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A MICROPLANE CONSTITUTIVE MODEL FOR SOILS
Pere C. Prat,! AM. ASCE, and Zdensk P. Bazant,2 F. ASCE

Abstract

A microplane model for the inelastic behavior of soils is presented. The micro-
scopic constitutive equations are defined independentely for a set of microplanes
covering all possible orientaiions, with a kinematic micro-macro constraint.
The stresses on each microplane are defined as explicit functions of the volu-
metric and deviatoric normal and shear components of the macroscopic strain
tensor. The model can reproduce drained as well as undrained behavior, with
an uncoupled formulation between the siress-strain and the pore water pressure
terms. The model is colibrated and verified by comparisons with several fest
data both drained and undrained, and good agreement is attained for most of
the basic features of the material behavior. The model involves nine material
parameters but four can be fized constant and five (or four in some cases) have
to be determined by data fitting. The fact that the stress is given as an ezplicit
function of strain makes the model suitable for finite elements applications.

1. Introduction and Basic Assumptions

During the last decade, the multilaminar and microplane models have been de-
veloped for several types of materials, and its use proved adequate to predict the
basic features of the materials under most usual loading conditions (Bazant and
Oh, 1983, 1985; Bazant, 1984; Bazant and Gambarova, 1984; Bazant and Kim,
1986; Bazant and Prat, 1987, 1988; Carol et al., 1990; Pande and Sharma, 1980,
1983; Zienkiewicz and Pande, 1977). In this paper we present a generalization
of a previously presented microplane model for drained behavior of soils (Prat
and Bazant, 1989], to include undrained response as well. The original idea of
the method is due to Taylor (1938) who proposed that the stress—strain relation
be specified independently on planes of various orientations in the material, as-
suming that either the stresses on that plane (now called the microplane) are
the resolved components of the macroscopic stress tensor (static constraint), or
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the strains on the plane are the resolved components of the macroscopic strain
tensor (kinematic constraint). The responses on the planes of various orienta-
tions are then related to the macroscopic response simply by superposition or,
as it has been done in recent works (BaZant, 1984; Carol et al, 1990) by means
of the principle of virtual work. In the initial application to metals (Batdorf
and Budianski, 1949) only the static constraint was considered, and so it was
in the early applications to soils (Pande and Sharma, 1980, 1983; Zienkiewicz
and Pande, 1977) which successfully described some of the basic aspects of soil
behavior. It appeared, however, that the microplane system under a static con-
straint becomes unstable when strain-softening takes place (BaZant and Oh,
1983, 1985; Bazant and Gambarova, 1984). For this reason, as well as others,
it is necessary to use the kinematic constraint, which will be adopted here.

To model the undrained behavior of clays, we make the following basic
hypotheses and assumptions: (a) The strains on a microplane are the resolved
components of the macroscopic strain tensor ¢;;, which represents a kinematic
constraint; (b) The response on each microplane depends explicitly on the
volumetric strain (ey = %ﬂck) ,in the sense that the microplane equations must
include a separate treatment of the volumetric and deviatoric components. The
equations governing this decomposition have been developed elsewhere (BaZant
and Prat, 1988; Carol et al, 1990) and will not be repeated here; (¢) Overall we
consider three strain components on a microplane: volumetric ey, deviatoric
normal ep and shear gy, with the respective responses mutually independent
(decoupled); (d) The vector of shear stress gy and the vector of shear strain
g7 acting on a microplane are parallel, i.e. o1, ~ ¢7;; and (e) The microplane
stress—strain relations for monotonic loading are path-independent (note that
this does not imply path-independence at the macroscopic level).

It is well known in geomechanics that soils undergo deformations only
when a change in the “effective stresses” is produced. The effective stress ten-
sor a'ﬁj = 0jj — pwdi; (where g;; is the total stress tensor and py is the pore
water pressure) characterizes the stresses transmitted by the solid skeleton. It
can be shown that the deviatoric effective and deviatoric total stress tensors are
identical (321- = 5;7) and therefore we may conclude that the effective pore wa-
ter pressure needs to be introduced int the equations governing the volumetric
behavior only. Therefore the effective stress—strain equations will be formu-
lated using the microplane theory, while volumetric stress—strain—pore pressure
equations can be formulated macroscopically without the use of microplanes

2. Microplane Material Functions

According to the hypotheses formulated before, the microplane equations are
defined independently for volumetric, deviatoric and shear components, assum-
ing a functional relation between effective stresses and strains: o}, = Fy(ev),

o’p = Fplep), and o = Fr(er).
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2.1 Volumetric Stress—Strain relation

We need to distinguish between hydrostatic compression and tension. For volu-
metric compression we assume a relationship similar to the known experimental
curves obtained from oedometric tests, e.g. a bilinear relation between ey and
log o%,. For volumetric tension we use a curve with a peak and a softening
branch (Fig. 1). If the soil is overconsolidated, we will use for virgin (initial)
loading:

oy = ope v/ (1)

where o7, is the initial effective volumetric stress in situ and C? and empirical
material parameter. If the initial vertical stress is not less than the preconsoli-
dation pressure, then the virgin loading branch can be described as

a%, = &VeEV/CC, with oy = ame—e‘n/c: (2)
where oy and ey are the maximum effective volumetric stress and strain ever

reached. These two state variables have the initial values o3 = oYy Em =
C;log op,/oy,. Note that if the soil is normally consolidated then em = 0.
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Fig. 1 — Microplane volumetric stress—strain relation.
The unloading branches in compression are defined so that in the (ev-
log o1,) space they are straight lines of slope 1 /C5 (see Fig. 2):
ey —€a
oy =aye G (3)
where ¢, is the value of ey corresponding to the point on the unloading branch
at whiclkf oy = 0§

€a = [1 — g—::]em +C; log[%] (4)
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and C7 is an empirical material parameter.

For “tension,” i.e. when the current oy, < of, we assume a stress-strain
curve with a peak and a descending branch asymptotically approaching zero.
The curve is shifted by a distance equal to the latest value of £,, so that conti-
nuity is maintained in the transition from compression to tension;

-1l e
oy =oy + Ey(ey —ea)e P P

(5)

where Ej, = 03, /C;, and p and ¢} are material parameters.

Finally, for “tension” unloading, we assume a linear branch with slope
EY; such that
R o 6)
AO’V = EvACV (

2.2 Deviatoric Stress—Strain Relation

-

The equations for compression and tension are as follows (Fig. 2):

Fig. 2 — Microplane deviatoric stress—strain relation.

op = Fplep) = oPcll - e—kDCIeDl] if op2>0 )
op =Fplep) = oFpll — e *07lEDl) 3f 0py <0

where 03¢, 057, kpc, and kpr are empirical material constants, not entirely
independent if we enforce continuity of slopes at the origin. In that coasf:, the
following relation must hold: |0$okpc| = leFrkpr| = Ej, where Ej, is the
initial elastic modulus. Eqs. 7 apply only for loading on the micro?lane; fc?t
unloading, we assume on each microplane linear elastic behavior with elastic
modulus Ef. It must be noted that the relationships defined Pyj Egs. 7 act as
the envelopes for future loading-unloading-reloading cycles (Fig. 2)-
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2.3 Shear stress—-strain relation

The shear stress—strain relation must shows a dependency on the overconsoli-
dation ratio rocpr(Fig. 3):

Or &

Fig. 3 — Microplane shear stress-strain relation.

or = Fr(er) = oF°[1 + (aeg — 1)ekreT) (8)

where a= ao(rocr — 1) and o§°, kr, and ag are empirical parameters. The
unloading rules are shown on Figs. 3a and 3b. Note that if the initial shear
modulus E7 is known, then the exponent kp in Eq. 8 can be computed as
kp = Ep/of —a.

Eq. 8 represents a relation between the norms of the shear stress and shear

strain vectors. However, since we have assumed that these vectors are parallel,
we can easily obtain the components of the stress vector as

e
o, = UT;:?' ]

where o1 = ||gr|| = Fr(er), and e = ||e7||.

3. Pore Water Pressure

To mt?del the pore water pressure under undrained conditions, we will use the
following set of equations first proposed by Bazant and Krizek (1975) and later
developed by Ansal et al. (1979). We assume that compressibilities of free and

bound water are the same, that both behave ellastically and that both can carry
only volumetric stress.

?he pore water pressure can be calculated as

CuwK [a'_V

_ _bwh "
Po =K+ Cu 3+ (10)
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where ¢ is the accumulated inelastic volumetric strain, n the porosity, Cy
the water compressibility, X = 2G(1 + v)/3(1 — 2v) and G the shear modulus
which is non-constant along the stress path. The accumulated inelastic strain
¢" is obtained by integrating the inelastic volumetric strain increment de” which
is a measure of the time-independent densification-dilatancy and can be written
as

C(1 + 2500ey)

dell - -
(1 + 100075)(1 + 2Z)(1 + 9000¢")

dt (11)

where C is a material parameter, J5 = %eije,-j , oy is the total volumetric stress,
Pa is the atmospheric pressure, ¢” is the accumulated inelastic volumetric strain

(densification-dilatancy), and d€ = y/ %dsijde,;j ~ path length increment.

4. Macroscopic Constitutive Law

The basic structure we will use for the effective stress—strain law has been
developed recently by Carol et al. (1990). The constitutive law is written in
terms of the current effective stresses and strains (and not in terms of their
increments), which allows the model to be explicit. The macroscopic effective
stress tensor can be expressed as:

1
‘721' = a"Vsij+/;.x"inj°"D‘I’NdQ+/n -2—(11,'5,1'+nj6,.,'-—2n,'njn,-)o'!1-'\IlNdQ (12)

where a’V, a'D, and ‘7'II', are the microplane effective stresses and ¥ y is a weigh-
ing function of the orientations n which in general can introduce anisotropy of
the material in its initial state (Prat and BaZant, 1990). If such a function is
unknown, we can take approximately ¥ = constant. The macroscopic total
stress tensor, 0y, then results from the principle of effective stresses of soil
mechanics: o;; = aij + pwb;j where o}; is obtained from Eq. 12 and the pore
water pressure py from Eq. 10. The latter equation can be rewritten as

Pw = aoyy + Be” (13)
with @ = Cy/3(nK + Cy) and f = 9Ka. Thus,
oij = 05 + aopbij + P85 (14)

Calling Bj; = o%; + Be"6;j (which is a known tensor), we obtain the following
system of equations in the unknowns oy;:

o5 = a"'klc‘sij = Bij (15)

The solution of this system of equations gives the values of the macroscopic
total stress tensor and, therefore, the value of the pore water pressure as well.
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5. Verification with Experimental Data

The model has been verified with several typical test data from the literature
as exhibited in Figs. 4-6. Fig. 4 shows a comparison between the present
microplane model and the results obtained by Pande and Sharma (1983) using
the critical state model (Schofield and Wroth, 1968). These results correspond

to a normally consolidated soil under triaxial
drained and undrained conditions.
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Fig. 4 — Comparison with critical state model results: (2) drained compression;
(b) undrained compression; (c) drained extension; (d) undrained exten-

sion; and (e) ko consolidation.

Fig. 5 shows (a) test data on overconsolidated clays by Henkel (1956); and
(b) data from standard and true triaxial tests of clays by Nakai et al. (1986).
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Fig. 5 — (a) Comparison with data on overconsolidated clays by Henkel; (b) Com-

parison with standard and true triaxial tests by Nakai.
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Fig. 6 exhibits (a) results on cubic tests of kaolin clay by Wood (1975),

with one cycle of unloading-reloading; (b) data from plane-strain tests by Ha.rsl—
bly (1972); and (c) triaxial extension tests by Balasubramanian and Uddin
(1977).
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6. Conclusions

1. The work presented is an extension of a simplified model developed
earlier for deviatoric creep of drained soils. A pore water pressure term is
included in a manner that gives undrained as well as drained behavior as special
cases. The model seems capable to reproduce well the main trends of both types
of behavior, including the pore pressure variation (for undrained tests) and the
volume change (for drained tests).

2. The number of parameters that need to be adjusted to fit complex data
(five at the most, four in some cases) is small enough for practical purposes.

3. The present formulation can be used as a general constitutive equation
in nonlinear finite element programs.

4. The present model is ezplicit in the sense that no iterations are required
to obtain a stress state from a given initial strain state and strain increment.
Therefore, its use in a finite element code is as easy and efficient as that of
a similar model for concrete (despite the need to integrate over a hemisphere,
typical of the microplane formulations).

Acknowledgements

Partial financial support to the first author from the spanish C.I.C.Y.T. research
grant PB87-0861 is gratefully acknowledged. The second author received partial
support in 1988 under U.S. NSF Grant No. MSM-8700830 to Northwestern
University, and in 1989 under project No. CCA-830971 funded under U.S.-
Spain Treaty.

REFERENCES

Ansal, A.M., Baiant, Z.P., and Krizek, R.J. (1979). “Viscoplasticity of Normally Consolidated
Clays.” J. Geotech. Engrg., 105(4), 519-537.

Balasubramanian, A.S., and Uddin, W. (1977). “Deformation characteristics of weathered Bang-
kok clay in triaxial extension. Geotechnique, 27, 75-92.

Batdorf, S.B., and Budianski, B. (1949). “A Mathematical Theory of Plasticity Based on the
Concept of Slip.” Technical Note No. 1871, National Advisory Committee for Aeronautics,
Washington, D.C.

Bazant, Z.P. and Krizek, R.J. (1975). “Saturated Sand as an Inelastic Two-Phase Medium.” J.
Engrg. Mech., ASCE, 101(EM4), 317-332.

Bazant, Z.P., and Oh, B.H. (1983). “Microplane Model for Fracture Analysis of Concrete Struc-
tures.” Proc. Symp. on the Interaction of Non-nuclear Munitions with Structures, C.A. Ross,
ed., U.S. Air Force Academy, Colorado Springs, McGregor & Werner, Inc., Washington, D.C.

Bazant, Z.P. (1984). “Microplane Model for Strain-Controlled Inelastic Behavior.” Mechanics of
Engineering Materials, C.S. Desai and R. H. Gallagher Eds., John Wiley & Sons, Chichester
and NewzYork, 45-59.

Bazant, Z.P., and Gambarova, P.G. (1984). “Crack Shear in Concrete: Crack Band Microplane
Model.” J. Struct. Engrg., ASCE, 110(9), 2015-2035.

MICROPLANE CONSTITUTIVE MODEL 461

Baiant, Z.P., and Oh, B.H. (1985). “Microplane Model for Progressive Fracture of Concrete
and Rock.” J. Brgrg. Mech., ASCE, 111(4), 559-582.

Bazant, Z.P., and Kim, J.-K. (1986). “Creep of Anisotropic Clay: Microplane Model.” J.
Geotech. Engrg., ASCE, 112(4), 458—475.

Bazant, Z.P., and Prat, P.C. (1987). “Creep of Anisotropic Clay: New Microplane Model.” J.
Engrg. Mech., ASCE, 113(7), 1050-1064.

Baiant, Z.P., and Prat, P.C. (1988). “Microplane Model for Brittle—Plastic Material: . Theory;
IL. Verification.” J. Engrg. Mech., ASCE, 114(10), 1672-1702.

Carol, I., BaZant, 2.P., and Prat, P.C. (1990). New Ezplicit Microplane Model for Concrete:
Theoretical Aspects and Unified Implementation for Constitutive Verification and F.E. Anal-
ysis. Report, E.T.S. Camins, Canals i Ports-U.P.C.; Jordi Girona, 31 — E-08034 Barcelona,
Spain.

Hambly, E.C. {1972). “Plane strain behavior of remoulded normally consolidated kaolin.” Geo-
technigue, 22, 301-317,

Henkel, D.J. (1956). “The Effect of Overconsolidation on the Behaviour of Clays during Shear.”
Geotechnique, 6, 139-150.

Nakai, T., Matsuoka, H., Okuno, N., and Tsuzuki, K. (1986). “True Triaxial Tests on Normally
Consolidated Clay and Analysis of the Observed Shear Behavior using Elastoplastic Consti-
tutive Models.” Soils and Foundations, Japanese Society of Soil Mechanics and Foundation
Engineering, 26(4), 67-78.

Pande, G.N., and Sharma, K.G. (1980). “A micro-structural model for soils under cyclic load-

ing.” Proc. Int. Symp. on Soils under Cyclic and Transient Loadings, Swansea, Balkema
Press, Rotterdam, Vol. 1, 451-462.

Pande, G.N., and Sharma, K.G. (1983). “Multilaminate model of clays ~ A numerical evaluation

of the influence of rotation of principal axes.” Int. J. for Numerical and Analytical Methods
in Geomechanics, 7, 397—418.

Prat, P.C. and Baiant, Z.P. (1989). “Microplane Model for Triaxial Deformation of Soils.” Proc.
Ird. Int. Symposium on Numerical Models in Geomechanics (NUMOG III), Niagara Falls
(Canada) 8-11 May. Elsevier Applied Science, London and New York, 139-146.

Prat, P.C. and Baiant, Z.P. (1990). “Microplane Model for Triaxial Deformation of Saturated
Cohesive Soil,” Report, E.T.S. Camins, Canals i Ports-U.P.C.; Jordi Girona, 31 — E-08034
Barcelona, Spain.

Schofield, A.N., and Wroth, C.P. (1968). Critical State Soil Mechanics. McGraw-Hill, London.
Taylor, G.I (1938). “Plastic strain in metals.” J. Inst. Metals, 82, 307-324.

Wood, D.M. (1975). “Exploration of principal stress space with kaolin in a true triaxial appa-
ratus.” Geotechnigue, 25, 783-797.

Zienkiewicz, O.C., and Pande, G.N. {1977). “Time-Dependent Multi-laminate Model of Rocks—
A Numerical Study of Deformation and Failure of Rock Masses.” Int. J. for Numerical and
Analytical Methods in Geomechanics, 1, 219-247.





