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NUMERICAL ANALYSIS OF CREEP
OF REINFORCED PLATES

Z. P. BAZANT*

[Manuscript received: August 31, 1970]

Approximating the hereditary integrals (generally of non-convolution type)
by finite sums, the integral-type creep problem is converted to a sequence of elasticity
problems with initial strains. In this manner a highly accurate, fourth-order method
of time integration is set up and applied to an orthotropic layered plate, or a plate re-
inforced by an orthotropic system of bars or fibres. Applying a well-known method for
elastic problems with initial strains, ‘it is shown how the inelastic strains in a layered
plate can be replaced by an equivalent lateral distributed load. The method was verified
by means of a numerical example of a rectangular plate. For the special case of a de-
generate memory function, a modification, reducing substantially the requirements for
computer storage and time, is derived.

Symbels

thickness of isotropic layer b of plate

curvature parameters given by (9)

distributed lateral load of plate, in direction of z

fictitious q equivalent to inelastic strains

time

deflection of plate, in direction of z

8%1w/0x8y

deflections due to ¢!

rectangular coordinates in the plane of plate

lateral coordinte throughout the thickness of plate
component functions of a degenerate memory function, (20)
Young’s modulus of layer b, and modulus given by (10) '

b cylindrical stiffness of layer b (2)

Dy, Dy, D.y= total bending and torsional stiffness of the layered plate (2)
= bending and torsional stiffnesses of the orthotropic layer (reinforcement)

»aH-Q —g~°9_
x
19

g

x, Y

z
Ala’ Bla
b Eap .

g8

T | I

X Dytz’ Dx -3

<

G, = shear modulus of isotropic layer b

I, = dy12 .

Lyp, Lyy = memory functions of isotropic layer b, corresponding to E, and G, (11, 12)
xp» Myp, My, = bending moments and torsional moment in isotropic layer b

My = My, + My, Mgy = M, — My, . . . .
MY, M3y, MY, = fictitious prestress’ moments equivalent to inelastic strains (16)
M3y, M3y, My, = values of My, My;, My, due to ¢

S1a> Szus Siyp = given by (21), (23)

= normal and shear components of strain tensor in layer b

Exs Eys Exy
b= Ex t &y & = E— & ;

9, &3, egy = inelastic strains in the sense of ¢, &,, £,y (13, 14)
vy = Poisson ratio for layer b

Oxs Oys Ty = normal stresses and shear stress in layer b

* Zdenek P. BA?ANT, Associate Professor of Civil Engineering, The Technological In-
stitute, Northwestern University, Evanston, Illinois 60201, USA
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0y = 0y, —0,
» Ty = Ox
= prestresses eqmvalent to'inelastic strains, in the sense of 0, 0,, © vy (15)
= time as integration variable

5b ... for layer a or b
(r) . for time )
0. .. for quantities due to inelastic strains

1. Introduction

forced concrete plates or layered plates represent practically impor-
tures whose creep can usually be solved only numerically. For
roblems at small strains the numerical method is, in general, well-
1 is based on Theorem 1 given in the Appeéndix. This theorem was
for volumetric inelastic strains already in 1838 by DuramEL [6] and
widely utilized in thermoelasticity. For deviatoric strains and an
naterial, this theorem was first deduced by REerssNER in 1931 [6].
nt approaches it was later independently derived by EscaeLsy [6]
n anisotropic material) by BazanT [1, 2, 4]. For the finite element
n equivalent technique of solution of the effect of initial (inelastic)
been developed separately [7]. First application to a two-dimension-
1 in creep of homogeneous plates (non-linear creep of the rate type)
made by LIN [5] and by Bazanrt [1, 2].

his paper* a method of application of Theorem 1 to a reinforced
. plate will be presented. In addition, a highly accurate algorithm
ution of memory-type creep problems will be shown and verified by
a numerical example.

2. Basic relationships for elastic layered plates

t to stepping into the proper subject of creep, it is necessary to
> some well-known relationships for elastic plates [7]. Assuming
ormals to the middle surface of plate remain straight and perpendic-
cctions w of a plate must satisfy the equation:

tw *w Btw

D, +2D,y—— + D, =q (1)

dxt * ax? By
y = rectangular coordinates; ¢ = g(x, y) = distributed load; Dx,
: rigidity constants. Consider that the plate consists of two layers

f which layer b is isotropic and layer a is othotropic. Then

s paper is based on author’s Internal Research Report No. 68/2, “Approximate
Linear and Nonlinear Creep Problems. Initial Strain Method”, Department of
sering, University of Toronto, December 1968. ’
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Dy = Dy + Dy,, Dxy=Ds+ Dy, Dy=Dy+ D,
Dy = L EyJ(1—;), I = d}j12 @

where E,w, = Young’s modulus and Poisson ratio for the isotropic layer b;
dy = thickness of layer b; D, , D,, D, == bending and torsional rigidities
of the orthotropic layer a; subscrlpts a or b refer to the layers a or b. Actually
the plate may consist even of more layers if these layers have the same elastic
properties; then the constants D, or Dx , Dy , ny must express the sum of
bendmg and torsional rigidities (with respect to the same middle surface) of
all the layers with the same properties. A system of reinforcing bars (or fibres)
in directions x and y may be viewed as a special case of orthotropic layer q,
such that D,, ~ O; D, and D, = total bending rigidities of all reinforce-
ment in directions x and y. For the sake of simplicity it is assumed that every
layer is symmetrical with respect to the middle plane of plate; this implies,
e.g., that the reinforcing bars are distributed symmetrically. Later also the
following relationships will be needed:

S N (3)
0y = My, 2/I, GzzMgbz/Ibv Ty = xybz/Ib (4)
My, = — Ey Ik, Myy=2G,1,k,, Mxyb:— 2G, I, Wiy (5)
where
€= Ext&y & =&,—¢ (6)
o, =040, =Epe, 0,=0,-0,=26,e, T,=26,e, (1)
M,, = be—}—]Vbe, My, = be_Myb . (8)
2w 2w 92 92 2

kl - + 2 kz = 22y s Wyy = G (9)

dx? 9y® dx? By? dx 8y

E ' E

E,,= —L, G, = — - (10)

1--v, 2(1+9,) :

Here z = normal coordinate; oy, 0y, 75y = normal stresses and shear stress in
layer b (0, = 0); ex, &y, &xy = normal strains and shear strain (ex, = &, = 0,
&, is generally nonzero); My, My, = bendmg moments in layer b, My =
torsional moment, G, = shear modulus.

3. Numerical integration of the creep problem

It will be assumed that the isotropic layer b exhibits linear creep and the
layer a does not creep at all.
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he case of plane stress, assumed to exist in the plate, the linear creep
tegral-type, satisfying the conditions of isotropy, may be written in

ing form:
oylt) = T(:)T 'T““{’)—Lm@, v)dr = Eigl oy(t)
16lf to LpplT
(g — %20 "0 b oydr e B
=560 +L 26, 20 = ) (1

o Tlt) [t Te(7) — 11
0= 3o ), 26 D6 w0

and 7 = time, or age of concrete; Ej;' and G;' are creep operators,
ling to the elastic constants E;' and G;'; E;! and G;! have the form
Volterra’s integral operators whose kernels L,,, L,, (the memory
are of non-convolution type because of aging of concrete. The elastic
p» Fogp arein general also functions of age of concrete. In the numerical
the following forms have been considered:

)—z—i“o,wr 100) -7 } L) _ g 44 In(s0) (1)
87 v ) i-1460 ] E, G,

y be adopted as a reasonable approximation for concrete in steady
‘ntal conditions; t and 7 is given in eq. (12) in days. The time variation
| G, has been neglected in the numerical example.

the numerical solution the given time interval (¢,, t,) may be subdivid-
>rete times t(gy, £y, - . . I, in n equal subintervals At. The hereditary
ort = i, in eq. (11) may be approximated by the finite sums

r
ag(r) = 2 cEs) le(t(,), t(s)) Ul(s)/Elb(s)

§=0

r
ey = > s Lasterys 1)) Ou/(26(s)) (13)

§=0
r
E?Cy(r) = 2 c(rs) Lzb(t(r)’ t(s)) Txy(s)/ (2 Gb(s))

- s=0

are constants and subscript (r) pertains to time ¢, e.g. oy =
:n-the creep law (11) takes the form

&y = 0'1(,)/E1b(,)—{»—eg(,), o) = 0'2(,)/(2Gb(,))-|-8(2’(,), (14)
Exy(ry = Txy(r)/ (2Gb(r)+ e?cy(r)
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Assume that the stresses have already been calculated Up to the time

£ and tha.lt the vah.les of the stresses oy, 0y, Oxyy have been estimated.
The 'most simple estlrr.late 18 Oy, A2 Oy,_y) etc. A better estimate may be
obtained by extrapolation, e.g. by the formula ¢,

; ® = -1y + 30y, _, o
whose error is of order Att. Then the values 5?(1), Yr—2) G1¢r—3)

! &y Sy may be computed,
using eqs (13), and represent thus known quantities in eqs (14). Therefore

eqs (14) may be formally regarded as a fictitious elastic stress-strain law with
prescribed initial (inelastic) strains. Solving the elasticity problem with these
initial strains, and given applied loads and prescribed displacements in time
t;)» new values for the stresses O1(r)» Oa(ry> Oxy(r) a¥e obtained.

The basic feature of the numerical algorithm outlined is that the time
integration of a creep problem is converted to a sequence of elasticity problems
with prescribed initial strain. Each of these problems may be converted to a
problem without initial strains according to Theorem 1 in the Appendix.
How this may be implemented will be explained now.

4. Effect of inelastic strains in layered elastic plates

Because of the linearity of creep law, the distributions of e?(,), &2y
e @ O Gf(,), Toe)» ogy(,) across the viscoelastic layer must be linear. Denoting

the resultants of o‘g(,), o‘;’,(r), 1,2},(,) over the viscoelastic layer by M;’b(,), Myob(,),

0 . 0
My and putting Myy) = My + My, My = My — My, “the
following holds true:

9%y = Bty &0y = My 51,

0%y = 2 Gyiry ry = My 31, (1,5)

tgy(r) =2 Gb(r) SQy(r): ngb(r) z/ I b '

Expressing oy, . from eq. (4), substituting into (14) and taking into
account eqs (15), it follows that:

-
Mi)(r) = Elb(r) 2 c(rs) le(t(r)v t(s)) Mlb(s)/Elb(s)

§=0

Mgb(r) = 2Gb(r) 2 s Lzb(t\r), t(s)) Mzb(s)/(zcb(s)) (16)
§=0

. 4 ’
ngbfr): 2Gb(r) 2 c’(.s) Lzb(t(r)’ t(s) Mxyb(s)/(zab(s))'

s=10

The loading state designated by F* in Theorem 1 is represented by a distributed
load q(lr) which is in equilibrium with the prestresses 0"1’(,), 2y Tyyr- Then



Z. P. BAZANT

also in equilibrium with be(r), M;’,,(,), szb(,) and is determined according

e differential equation of equilibrium of plate. Thus

1 1 82 0 0
9 = — “2— ?3;2— (Mlb(r)+M2b(r)) -
(17)
1 22 92 MO
—— (M) — M) — 2 ——2200) .
2 8y? 8x 8y

rally, at the boundaries additional loads may be required to balance
) etc. However, at the simply supported edge no additional moment dis-
ted along the edge is needed. (This would not be true if shrinkage or ther-
lilatation were considered.) The vertical loads and the torques, and for a
ved edge also the moments balancing be(,) . .. are generally non-zero,
irse, but have no effect on the plate. Therefore, with ‘12r) the loading state
fully described.

The deflections w(,) due to the load q%,) can be solved from eq. (1) with
ppropriate boundary conditions. The corresponding internal forces may

‘mputed from eqs (9), (5), (8). Finally, according to Theorem 1,

W(ry = Wiry+ W) (18)
Mlb(r) - M%b(r)_M?b(r)"‘f"M{b(r)’ s

: wfr)’ M{b(r), . .. 1s the elastic solution, due to the given applied loads in

ts alone.

5. Algorithm of numerical integration

The algorithm of time integration as outlined after eq. (14) can be made
efficient by essentially the same refinements as those used in solving a
n of integral equations [6]. Thus, when the final values of My My
T yp(y for the r-th step have been found, their accuracy may be improved
ration, recalculating the values of My, ), M3, and My, (eqs 16) and
ting the solution of the elastic plate.

For the evaluation of the hereditary integrals according to eqgs (16),
efficients ¢f,, cannot be selected according to the Simpson’s rule because
imber of subintervals between t, and t 1s alternately even and odd. A nu-
1l integration formula without this limitation and with the same order

or (At is:

10 8t = 219y oot 19 ) S fiy o)+
f (19)

r—2 )
+ ﬁ?:) +f(r—3)+ 2 (_f(s—l)+ 13f(8)"{' l3f(s+1) —‘ﬁs+2))] .
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It is valid for r > 3. For r = 2 the Simpson’s rule may be applied, Obviously,
a special procedure is needed for the evaluation of the heredjtary integrals-
over the first step 4t (r = 1) if the use of the trapezoidal rule, whose error is
of order A% is to be avoided. A suitable procedure is the successive approxi-
mations, a technique known to be very efficient for systems of integral equa-
tions. To maintain the same order of error (4tt), the successive approximations
must be applied (at least) for the first three steps. First some estimate (0-th ap-
proximation) of the values M, ), My, M50 My . . . M, 3y must be made,
e.g. putting My, = My, = M,,q) = My, etc. Then the values for the
middle of the first subinterval At, denoted by Myys) - . ., may be determined
according to the fourth order interpolation formula which reads: My =

= (5Mypq) + 15Myy0) — 5Myy5 + Myy)/16. The values My . . - Mg
must be calculated, using solely the values of Mlb(s), ... from the preceding
approximation. In the first step 4, the values M, s(sp « - - enable the use of the
Simpson’s rule. Finally, the elasticity problems with initial strains may be
solved for each of the first three steps 4t, obtaining the improved values of
M,y - .. for the next approximation. »

The algorithm of time integration just described is represented in Fig. 1.

It is necessary to note that this higher-order integration method may be
utilized only in the time intervals, in which all the applied loads evolve as
sufficiently smooth functions of time [6], i.e. as continuous functions with
continuous first three derivatives. Otherwise it makes sense to use only the
simple algorithm, involving no extrapolation (i.e. starting with the values
O1p(r) = O1pr—1) OF Opppy = 0) and no successive approximations in the first
three steps, and applying the trapezoidal (or rectangular) formula for the
numerical evaluation of hereditary integrals. If there are not too many disconti-
nuities in the time variation of loads and their derivatives, one can, of course, -

- solve every time interval between two discontinuities independently by the

fourth order method as described.

Numerical example

As a test example the solution of a rectangular plate was programmed. The edges x = 0
and x = a were considered as fixed, and the edgesy = 0Oandy = b as simply supported. A con-
stant, uniform load ¢ applied in time t, was considered. The numerical data were: @ = b =
=400 cm, D, = 4 X107 kp/cm?® (kp = force kilogram), Dx, = s Dy, = Dyl4, Dxy, '=.0a
vp = 0,15, ¢, = 60 days, t;, = 180 days. For the solution of the elasticity problem, the flplte
difference method with a square grid of mesh size Ax — Ay = aj16 was adopted; the functions
M,;, MY, . . . were represented by the arrays of their nodal values, and the partial derivatives
in eqs (17), (1), (9) were replaced by the finite difference expressions. The elastic ?nnlysm of
the plate was thus reduced to a system of algebraic equations. The results of analysis (on IBM
7094) according to the flow chart in Fig. 1 are given in Table I for different numbers of: Subfll-
vision, n, of the time interval (¢, ¢;). Some of the results are graphically represented in Figs
2a, b, c. It is noteworthy that the time changes in the distribution of the relative ({lot t.he a}l:-
solute) values of stresses in the reinforcement are very small (Fig. 2¢c) while the shifts in the.
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.ﬁzEAD t(oy tmy.n, nj, Ny, At, L(t(r),t(s)), data on the plate ang loading, )
— -

: n N
[ re0 Mip*— 0,Mab=0 L i Supt |—l M1b(s)§7 M1b(0), M2bs)...
r+0 Mxyb=0 xXyb(s)... (s=0,... 3)

i

[
b+ Etbry eFy MabrmMe Lyp (tiry tiry
Moyb .. E1b(r)
R

A

Mib sy Mibesy, Mabs)---
A

Mng(S)"' (5‘1,2,3)

Mab(r-1)+ 3M1b(r-2) = M1p (r-3) Ve
Mxybiry- - - f1(sy=— fmm Lib (try,tesy)
fas).- fasy... (5=0,...r) ‘—J
C T2(s) 3¢(s) s
b(r),MZ"-nyy“' 1 _
v A A A
M «—(5M + 15M -
1b(s) L1b. (ter) tes)y) &DT. 1) A ) A 1b(1)/15
Ib(s) ' F S5Mip2)+ M1b(3)
fags)--- (s=0,...r) Ma(5)--- M,(Ag(vs)...
r A
1b(r)si_0 (s F1es) . f1c2)« Mics) Ly ts)
. MSb E1p(5)
e PP | fa00).-. fxy()---
¥

be*—%- Eqbet) (Feo)+4F12) +F1(1)). Mab ..., Mxyb -

chart for the integration of creep problem, valid for n < 3. (Subscript i for the
e is not written; n = subdivision of time; nj, ny = number of iterations or approxi-
= true, F = false.) SUBI. For an elastic plate with the actual instantaneous

E,p()» Gory in time i) calculate w, Mypp), Mypyy, M,y due to initial strains .

by M$,, M3, M3y [(20), (1), (2), (10), (6), (21)]. Then add the values of w, My,
M,y due to applied loads in time () Write w, M,,, My, M,y 1)

Table I

Numerical results

- x = af2
o L L

g * M My, Mgy My,
10.8487 8.124 —231,96 —172.90 —409.32 — 48,767
10.7866 8.0775 —231.08 —168 .41 —406.97 —48.475
10.7857 8.0768 —231.01 —168.18 —406.94 —48.472
10.7862 8.0772 —230.98 —168.13 —406.96 —48.475
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The computer results indicated that more than two iterations per step bring
improvement in accuracy. . hardly any

It should be noted that the problem discussed is practically relevant only for the sty .
due to lateral loads in symmetrically prestressed concrete plates. This analysis cannot A esses
plied to non-prestressed concrete plates because the phenomenon of cracking has net be:n ap-
counted for. Another area of application are the plates of fibre-reinforced plastics and lamina:e (i;
plates.

S

Fig. 2. Lines of equal relative values in the right lower quadrant of plate. (Dashed lines pertain
to the initial state at time ¢,, continuous lines to time t;; S denotes the simply supported edge,
F the fixed edge and O the center of plate.) a) Maximum bending moments in the isotropic lay-
er b. (In time ¢;, O corresponds to the stress value — 192,8, 10 to 629, 3; in time t,, O corre-
sponds to —168,2, 10 to 416,8). b) Minimum bending moments in the isotropic layer b. (In time
ty, O corresponds to — 312,8, 10 to 94,4, in timet,, O corresponds to — 231,0, 10 to 166,3.)
¢) Bending moments in the reinforcement (layer a) in x — direction. (In time ¢, O corress_ponds
to — 290,4, 10 to 629,3; in time t,, O corresponds to — 406,9, 10 to 875,2.)

Acta Technica Academiae Scientiarum Hungaricae 70, 1971
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AABBBCCDDEE~. s 'PQRST-., tUVWWXY—. +'ABCDE~. ,'PQST-. ,u
AABBBCCDDEE-.+ +'PQRST-, t1yyWXY~, +"ABCDE-., ,'PQST-. ,
AABBBCCDDEE-.. ,'PQRST-. , tUVWXY-. + 'ABCDE-. ,'PQST~. ,°
AABBBCCDDEE-.. , 'PPRST~. ,1UVWXY-. » 'ABCDE-. ,'PQST-, ,¢
AABBBCCDDEE-.. , *'"PQST~. ,tUVWXY-. + 'ABCDE~. ,'PQST-, ,°
ABBBBCCDDEF~.. 4, ''PQRST~., , 'UWXY-. » 'ABCDE-. ,'PQRT-. ,°
8BBBCCCDDEE-.. ,''PQRST-. + "UVWXY~., ,YABCE-. ,'PQRST. !
BBBBCCCDDEE-.. ,, 'PQRST-. , 'UVWXY-. +"ABCDE. ,'PQRST- ,!
3BBBCCDDDEE-.. ,,'PQRST--. » 'VWXY-. ,*ABCDE-.,'PQRST-. '
3BBCCCDDDEE-..+ 4+, 'PQQRST~. , 'UVWXY- + "ABCDE~. ,PQRST-. .
3BCCCCDDEEE-.. ,''PQRST-. + '"UVWXY—-. ,*ACDE-. ,'PRST-. ,
SCCCCDDDEEE-- v ' 'PQRSTT~-. . 'UVWX-. ,*ABCD-. y "PQRS~. ,
>CCCDDDDEEE-- s+ *PQRRST-. , 'UVWXY~,, ' ABCDE- + 'PQRST-.,
CCDDDDEEEE-~ 11y '"PPQRSTT~. JUVWXY-., ,'BCDE-. yPQRST-.

*'PQRRST-. ,'UVWXY. ,'ABCE-. y 'PQST~-.
'PQQRST-. , 'UVWXY-, ,ABCDE- 1 "PQRST-,
'PPQRSST-. ,'UVWX-. ,'ABDE-. +PQRST~,

:EEEEEEE~---~, ''PQRRST-. , 'UVWXY-, 'ABCD-. ,'PQRST.

EEEEE--~~- ~eas ''PQQRRST-, ,'UVWX-, ,"ACDE-.,'PQRST-

JDDDDEEEEE-~-, ’
v
’
*
------------ e v ' *PPQRRST-. , JUVWXY-. T'ABCD-. » ' PQRS -
14
14
!
A

JODDDDEEEEE--,,
JDDEEEEEE---,,

.
- % % e - o

+ 'PPQQRST-~. ,'UVWX-. +"ACDE-.,'PQRST
+ ' “PQQRRST-.  ,UVWXY-. 'ABCD-. .'PQRS
v ' 'PPQQRST--. ,'UVWXY. ,'ACDE-. ,PQRS
» ' 'PPQQRSST-.,  ,UVWXY-. 'ABCD-. ,'PQR

90060000004
A R A O N ) v

e o0 14

KX} 11919 " "PPPQQRSST~-, ,1UVWXY-~ y"ABDE~. ,'PQ
'111vv1vvv117vvvv"'ppPQQRRSTT‘~ v '"UUVWX-. ,'BCDE-., ,'p
P""",,,,,,,""'PPPQQQRRSTT-—. » "UVWXY~, 'ABCDE-. 'p
‘PPPPP"’"""""'PPPQQQRRSSTT— v+ *UVWXY, ,'ABCE-. !

RQQQQQQPPPPPPPPPPPPPQQQQRRRSSTT-~.
SSSRRRRRQQQQQQAQQQQQQQRRRRRSSTT--,
TTTTSSSSSRRRRRRRRRRRRRRRRS STTT -,
+ o=~ =TTTTSSSSS5SSSS5S8SSSSTTTT-~-

"UVVXY‘. v'ABCE‘- .

v ' TUVWXY-. ,'ABDE-.

v9 'UUVWXY -, , *ACDE-.
1 ' UVWXYY‘. L ' BCDE‘

' e e e == ==TTTTTTTTTITTTT T T-—-=., yr " TUVWXY--. , 'ABDE
uree,,, R T u— e v P TUVVWXY ==, , 'ABC
WVVVUuur e st eesaenn 1o "TUUVWWXYY -, ,'AB

YYXXWWWVVVUUUU' tr,,,,,, e " TTUVVHWXXY -, L 'A
..--YYYXXXWWWVVVUUUU""ocv,1vv'yyyyyf"'UUVVVWXXY-. ) !

rle showing how the lines in Fig. 2b for ¢ = t; were simulated on printer. (The interval

he maximum value and the minimum value was subdivided in 50 equal subintervals,

the following series of 50 characters was assigned ABCDE-, "PQRST-., "UVWXY-.,
’ABCDE-.,’PQRST-.,’)

6. Simplification for a degenerate memory function

the kernels in (11) have the form

L;b(ta DVEp = 3 A (1)Bult) Lyft, /6, = = Ay (7) By (1) (20)

t Ay, By, ... are given functions of one variable, the integral-type
v may be transformed to a rate-type creep law, in form of a differential
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equation of order n, [3]. In such a case the requirements for computer storage
are known to be much lower. The same result can be, however, achieved
without abandoning the integral-type creep law and the numerical algorithm
described. Indeed, substituting (20) into (11), it may be found that (13) may
be replaced by the following equations

- ¥ 0
8%*f3w&w8w—§&m%w¢m=2&@%m(m
o

where

1y ty
Sla(r) = JO Alfx(r) UI(T) dT’ S2a(r) == fo A2a(T) GZ(T) dt’

. (22)
Seyuty = [ A2ol¥) 7,5(r) d.
Then, replacing these integrals with finite sums according to formula (19),
1t is possible to obtain the recurrent equations which follow

At
Siaty = Star—py + o4 Bfn+23f,_,—11 Jo—oy +
’ (23)
+ Sf(f—-3) - f(f-4))’ S2a(r) = Sxya(r) = .-

where f,) = A1.¢)Giy- They are applicable for r > 3 and the starting values
are:

34t ,
Sia@) = —81 (fo+3fw+3fa+ fuy)s - - - . (24)

It us seen that the storage in computer of the entire history of stresses gy, Oy,
Oxy is not needed; only the history over the last four steps At nedds to be
stored. It may be verified that the amount of storage required is the same as
for the corresponding rate-type creep law and the numerical method of the
fourth order. The amount of computer time for evaluation of &, &J, &y, becomes
also substantially reduced. The general form of the flow chart in Fig. 1 re-
mains unchanged.

In the case of degenerate memory functions, the storage requirements
are in fact proportional to the desired order of error. If one is contented with
the trapezoidal rule for the evaluation of the hereditary integrals in (11), then

Jap; :
Sla(r) - Sla(r—l) + ? (Alu(r~—1) 01(,_1)+A1a(,) Ola(r)s S2a(r):"'9 Sxym(r)z PN (25)

so that besides the current values of stresses only the current values and the
last preceding values of Star Sawr Sxya (2 =1,...n,) need to be stored. The
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art for this case is represented in Fig. 3 in which the notation M;, =
'(')), P M’lb = Mlb(t(r’—l)) v e iS used.

) '| READ t(o),t(n), n, nj,nu,At,A1a(r),B1“(r),...,dafu on the plate and leading’ E...

L
0 g / - 7
Jrj_‘r?j M‘lb’;—oo’&bo‘_or SUB 1 Mg Mip, My Migp...
xyb Stoer S20s Sxyar e 0 .
» SUB 1
~ 2B S —
z Tory ™o : ¥
- > B S . At c .
2 Zuir) 2o e Sy S1r 5 (Mg My) A1a(r)
._g BZ“(r) sxge‘ 52“ Sxyu....
At 1
—_— + =2
S1o{, F] (A1a(,—_1) M1b + A1°(,(’_r)41b)
S25" (AIZoc(r-1)Méb+A2°¢(r)M2b) P 1 V" Moy, 2o My,

S At . e~ MZ(:‘_ Mqu—- M1b‘— 2M1b‘"M'
— + — ’ c
v XYy 2 (Azo‘(r—U Mxyt;*AzoL(r)M"Ub) Mxy*ngb M{ =X

low chart for the simplified integration of creep problem in the case of degenerate
‘unction. (Second order method with the trapezoidal rule for the evaluation of heredi-
tary integrals; SUBI is the same as in Fig. 1)

is worth noting that the Arutyunian’s and Maslov’s formula [2, 3]
(5] T
Lt ) Es'(0) = — — [E5()+ 3 (o)1 —e-t-)] (26)
a=1 .

tly utilized for concrete, is a special case of the degenerate memory

1 (20).

7. Conclusions

The effect of inelastic (creep) strains, linearly distributed over the

6 of a layer of layered plate, can be replaced by applied loads according

(15)—(17). :

Creep of a layered (or reinforced) plate can be solved as a sequence of

y problems with inelastic strains. A highly accurate algorithm of time

ion is given in Fig. 1; it is applicable when the loads evolve as suffi-

smooth functions of time.

It is advantageous to introduce a creep law involving degenerate
functions. Then the entire history of stresses need not be stored and
mtial saving in computer storage and time is possible (Fig. 3).
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4. If the plate has a simple shape, the finite difference method in s sace
coordinates is suitable. : P

The present research was sponsored by Ford Science Foundation and . -
1967/68 at the University of Toronto, Department of Civil Engineering, undz:r:.heeds:utefﬁn:;ng
of Professor M. W. Huceins. v p on

Appendix
Theorem 1. — Let the constitutive equation for small strains be
o =C(e—¢ (A1)

where ¢ = stress tensor, € = strain tensor, €® = initial strain tensor, C =
fourth rank tensor of elastic moduli; C and €° may depend on space coordinates. '
Introduce the prestress tensor

o = Ce® (A2)

and define F! as the state of volume and surface loads which equilibrate g°.
Then in a given body under zero applied loads the stresses are 0'—a?, the
(linearized) strains are ! and the (small) displacements are u! where ol, ely ulis
the solution of the same body (with the given prescribed displacements) for
loads F! and zero initial strains. ‘
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Numerische Berechnung des Kriechens armierter Platten. Die Anniherung der Kriechin-
tegrale (im allgemeinen von Nicht-Konvolution) durch endliche Summen veridndert
das Problem des Kriechens vom Integraltyp zu einer Folge von elastischen Problemen mit
Anfangsformanderungen. Auf diese Weise wurde eine sehr genaue Methode der Zeitintegra-
tion von vierter Ordnung ausgearbeitet und auf eine orthotropisch geschichtete, oder mit
einem orthotropischen System von Stahleinlagen oder Fasern armierte Platte angewendet.
Durch den Gebrauch einer wohlbekanntén Methode zur Lésung der Elastizititsprobleme
mit Anfangsverformungen wird demonstriert, wie die elastischen Verformungen in einer
schichtigen Platte durch ein gleichwertiges System von stetig verteilten Lasten ersetzt werden
konnen. Die Methode wurde mit dem numerischen Beispiel einer rechteckigen Platte nach-
gewiesen. Fiir den speziellen Fall eines entartenen Kriechkernels wird eine abgeiinderte Metho-
de abgeleitet, die die Erfordernisse an Speicherung und Zeit fiir die Rechenanlage wesentlich
reduziert.

Ypcnopolt aHAa/IM3 MoN3ydecTH KeAe300eToHRLIX NunT (3. I1. Basanm). TIpubnyenue
HereHepHPOBAHHBIX HHTErPAJiOB HECNHMPA/TbHOTO THIA C FIOMOIIBI0 KOHEYHBIX KONMYECTB Hpe-
o0pasyer ABJIeHHE MOJ3YYECTH HHTETPANILHOTO THIIA B PSif NOCJIEAYIOLHX APYT 3a APYToM 3afay
10 YNpYrocTH ¢ HavanbHOH nedopmauueii. Takum oGpasom yaanoch pa3paboraTs o4eHb TOUHbIA
METOJl BPEMEHHOIr0 MHTErpPUPOBAHHMS YETBEPTOM CTENEHH M TNIPHUMEHHTDL €r'0 JJISI HEKOTOPOH
MHOTOCJIOHHOH OPTOTPONHOM NACTHAB WIH AJISt HEKOTOPOH OPTOTPONHOHA mnacTHHbI, ApMHDO-
BAHHOH MeTa/NTHYeCKON MM BOJIOKHHCTOH cucremoit. IIpuMeHsIst XODOWIG M3BECTHHIN METOX,
YUHTHIBaIOIUMH HauanbHele AedopMalHH, JUIs 3afad 110 YIPYTOCTH, BHIHO, YT0 KaKum oGpasom
MO)KHO 3aMEHHTb B HEKOTOpOH MHOrocolHo#i nnactiHe Heynpyrue aeGopMaLHi S9KBHBaIEeHTHOM
pacnpefenstiomteiicst cucremoit cun, feficTBylomeit B GoKOBOM HalpasieHHH. Jloxas3areibCTBO
NPABHILHOCTH METOAa IPOMSBOIUTCS Ha YHCIOBOM IIpHMepe NIPSMOYTOIbHOH YeThIPeXyroNbHOil
naacTuHeL Jns cneusanbHOTo Cy4asi HeKOTOPOH fereHepHPOBaHHOH MeMOPHANBLHON BYHKIHu
TIPHBE/IEH BHIBOJ, TaKOro MOAM(HIMPOBAHHOTO MeTOfd, KOTOPHIl 3HauHTENBHO COKpauiaeT
TpeboBaHHs N0 HAKOMNEHHIO U BPEMEHH HA BBIYHCJINTENIbHOM MalllHHe.



