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Abstract—The elastodynamic stress field near a crack tip rapidly propagating along the interface between two
dissimilar orthotropic elastic solids is solved numerically, for in-plane motion. The cartesian displacements
are sought in the separated forms, r*U(@) and r"V(8), r and 8 being polar coordinates centered at the
moving tip. This reduces the mathematical statement of the problem to two complex second-order linear
ordinary differential equations for complex functions U(8) and V(8). By means of the finite difference
method, a matrix eigenvalue problem of the type A;(p)X; = 0, is obtained where A,(p) are polynomials of
the complex variable p and X, are complex unknowns. An iterative numerical scheme for determining Im(p)
is developed and the roots p as well as angular stress and displacement distributions are calculated and
plotted for various material combinations. Comparison with exact solutions for the case of dissimilar
isotropic solids indicates good accuracy of the numerical solution. The orthotropic nature of the materials is
shown to have a significant effect on stress maximums.

1. INTRODUCTION

IN A PRECEDING paper[l], we investigated the variation with polar angle of the near-tip
elastodynamic fields for a crack propagating along the interface between two isotropic elastic
solids of different mechanical properties. The nature of singularities near the tips of an interface
crack was examined by using an extension to elastodynamic problems of the technique employed
by Williams in Ref.[2]. An analogous study for a propagating crack tip in a homogeneous material
was presented in Ref.(3]. It was shown in [1] that in the immediate vicinity of the propagating
crack tip the stresses show violent oscillations. The radius over which these oscillations are
significant depends on the applied loads, and on the speed of the crack tip. The results indicated
the magnitudes of stress intensity factors for an arbitrary angle 8, relative to the corresponding
factors in the interface.

For a propagating flaw at the interface of two isotropic half-spaces of different mechanical
properties, the dependence on polar angle 8 of the near-tip stress fields could be determined
analytically in explicit form, as shown in Ref[1]. For a flaw at the interface of two anisotropic
half-spaces a numerial procedure is required, which is presented in the present paper.

A two-dimensional geometry will be considered. The velocity of the crack tip along the
interface is ¢ (t), where ¢(2) is an arbitrary function of time, subject to the conditions that ¢ (¢) and
dc/dt are continuous, A system of moving Cartesian coordinates (x, y) is centered at the crack tip,
such that the x-axis is in the interface. Moving polar coordinates (r, 8) are attached to the moving
crack tip.

2. DISPLACEMENT FORMULATION FOR ORTHOTROPIC MATERIALS

Near-tip stress fields for in-plane motions accompanying the propagation of a crack along the
interface between two orthotropic elastic solids are considered. The axes of orthotropy of both
solids are assumed to be parallel to the interface y =0. The stress-strain relations for the
orthotropic elastic solids may be written in the forms

() = B g+ (B (1)
() = B 5+ (B 3, @
(7x);i = (Goy )i (‘;_1;1 + g_?) €)

in which (G.,);, (E«)i» (Eyy); and (E,,); = (E,x); are independent elastic moduli of the two solids

1The efforts of two of the authors (J.D.A. and R.P.K.) were sponsored by the U.S. Army Office Durham under Grant
DAHC04-75-G-0200.

811



812 1. D. ACHEWSACH ef ol

(j=1,2). For the special case of isotropic solids we have (G.); = p; (Ex) —(E,,),

2i(1 = m)I(1=21); (Ewy)s = (Ee); = 2w /(1 - 2m).
If eqns (1)-(3) are substituted into the stress equations of equilibrium relative to the

coordinate system moving with velocity c(¢), and material time derivatives are expanded
according to

. azuj Bu, azu, 2 8 u,
iy = 22— () S~ 20(0) g + [ (OF 5 @

two partial differential equations for u;(x, t) and v;(x, t) ensue. These equations are analogous to
eqns (33) and (34) of Ref.[3]. Similarly to Ref.[3], the cartesian displacement components near
the crack tip may be sought in the fqrms

w=d(5) u@TE: W=d)viOTe (5a,b)

where d is a length parameter and U; and V; are functions of 6. If the derivatives in the
differential equations for u; and v; are converted to polar coordinates, expressions (5a, b) are
substituted and the limit 7 -0 is considered, one obtains the following two ordinary differential
equations for U; and V;

. 2
H(Ex)s = BH(Gxy )i} sin” 8 +(Gyy); cos® 0] 9@%"

+{(Bu) — BGo) ~ (Gor) X1 - p) sin 20 55"

+ p[{(G,,), — (1= P)[(Ex)s — B¥(Ge) T} cos® 8
+{(En):—(37+1-P)(ny);}8inzo]U,

in20d’V, dv,
~ (B + Gy BB (1~ p) cos 2057

+pe-p 50 ®
{a-p 7)(ny)l sin’ 0 + (Eyy)s cos’ 0} %-ij

+{(1= NGy} ~ (B }1 - p)sin 265V

+ p[{(Eyy)s — (1 — p)(1 — BI}Gxy);} cos’ 8
+{(1 - B)Gy)i — (1 - pXE,,);} sin’ 81V;

in 20 &*U, dU;
—{(&»ﬁ(@»ﬁ{%ﬁm p)cos 20 9%

+pQ-p )sm20 }_0 D

These equations are identical to eqns (36) and (37) of Ref.[3] except for subscript j and p
instead of q. Conditions (7,); =0 and (7.,); =0 on the surfaces of the crack provide:
At ==xm:

ay; _
=PV

(Bw)igp =~ (Ex)ipU (8a,b)

)d_V
de



Por perfect contact the interface conditions are (1)1 = (1y)2and (Txy )1 = (7xy )2, Which yield:
At 0=0:

(B WUy + (B ) Gt = (B )pUs + (B ) S0
G)(G5 +pvl) Gox(Sg+pV2) 92,b)
Uz, V= Vz (10a, b)
The stresses may be obtained from eqns (1)-(3) as
= (Z) T, ay
2f T P
my=d*(3) TOT, @) (12
@x=d*(5) TOTS 0N, 13
where
dv;
[T.(8)) = (E,,),{p cos 8 U; —sin 0%2—]-} +(E,,);{P sin 8 V; +cos OF} (11a)
V,
[T,(0)), = (E,,),{p cos 8 U; —sin 0%—0[!-} + (E,,),{p sin @ V; +cos 0%1} - (129)
and
T (8)); = (G,,),[{p sin 8 U; + cos o—gog} {p cos @ V; —sin 0%01’}] (13a)

Since p is generally complex, the physical stresses are given by the real parts of eqns
(11)-(13). In the following sections numerical results will be obtained for [T, (8)]);, [T,(6)], and
[T.,(8)]; only. We refer to Ref. [1] for the effect of the multiplying term d*(r/D)* ' T(t) on the
stresses.

3. NUMERICAL SOLUTION

Differential equations (6) and (7), with boundary conditions (8a, b) and with interface
conditions (9a, b) and (10a, b), define an eigenvalue problem for p. This problem can be solved by
the finite difference method. For this purpose the interval 8e(— w, ) is subdivided into 2n equal
subintervals A8 (Fig. 1). To formulate the boundary conditions, one exterior node is introduced
near each crack surface. To formulate the interface condition two nodes are introduced at the
interface (6 = 0), one for each solid, and in addition one exterior node for each solid is introduced
near the interface 8 =0 (see Fig. 1). This gives a total of m =2n + 6 nodes (numbered as k =1,
2...m). Each node is associated with two unknowns, namely, the discrete values Uy and Vi of
the continuous functions U;(@) and V;(8). The differential eqns (6) and (7) are written for the
nodal values 6.(k =1, 2,... m), by approximating the derivatives by finite difference equations.
Symmetric fifth-order finite difference expressions of the forms (see Ref.[4], p. 539):

(%ay) 121AO (Yk—z 8Yi_1+8Yxsi— Yk+2) 14
(dz") ~ (- Yica+ 16Yaes ~ 30Yi + 16 Yeu — Yiers) (15)
d6’). 12887 7 = gy Tk

with error O(A#)* were used for all nodes which are located more thas 2A¢ away from both the
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Fig. 1. Angular variation of near-tip displacements. Case 1: Analytical results, —; for isotropic halfspaces
with ui/u; =2, pllp=1, vi=v.=03, ¢*fck, =04, Im p =0.1432. Case 2: Numerical results, ----; for

wilw2=2, pilpa=1, v, = »,=0.3, but (E,, ), doubled as compared to case 1 (i.e., orthotropic halfspace 1),
c?/ck,=04,Imp =0.1633and A0 = 7/18.

crack surface and the interface. (Y represents either U; or V;.) For nodes located closer, the
usual, third-order symmetric finite difference expressions (see eqns 42 in [3]) were used, in order
to avoid the introduction of further exterior nodes at distances 2A6 away from the crack surfaces
and the interface. For the same reason, third-order symmetric finite difference formulas were also
used in approximating the derivatives in the boundary and interface conditions. The assemblage of
the matrix of the finite difference equations was programmed in the same manner as has been
described in [3] (except that eqns (44) and (45) from [3] now assume a complex form).

The finite difference equations form a system of 2m homogeneous algebraic equations for 2m
unknowns,

ZZmAn(P)Xs=0 (r=1,...2m) (16)

in which X5, - = Ui, Xa = Vi. Matrix A,, is banded of bandwidth 15, and it is non-symmetric.
Because p is, in general, complex, matrix A,, is also complex and the unknown vector X, must be
considered complex. Equation (16) represents a non-standard matrix eigenvalue problem for p,
where p appears non-linearly in coefficients A...

The coefficients of eqns (6), (7), (8a, b) and (93, b) are all polynomials in p. Then, in view of
eqns (14) and (15), all coefficients of matrix A, (p) must also be polynomials in p, Noting that the
conjugate of a power of a complex number equals the same power of the conjugate number and
that the conjugate of a sum or product equals a sum or product of conjugates, the conjugate of
eqn (16) may be written as

ZM’A,S(ﬁ))_(,=0 (r=12,...2m) (an

where a superimposed bar denotes a conjugate. From this equation it follows that if p = p, + ip,
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Fig. 1. Angular variation of near-tip displacements. Case 1: Analytical results, ~—; for isotropic halfspaces

with w\/p2=2, pilp.=1, v, =1,=03, c*ck, =04, Im p =0.1432. Case 2: Numerical results, --—-; for
wilu2=2, pilp.=1, v, =, =023, but (E..), doubled as compared to case 1 (i.e., orthotropic halfspace 1),
c*ck:=04,Imp =0.1633and A0 = 7/18.

crack surface and the interface. (Y represents either U; or V) For nodes located closer, the
usual, third-order symmetric finite difference expressions (see eqns 42 in [3]) were used, in order
to avoid the introduction of further exterior nodes at distances 248 away from the crack surfaces
and the interface. For the same reason, third-order symmetric finite difference formulas were also
used in approximating the derivatives in the boundary and interface conditions. The assemblage of
the matrix of the finite difference equations was programmed in the same manner as has b¢en
described in [3] (except that eqns (44) and (45) from [3] now assume a complex form).

The finite difference equations form a system of 2m homogeneous algebraic equations for 2m
unknowns,

2m

ZA,,(p)X, =0 (r=1,...2m) (16)
in which X, _, = Ui, Xox = V. Matrix A,, is banded of bandwidth 15, and it is non-symmetric.
Because p is, in general, complex, matrix A,, is also complex and the unknown vector X, must be
considered complex. Equation (16) represents a non-standard matrix eigenvalue problem for p,
where p appears non-linearly in coefficients A,.. ) .

The coefficients of eqns (6), (7), (8a,b) and (9a, b) are all polynomials in p. Then, in view of
eqns (14) and (15), all coefficients of matrix A..(p) must also be polynomials in p. Noting that the
conjugate of a power of a complex number equals the same power of the conjugate number and
that the conjugate of a sum or product equals a sum or product of conjugates, the conjugate of
eqn (16) may be written as

iA,,(ﬁ))?, =0 (r=12,...2m) amn

s=1

where a superimposed bar denotes a conjugate. From this equation it follows that if p = p, + ip»
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is a root, then p = p, — ip. is also a root, and if eigenvector X, is associated with root p then the
eigenvector associated with j is X, or CX,, where C is any non-zero complex number.

The numerical solution is facilitated by the fact that Re(p) must equal 0.5. The proof can be
based on energy balance conditions, considering the flux & of energy into a small circular region
(of radius r) which encircles the tip of the propagating crack and moves with it.

In the special case of two identical solids, p = 0.5 is known to be a double root. Therefore, the

two conjugate complex roots p and j for the case of two dissimilar solids must be simple roots.
Consequently, only one eigenvector must be associated with each of the roots p and . In the
special case of p = 0.5 (real), there are two linearly independent eigenvectors associated with p ;
they may be chosen to represent the Modes I and I, and all of their (infinitely numerous) linear
combinations also represent eigenvectors. From this consideration it is clear that the ratio o, /¢, or
Usol Uro (Where a4 =[T,(0)];, oo = [T, (0));, Uso=[V(0)]; are U,o=[U(0)]; are the interface
values) must have a certain (complex) value when Im(p) # 0, while any value is possible when
p =0.5 (real). This conclusion agrees with the fact that according to eqn (60) (or eqn (61)) of Ref.[1]
for two isotropic materials the ratio oe/oer (or Uso/ U,o) is fixed. It is also clear that, in order to
uniquely specify an eigenvector for Im(p)#0, only one among the (complex) values
X:(r=1,...2m) may be chosen (the amplitude). On the other hand, when p =0.5 (real), two
values among the(real) values X, mustbe chosenin ordertospecify the eigenvectoruniquely.

One interesting property of the solution for two dissimilar isotropic solids is that the ratio
oo lae of interface stresses and Ule,/U,o of interface displacements is purely imaginary (eqns
(60) and (61) of Ref.[1]). The limited numerical results obtained indicate that this is also true for
dissimilar orthropic solids. When the case of two identical solids is approached (Im(p)-0),
lim (oo /ae) at @ =0 is also purely imaginary (= ik) and the eigenvector associated with root p
tends to X7 = X7 +ikX; where X7 and X7 are the eigenvectors for Modes I and II, while the
eigenvector associated with root 5 tends to X* = X} — ikX 7. Thus, Modes I and II cannot be
obtained directly as the limit of X, but they appear as linear combinations of complex
eigenvectors X4 and X2, ,

The root, p, and the corresponding eigenvector, X,, may be computed by the following
procedure which is similar to the one developed in Ref. [5] and employed in Ref. [3]. First the
matrix Ay(p) is evaluated for a chosen value of p = p,+ ip,. Then the equation for one of the
unknowns X, e.g., for the X, = V}, at the interface node n +2 (k =2n +3), is deleted from the
matrix A, (and is stored separately). This equation is then replaced by the equation X, = 1 (real),
which makes the equation system nonhomogeneous. Its matrix becomes non-singular because p
is a simple root when Im(p) # 0. Hence, it is possible to solve the system of equations, whereby
standard library routines for complex matrices may be used. (If it is necessary to keep the cost of
computation low, a special equation solver for banded complex matrices is needed; but the
necessary size of the matrix can be handled with regular square matrix subroutines.) After
solving the unknowns X, the right-hand side Zi of the original k™™ equation is evaluated. The
quantity Z, may be regarded as a function of Im(p) or p,, which is chosen at the beginning of the
procedure, i.e., Z, = Z,(p2). Subsequently, the whole solution is repeated for other chosen values of
p-»and the iterative “‘regula falsi’” method is utilized to find the value of p, which yields Z, =0 (i.e.,
Re(Z,) = Im(Z,) = 0). The solution for this case represents the displacement eigenvectors U}, and
Vi and the corresponding stresses may be evaluated using finite difference formulas. Note that if
Re(p) were not known it would have to be varied, too, and the search for the root would then be
considerably more time consuming.

Because the finite difference equations represent only an approximate formulation, the real
part of the exact eigenvalue p of the discrete problem does not equal exactly 0.5 (e.g., for the case
when p./p:=0.5, (c/cr1)*=04 and n =18, Re(p)=0.5006). It seems, however, more
appropriate as well as more convenient to keep Re(p) exactly equal 0.5. As a consequence of this
choice Re(Zy) and Im (Zx) do not become zero for exactly the same value of p.. The objective in
the iterative “regula falsi” has, therefore, actually been considered achieved when Im(Z:) =0,
instead of Im(Z.) = Re(Z:) = 0. The value of Re(Z) associated with Im(Z,) = 0 was very small
but non-zero; see Fig. 6b. The condition Im(Z;) = 0 gave more accurate results than the condition
Re(Z) = 0 because Im(Z:) exhibited always a steeper variation. The difference between the
values of p, which made Im(Z,)=0 and Re(Z;)=0 was very small and diminished with Aé.
Another consequence of the fact that Re(p) is not exactly 0.5 for the discrete problem, is that the
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eigenvector obtained for p is close but not exactly equal to the conjugate of the eigenvector
obtained for p (times a complex constant).

When the root p is real, it is a double root and two linearly independent eigenvectors are
associated with it. Then it is necessary to prescribe two of the values X, ; e.g. X, = 1 and X, =0.
If only one value were prescribed the equation system would remain singular. When p is complex
but Im(p) is very small, still one value (X« = 1) can be prescribed but because of the proximity to
the case of a double root, the equation system is close to a singular matrix and it is, therefore,
ill-conditioned. The numerical procedure described previously then breaks down. However, the
case of very small Im(p) is of little practical concern.
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Fig. 2. Angular variation of near-tip displacements. Case 1: Analytical results, —; for identical isotropic

halfspaces with »1 = v, =03, ¢*/cz, =04, Imp =0and Im (U or V)= 1.0822 times Mode II displacement

for Uso=1. Case 2: Numerical results, ——; for \/u.=1, pi/p2=1, 1= v,=0.3 but (E..), doubled as
compared to case 1, ¢*/c &, = 0.4, Im p = 0.0241 and A9 = 7 /18.
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Fig. 3. Angular variation of near-tip stresses: Case 1: Analytical results, ——; and Case 2: Numerical results,

----- ;as described in Fig. 1 caption.
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Fig. 4. Angular variation of near-tip stresses: Case 1: Analytical results, —; and Case 2: Numerical results,
—--;-as described in Fig. 2 caption except for Case 1, where Im (T, or Te) = 1.0822 times Mode II stress for
Oor = 1.
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Fig. 5. Angular variation of near-tip stresses. Case 1: Analytical results, —; for isotropic halfspaces with

pilp2=2, pulp2=1, v =v,=03, c*ck =04, Im p =0.1432; and corresponding numerical results for

A8 =7/18 and A§ =w/32. Case 2: Analytical results, -——; for identical isotropic halfspaces with

vi=v,=03, ¢*c2 =04, Im p =0; corresponding numerical results are indistinguishable for both step
sizes.O,A8 = 7/18;@,A8 = w[32.

4. RESULTS

Numerical results are exhibited in Figs. 1-6. Figure 1 (3) shows a comparison of displacement
(stress) distributions for two isotropic halfspaces having different shear moduli and being
identical otherwise, with displacements (or stresses) for the case when the halfspace with the
lower shear modulus is made orthotropic by doubling its (E. ) — modulus. Displacement (stress)
distributions for two identical halfspaces are compared with the same for the case when one of
the halfspaces is made orthotropic by doubling (E,, ), — modulus, in Fig. 2 (4). The results for two
isotropic halfspaces are exact and are obtained from analytical results of Ref.[1], while those
involving an orthotropic halfspace are approximate numerical results. Figure § gives a picture of
accuracy for various step sizes A6. It appears that for the same A9, the error gets somewhat
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Fig. 6. {a} Dependence of Imip) on {E.) for mifpz=1, vi=1wm=03, c}ci=06, (E.)=

2u{1~w)(1-2w), AB=m/24 (ie. isotropic halfspace 1). (b) Dependence of the right-hand side

(RHS} of the k-th equation on Im (p). A polpi =1, pifpa= 1, v = 1,203, ¢¥eka =04, (B = HE, )i =

dpl~wi(1-2), A0 =m[I8. B: pafp=2, pfpr=1, »i=1=03, ¢*fcia=04, (Euh=2E.)=
4l = 2)f(1-20), A0 = /18,

Table 1. Comparison of numerical and analytical resulis for fm(p), for the case of two joined isotropic
half-spaces;c?/ci, =0.6,A8 = 7/24

UN Bfig bowy vy Im (o} i
Exact Numerical
1 1 0,3 0.3 o 0.0003
1 1.2 0.3 0.3 0.0420 F ooz
1 2 0.3 0.3 0.1055 0.1067
2 2 0.3 0.3 0.0590 0.0583
1 1 0.1 0.4 0.1120 01112

higher as [Im (p)] grows. The displacement distributions in Figs. 1 and 2 have been normalized to
give U.o = 1 (real), and stress distributions in Figs. 3, 4 and 5 have been normalized to give o = 1
{real). To get the displacement distributions associated with o = 1, one has to multiply the values
shown in Fig. 1 by (1.4462 —0.4141 i)/, (for isotropic case) or by (0.971-0.311i)/u, (for.
orthotropic case), and those in Fig, 2 by 0.7038/u.( for isotropic case) or by (0.557 - 0.021 i),
(for orthotropic case). : )

Figure 6(a) gives two examples of the dependence of Im{p) upon the degree of orthotropy
of one halfspace and Table 1 indicates some numerical results for Im{p) together with the
corresponding exact values. Figure 6(b) illustrates the procedure for obtaining Im (p), which was
described earlier.
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