elasticity solution used by Walsh as well as among the different meshes. 
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Although we see a strong improvement of the results as the mesh is 
refined, the results are not very good even for the finest mesh (15% 
error). This indicates that, for this type of specimen, the equivalent 
strength criterion gives accurate results only with very fine meshes. For 
the meshes suitable for practical use (Fig. 10), one has to accept an error 
which is more serious, albeit not unacceptable for many applications. It 
is worth noting, however, that the results for the equivalent strength 
appear to converge to the exact solution (i.e., 1.0). 

The need for refined meshes when the equivalent strength criterion 
is applied to bent specimens is apparently due to the fact that the gra
dient of normal stress throughout the ligament ahead of the crack front 
is high and the stresses change from tensile to compressive, while in 
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the center-cracked specimen the gradient is less and the normal stress 
ahead of the crack front tends to a constant value. 

It should be also noted that if the value of the tensile strength is con
sidered as 2/3 of the modulus of rupture, then the use of the tensile 
strength criterion gives almost correct results for the element size shown 
in Fig. lO(c). As already pointed out in Ref. 1, this may be one of the 
reasons good results are often obtained by finite element analysis of 
reinforced concrete beams based on the tensile strength criterion. 

VARIOUS ELEMENT TYPES AND OTHER ASPECTS 

Various Types of Elements.-For practical application, the question 
of optimum element type is of interest. With regard to the question of 
using higher-order elements, we should note that cracking represents 
a discontinuous change with a sharp jump in the strain values. For the 
same number of degrees of freedom, the higher-order elements are of 
a larger size; since a jump in strain can be represented only at the ele
ment boundary, the use of higher-order elements enforces a poorer, 
coarser representation of fracture discontinuities, i.e., a poorer resolu
tion. It, thus, seems inadvisable to use higher-order finite elements, with 
higher-order polynomial distribution functions, for the modeling of 
fracture. 

TABLE 2.-Load Multiplier u Computed from Various Cracking Criteria for Three
Point Bent Specimen 

Energy Equivalent Constant 
Mesh variation strength strength 

(1 ) (2) (3) (4) 

A 0.977 1.399 1.672 
B 0.981 1.234 1.099 
C 0.988 1.147 0.722 
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The previous studies focused on the simplest constant-strain ele
ments, two of whiCh were combined in a square element (1), and on 
quadrilateral elements composed of four linear strain triangles in which 
the midside nodes on the squ~re were constrained by a linear displace
ment distribution along the side of the square (Fig. I(b and d». It was 
also shown (3) that, for an equally fine mesh, the use of linear, instead 
of constant, strain triangles makes the system more flexible, giving rise 
to slightly smaller values of the load multiplier Il. The same trend is 
recognizable in passing from a coarser to a finer mesh with constant 
strain triangles (see Fig. 3(b) of Ref. 1). This observation is not unex
pected since both the mesh refinement and the use of higher-order ele
ments leads to a greater number of degrees of freedom. From the cal
culations made, it appears, however, that the use of linear strain 
triangles did not appear to improve, in general, on the results obtained 
with the constant strain triangles. 

50 the use of constant strain triangles, which are much simpler, seems 
to be acceptable. The square elements consisting of two triangles exhibit 
however, a certain directional bias due to the slope of the diagonal (Fig. 
I(b». Therefore, the quadrilateral element made of four constant strain 
triangles (4C5T, Fig. I(e» was tried in the calculation. These results are 
shown in Fig. 6(a), together with the exact solution for the sharp crack. 
(Note that the panels analyzed with different meshes have slightly dif
ferent dimensions and consequently slightly different exact solutions.) 
As expected, the results for the four-triangle quadrilaterals are lower 
than those for the two-triangle quadrilaterals. Moreover, they are almost 
undistinguishable from the results for quadrilaterals consisting of four 
linear strain triangles; for this reason, they are marked with the same 
symbol in the figure. The reason may be that the linear strain triangles 
have been constrained to constant strain on the boundary of the square. 
Fig. 6(a) demonstrates again the objectivity of the method with regard 
to the element size for both types of finite elements used. 

As for the equivalent strength criterion, the quadrilaterals consisting 
of four linear strain triangles give results higher than the correct ones 
obtained with the energy criterion. This is due to the assumptions made 
in deriving the equivalent strength criterion, as already examined in Ref. 
3. What should be noted, however, is the fact that the equivalent 
strength criterion in this example gives fairly good results even with a 
relatively coarse mesh. 

Bond-Slip Representation.-Another practical modeling question arises 
with regard to the representation of bond slip. As shown in previous 
work (2), a simple model is that of free bond slip length, which gives 
the correct overall stiffness for the connection between the opposite 
sides of the crack band. The free bond slip length, L; (Fig. n(b», usually 
does not coincide with the distance between two nodes in the mesh. 
Interpolation for the displacement at the end of the free bond slip length 
is then necessary, and a special element was for this purpose described 
in Appendix I of Ref. 2. When this procedure is used, it is inconvenient 
to introduce the free bond slip length as the crack band extends through 
a certain element. For this reason, the free bond slip was assumed in 
the previous work (2) to exist in advance in all the elements through 
which the crack is expected to pass (Fig. n(e». It was checked of course 
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that this makes little difference from the more correct assumption, 
namely, that there is no bond slip in the elements which have not 
cracked yet. 

A more realistic representation, in which the bond slip is introduced 
only after the element cracks, has been proposed in Ref. 2 but was not 
considered in the numerical results reported there. In this method, the 
cross section of the bars crossing the crack band, Ab, is adjusted to a 
certain value, A:, (2) for which the free bond slip length coincides with 
the distance between certain two nodes and the overall stiffness of the 
connection between the opposite sides of the crack band remains the 
same. With this representation, it becomes simple to introduce the free 
bond slip not in advance but during the computation, as the crack band 
passes through the given element (Fig. lI(d». Numerical results ob
tained with this representation of the bond slip are presented in Fig. 
lI(e). Now, for the same panel, as specified in Fig. I(a), and for mesh 
C, these results confirm that the previously used approximation with 
free bond slip considered in advance in all elements expected to crack 
introduces only a small, hardly detectable, error. 

It should be realized that at the time the bond slip is introduced to
gether with a change in the area of the bars, a part of the energy change 
of the entire structure is due to the change in stiffness of the bar within 
the bond slip length. Of course only the energy due to cracking alone 
must be included in Eqs. 1 and 2. For the same panel, the computations 
then yield the results plotted in Fig. nee). 

Work Dissipated By Bond Slip.-Not all of the energy supplied to 
the cracking element (volume d V) from the rest of the structure and 
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from the unloading of concrete between the cracks is available for pro
ducing new crack surfaces. Part of this energy is consumed by the bond 
slip of reinforcing bars during cracking within volume a v, and only the 
rest of the energy is available for producing the crack surfaces. There
fore, in a more rigorous formulation we should subtract the energy con
sumed by the bond slip, in which the previous expression for the energy 
release (2) rate may be corrected as 

<fJ= ~a[aW<1v+aL- ifb 

U~(Bb)dBbdS] ........................ (6) 

Here, Bb = the relative tangential displacement between the bars and the 
concrete; U; = the ultimate bond force per unit length of the bar (force 
during the slip); and S = the length of the bar segment within the frac
ture process zone (and not within volume a v since the energy con
sumed by bond slip would then depend on the chosen element size and 
would, thus, spoil the objectivity and proper convergence of the fracture 
criterion). 

At this point, we can see, however, various uncertainties in evaluating 
the energy consumed by bond slip. First, if we imagine the cracks to be 
perfectly continuously distributed, it is possible that no debonding and 
bond slip take place within the fracture process zone; they would occur 
only behind the crack front where the distributed cracks coalesce into 
one large visible crack. Second, since the free slip length is normally 
longer than the finite element width, our model does not involve any 
bond forces between the bar and the concrete within the fracture process 
zone; so we have to evaluate the bond slip term in Eq. 6 independently 
of our model. 

Furthermore, with regard to our free bond slip concept, we must keep 
in mind that, properly, an additional energy correction should be made 
due to the fact that the energy balance in the entire structure is affected 
by replacing the actual bond slip length Ls and the actual bar cross sec
tion Ab with the free bond slip length L: and the modified cross section 
area of the bar A:. Intuitively, it seems that the corrections just men
tioned might not be too important, but this should be checked more 
carefully in further research. 

Cracking of Shear Panel.-It is interesting to examine objectivity of 
the analysis for the shear failure of the panel in Fig. 12, which is rein
forced only by flexural steel concentrated near the bottom of the panel, 
and is loaded by a vertical force at midspan. Contrary to the examples 
presented so far, the crack band path is not known in advance but is 
to be found. We assume the crack band to spread into that element 
~adjacent to the crack front element) in which the principal tensile stress 
IS the largest and equals or exceeds the actual tensile strength f: or the 
equivalent strength f"l. The displacement at the loading point is intro
duced in small increments. At each load step, Newton-Raphson iterative 
procedure is used to redistribute the unbalanced modal forces due to 
cracking until a stable crack band configuration is reached. Linear elastic 
behavior is assumed for concrete in compression. The detailed data used 
for the analysis are given in the discussion and closure of Ref. 2. 

The finite element analysis was carried out for three different meshes 
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(A, B, and C in Fig. 11), the mesh sizes of which are in the ratio 4:2:l. 
The load-deflection curves obtained for these three meshes are plotted 
in Fig. 12. Even though this problem is less sensitive to the value of 
tensile strength than are the problems considered before, we see that 
the deflections curves are more consistent for the equivalent strength 
criterion. More sensitive is the value of the load at which the crack zone 
reaches a certain fixed distance from the top. We fix this distance as one
half the size of the element in the crudest mesh (A), which then equals 
a distance of one element for mesh B, and of two elements for mesh C. 
The loads for which the crack zone reaches this distance from the top 
are indicated in Fig. 12 by horizontal arrows, and we see that for the 
equivalent strength criterion they differ from each other much less than 
they do for the fixed tensile strength criterion. Furthermore, it is found 
(see closure of Ref. 2) that the crack patterns for meshes A, B, and C 
are rather different and, in particular, the crack zone for the finest mesh 
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is not diffuse but localizes into narrow, separate crack bands of single 
element width at the front. This behavior is obtained, however, only 
when the loading steps are taken to be so small that no more than one 
element cracks during the first iteration of each loading step. 

SUMMARY AND CONCLUSIONS 

Propagation of a blunt smeared crack band through a finite element 
mesh is analyzed for plain as well as reinforced concrete structures. The 
previous work in which an energy criterion for the crack band advance 
was formulated is extended by examining the effects of mesh rotation, 
reinforcement, bond slip, and the question of equivalent strength. The 
principal conclusions are the following: 

1. The objectivity and proper convergence of the energy criterion, 
which was previously demonstrated with regard to variations in the 
mesh size for parallel meshes and orthogonal reinforcing bars, is nu
merically verified here for changes in the inclination of the mesh or the 
reinforcing bars with regard to the crack direction. 

2. Modeling of the bond slip with the help of the free bond slip length 
leads to objective and properly convergent results for the cases of ar
bitrarily inclined mesh or inclined reinforcing bars. 

3. In presence of reinforcement, the previously published formula for 
the equivalent strength may be improved by introducing a correction 
which corresponds to the third term of the asymptotic expansion of the 
displacement near a sharp crack tip. The corrective term depends on the 
reinforcement ratio, the elastic modulus of steel, the bond slip length, 
the element width, and the inclination of the bars. 

4. The energy criterion gives consistent results for various types of 
fracture specimens, in particular the center-cracked specimen and the 
three-point bent specimen. This criterion, thus, seems to be of general 
applicability. 

5. The equivalent strength calibrated for the center-cracked tensile 
specimen leads (even with a fine mesh) to a substantial error (about 
15%) when applied to the three-point bent specimen. So this method is 
inferior in accuracy to the energy criterion, although convergence to the 
correct solution seems to be verified. Due to its simplicity, the equivalent 
strength concept is, however, so attractive that its use might be justified 
in practical applications when fine meshes are used. Errors of approx 
15% should then be expected. This is still much better than the errors 
of approx 100% found for the usual constant strength criterion. 

6. In formulating the energy criterion, the work consumed by the slip 
of bars within concrete in the fracture process zone should be subtracted 
from the energy made available to form the cracks. This correction 
seems, however, to be relatively unimportant. 
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