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Stress Belaxation Testing of Plastice and Fibre-Glass

&st;cs
/ Mfenf relaxace plgatickych hmot a skelnfch lamindtd/

Relaxaci plastickfch hmot a skelnfch laminétd lze jedno-
duSe mBfit tak, Ze rowvny pések se ohne do oblouku stafenim
konch k sobd a miff se pokles tahové sfly, napl. podle kmi-
toZtu struny, napjaté mezi konci pésicu, nebe i jedneduSeji,
ale ménd pfesn¥, podle tvaru, jaky pések zaujme po uvoln¥n{

s podloEky po jisté dobZ. Byl propoZten geometricky twar
obloukn podle teorie velkych deformacf /je uvedena &fselnd
tabulks/. Dfle jsou odvoszeny vsorce pro urfenf relaxa¥nfho
asdulu s korekcemi /obecnd Volterrova integrdlnf rownice/ a
Je uveden splsob odvosenf ostatnfch dat pro dotvarovéni. Pro-
vedenin skoulek pro stupnovit® rostoucf nebo klesajfci vsdd-
Iemost koncd je moino owdfit rozsah platnesti principu super—
posice. Vzorky lze snadno premfsiovat do prostfedf o rizné
teplots, do vody, vetrometru apod. ZkouSkou pewvnesti po ji-~
sté dob¥ lsze té% sledovat dlcuhodoby pokles pevnosti vlivem
satfZenf a vliv prostfedf ma dIouhodobou pevmost zatiZenych
prvicd /Zivotnost/.

It is requisite in the design of structures made of plast-
ics that due account be taken of the creep of these materials.
Experimental data on creep can be obtained by e.g. the stress
relaxation test in which the time variation of stress is mea-
sured at a prescribed deformation or possibly at additional
prescribed changes of deformation.

The present paper describes the measurement of stress re-
laxation in bending easily effected by measuring the decrease
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in temsile force acting betwsen the ends of a strip bent arc-
-wise. In the measurement proper, the sought-for curve is de~
termineqd ia the simplest wmyfrow’ changes of natural frequency
of a steel string stretched between the ends of the strip, or
frmcblmsofthem.ofmmmmmipicrm-
ved from the backing., The measured specimens are easily pla-
ced in environment at. different teuperatures, in water, wea-
therometer, etc. , thus enabling us to simultaneously follow
the effect of the environment and of the Ioad on the decrea-
se in strongth /life problem/, ascertain the modulus of ela-
sticity, etc. Since we have just started with such tests st
the BuiMing Ressarch Institute of the Technical University
in Pregue, we are not ready yet to present numerical resultse
Although the test is simple, the relationships for the eva-
Iuation of the results are somewbat involwed, particularly
as regard the shape of the arc; a pertinent numerical table
is, however, presented herein. We shall also evolve formulae
for computing the relaxation modulus with respect to the
string elssticity, and give relations enabling the establishe
ment of other creep data.
1. Measuring equipment, The measuring equipment is schemm-
tically shown in Mg. 1. Strips /a/ of plastics or fibtre~glase
reinforced plastics / strips of fibre glass plastics now un~
der teat are 2 x 40 x 360 ma and 2 x 70 x 360 mm/ are fitted
with steel edges /b/ braced on adjustable jews /c/ with steel
string /4/ /0.2 m dia., 200 mm long/ stretched between them.
Electromagnetic pickup picks up the natural vibrations of the
string; the tension of the string is best measured by electri-
eally comparing its natural frequencies with those of a com—
parative string by means of Lissajous patterns displayed on
oscilloscope /f/. The measyrement can alsc be effected by
application of additional weight aG to bring the temsion of
the string to a constant frequency.

2e mamm effects, 2,1 The measurement is conducted
at ambient temperature in exponentially ‘increasing time in-
tervals, starting with 1 to 5 min up to several years /in
tests intended for the purposes of building practice/. Next

to standard relaxation tests made at various constant walues
of the strip arc height, stress variations at time changes of
the arc deformstion are also studied in order to verify the
extent of the validity of the primciple of superposition beth
at step~wise incresse in the strip arc height /Pig.3a/, and
at step~wise decremse in hbight of the arc whose shape can
also assume opposite curvature /Fig.3c/.On free specimens
removed from the backing we can also follow the reversibility
of creep deformation, and on those with fixed ends, the rever—
sibility /increase/ of stresa.

£22 The effect of the above factors may be studied on fi-
bre~glass reinforced plastics with different kind of reinfor-
cement /fabric with warp in the directiaon of or at 45° to the
strip axis, glass matt/. The specimens can readily be placod
in contitioning bowes at various temperatures /20, 50, 75° G/.
water, weatherometer, etc.

de_Creep strepgth apd 1ife. Strength tests of strips after

a certain period of relaxstion enable us to follow the long-
~time decremse in strength due to the action of load. It is
indicated that the effect of the enviromnment on the mechanji-
cal properties of the material /life time/, i.e. the decrease
in strength, modulus of elasticity, etc. must be studied on
Ioaded rather than omn unloaded specimens if the results are
to be applicable to actual structures; this requirement is
easily satisfied in this test.

4. Simplified test. The measured stripe can be braced more
simply yet in thé shape of an arc by setting them between
prajections of a rigid backing; in this case the stripe need
not be provided with metal edges /Fig.4/. After a predetermi-
ned period of time, the strips are removed and measurements
made of the height of the strip arc /or the distance between
the emds/ and of the modulus of elasticity of the strip which
is again most conveniently effected by measuring the force ne-
cessary for pressing the strip ends together, and the corres-
ponding cheange of the arc height /the rigidity of the dynamo-—
meter used fer the purpose may be very small/. Such a test
would be very simple to carry out at the manufacturers’ plants
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and should be specified as routine test and standardized. A
shortcoming ef the test lies in that a tempersry slacking of
the strip to a certain extent affects /raises/ the stress in
subsequent stress relaxatioh. Neither it is possible to measu-
re during it the stresas relaxation for short time periods.
Je Shape of the curwed strip. Bending moments and hence also
stresses in the bent strip vary along the strip length and
are proportiocnal to distance Yy from the chord, i.e. to de-
flection. The suggested method of stress relaxation testing
is feasible thanks to the .fgtct that stress relaxation and
creep of plastics aa well as eﬁhre-glau plastics appear li-
near in stress, so that the stresses change in equal proport-
ion at all points of the strip and the shape of the strip arc
does not change if the distance between the ends is constant.
Appearance of a change in the arc height would prove the exi~
stence of a nonlinear component of the creep; then the test
would afford some mean value of the relaxation modulus for
a given domain of stressea, and the nonlinear component could
be approximately ascertained from measurements made at va-
rious heights of the arc.

Let us aseume that the strip deforms omly by flexure whi~
le Ravier s hypothesis of preserving plane sections applies,
and moreover, that flexural rigidity £7 1is the same and the

creep homogeneous along the whole length of the strip. Although

we need not know the shape of the strip for determination of
" the values of stress, we must ascertain the curvature 1/9

if we wish to determine the relaxation modulus. Rather than
to measure it directly, it is easier to compute it either
from height f at the arc top, or from distance ¢ between
the strip ends.

The strip arc curvature 1/’ is proportional to the bend-
ing moment and hence also to distance y from the chord:; To
expreas the curvature we must meke use of the theory of large
‘eflections; the curve given by this condition is termed
‘zlastica” /for small arc heights when I/f a? 'y/dx* , the
:rve is approximately sinusoidal/. It is obviously the same

‘7e as that arising when a bar buckles([5} pp.76-81) first
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solved by Legendre; our solution can be carried out in an a-
nalogous way, except that our problem is opposite - to find
the curvature from a given deflection / aas against that of
computing the deflection/. We shall, therefore, indicate on-
1y the principal points of the solutiaon.

Yor the notation of Fig. 2, the strip curvature is - d?/ds
and hence it holds that - 44*/ds = Cy . Introducing cur-
vature at the arc top 4/ and arc height £ at the top,
we obtain relation - d'ﬂ/d; y/f - Differentiating it with
respect to s [dy/ds = s /, we get for the sought-fer
curve the following differential equation of the second order

a r& som R
4 ds* f?
with the initial conditions d¥W/ds= 0 and *= & ror strip
endg s =0 . Multiplying eq. /1/ by 2 4% and integrating
with respect to & we obtain after rearrangement the first

integral afdt‘:;e equation as follows

72/ A - - ‘/}‘: cor A~ m:ﬂ /—- v

where /tf, is the angle between the strip and the chord at
the strip end. In thie equation we can separate the variables
and express the solution of A by quadrature. If we wish to
compute deflections y , we solve ~ instead of eq. /2/ v an
equation that will results from introduction of ds= dy /esas
and similarly, when computing ordinates « , an eqdation re~
sulting from introduction of ds = dvx/cn?¥’ . Integration of
each of these equations and rearrangement of the integrals
with the aid of substitution sim 1’/1 =9 mwl/z. yields the
following reletmna

/=H #
= y . Sy P = 2 -2
Y A 1fr 1,“.1&;(4? f f?“tﬂ. /

{ = /IV—_ /\/1 m"—l-; Mf df - ¢,
where the first :mtegral is a complete elliptic intergal of
the first kind, and the second, a complete elliptic integral
of the second kind, Their values are tabulated [2] -
__|Since) Explicit computation of 4/9 cannot be carried out,
*transcendental equations had to be solved for given f and ¢ .
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We have, therefare, prepared mmerical Table 1 /computed by
L.Dejmek and I.Folke, members of the Institute/ from which
one can read to the measured arc heightfor the distance bet-
ween the ends f , curvature 17, at the strip top. Se far
a8 the sccuracy of the measurement is concerned, the curvatu-
re may be determined from f for a range of about 0 €f/l, %033
or from [ for ahout 0 {/f, $ 0.75 ; at higher values, f
and { changs too slowly relative to curvature.

At an-arbitrary point of the arc, the curvature can be de~
ternined by measuring ite ordinate ¥ § evidently it equals
yffe.

Se Determiping the modylus of elasticity. With changing dist-
ance [/ betweemn the ends of the strip, bending moments and
hence also the curvature of the strip change proportionally
to the distance from the chord; consequently the new shape
of the arc, as /, changes to ¢, is again curve “"elastica®
to which applies Table 1. On determining by measurement for-
ces X, eand X, acting on the ends of the strip /after de-
Queting the weight of the jaws, edges, etc., if meessary/
amd arc heights f, and f, , and reading for the latter
values of f,or f, and /, o /, the corresponding C/p, ama "'/S’x
from Table I, we obtein the change of bending moment at the
strip top as I, f- X, £ « The modulus of elasticity
corresponding to this change of distance between the ends is
/4/ £ = "(xtzz- xlflz

J{’o/fz. - ’)/fc}
where J is the moment of inertia of the strip section

/ I= 'i ;43 / . '

Ie_Determining the relaxation modulus and corrections. 21
The braced strip forms a one-time statically indeterminate
system /two-hinged arch/ with statically indeterminate force
P(t) acting on the string dependent on time # . Let us
assume that the specimen is permanently freely suspended on
one jew /Fig.l/. Porce A(t) ecting on one of the ends of the
plastic strip proper is given by the condition of equilibrium
as X(f) = P(t) -4 -where G is the weight of the jaws
and edges fitted to the strip plus 1/2 of the strip weight
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on the awerage / and 1/2 of the atring weight/.

Assuming the string to be absolutely rigid compared to the
strip arc, the relaxation modulus £, (¥ defined as ratio
61t) [<lo) at constant deformation £(4/ is under Iinear
creep /test under constant deformation/ given as
Y Epq (Y _ XY

£(0] X(0)
where £ <=0 is the initial time of bending the strip and
E - the modulus of elasticity , time variable / £,,;(0/=
E(o) / because of aging /degradation/ of the material

 /or possibly because of temperature, etc/.

If we wish to determine £,,;(¢/ more accurately, we
must consider the elasticity of the string which shortens
with time because of stress release; this in turn raises the
strip stress to a value higher than that corresponding to.
true relaxation . For the purposes of computation we must
ascertain nexibilityfﬁ of the strip arc for a small de-
formation under load induced by force X acting between the
strip ends at a given arc height £ , i.e. a change of dist-
ance between the strip ends corresponding to force V=4 .
For two adjacent values of ¢//, and ¢/(,*Alt/t)in Table 1
we determine the respective change of curvature af?, /f) to
which corresponde a change of bending moment AM-EJA(/,@)and
to that a change of force aX=aM/f ., Thus the following
deformation corresponds to force XN= 1.

Jor . all/e) fer

P a(l,/fp) €3
For small arc height F for which the shape of the arc c;?,
approximately be taken as parabola, we would obtain»f’-‘- EE5.

To change d4X of force acking at the end of the atrip at
time ¢-T during time Jv /dx= 2T r oo
responds string elongation 4X (: accompanied by a change
of force acting at the end of the strip — AX A / o’" /condit~
ion of compatibility/, where ¢ = / /£, £ is the string
compliance. Assuming linearity, this force relaxes to time
t  toavalue of ~dX % -":'-'El—("-} « On the assumption that
the principle of superpositiom applies to such small changes
and neglecting time changes of the modulus of elasticity, we
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arrive at equation

| Eml(f/
s K@) = = X(o) +

t
/‘ Ent(T) dX(t-T) s
E ar

‘GQ‘I R,

This is Volterra’s integral equation from which £p;(¢)/F can
be computed for given X(t) = A(t)- § « Eqe /7/ can be
solved by succeasive approximations, etc. [3] + The value of
4; / J}. can be neglected in the majority of cases /it is
usually less than 1/100 for the above mentioned dimensions of
fibre glass plasticas etripsﬁ by doing so we arrive at eq./5/.
Even in the case that a more flexible dynsmometric element
than a string is used, it is fully sufficient to introduce
in integral /7/ £,,(f)  instesa of £, (T/which gives
Enlt) _ _X(Y 4
/8/ T Xoia, /AT 7" [Plo)- #(¢)]

The examct values of £, (f/ are larger than those accordt
ing to /8/. On the other hand one can deduce from the conve—
xity of function £,,(¢) that the exact values are smaller
than the expression resulting as £ [E+ gnl(f}] is substitu~
ted for £,,(T/ in /7/, i.e.

/8a/ EqlT) _ Xlt)-2¢/2

E X(0) + Ay [2
This alsc restricts the error to very narrow values.
Is3 If the measurement is carried out by the application of
additional weight AG /Fig.l/ to bring the string tension to
a constant frequency, we substitute in the above equations
far A(t) the string tension reduced by 77%“/7;: .
Js4 If the strips are mounted on a rigid backing /Fig.4/,
Era(t) can be found from the change of curvasture of the
arc from //y to  7/p’ intime £ after the strip has
been removed from the backing. Prior to the strip removal the
bending moment equals to E{f}]/yf_l/f/" in time £ =0 , to
E(o/J/f - Consequently
19/ Lalt) ., Llyf

£ L/p

modulus £(Z) must also be ascertained on the relieved speci-
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men from eqe /4/. It is frequently quite sufficient to con-
sider £(t) = £(0) . :

8. Computing other creep data. Assuming the validity of the
principle of superposition which assumption is well accept-
able within certain limits (7] , [8] ,/see also paragraph 10/
we can compute from curve £,,;(f) the behaviour at any ar-
bitrary stress or deformation. Creep £(¢/ under constant
stress 6(¢,) can be described by creep modulus £ (¢/
defined as ratio G(4,)/£(t/ . It is computed in the follow-
ing way: To a amall :{m{mge of stress 4G = diT{,‘:.'ydr in
time ¢- T corresponds deformation 467/¢-T/£;'(t/ in time
t . Superposition of the effects of all changes of stress
A6  Aduring stress relaxation and introduction of £=7 ,
G(t) = Ep(t) 1leads to relation :

- t dE (4T 50 £ LE
por 1 = 10 [t 2 (52

which represents Volterra s integral equation for £ ’[ f/
The equation may be solved either by the methoed of succes—
sive approximations (3] [ £c-(€) =£.,,/T) being best for
the first approximatioq} or by using Laplace ‘s transformat—
ien [4] or possibly Galerkin’s method [3] or best of all,

by numerical quadrature of the integral leading to recurrent
algebraic equations.

For a limited time interval with limits of a not too dif-
ferent order, say from 0.17T, to 10T s creep of plastics
and fibre glass plastics may be represented by simple Boltz-
menn ‘s /standard/ model [7], [8] , consisting of a spring(Fig.)
end a Voigt's unit /spring and dashpot coupled in paralle],/
coupled in series. For the stress relasxation curve within
the limited imterval [7] , [8] it then follows that

ns Erq(t) = Eu + (F-£,) e 5= T

where £, = £,,; () characterizes the finite /asymptotic/ va-
Iue of stress corresponding to this interval, and 7T, the
rate of stress relaxation /retardation time/ For a: required
time interval /e.g. from 1 to 100 days, or from 10 days to

3 years, or from 1 hour to 4 aays, etc./ £.e and [
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can be determined by collocation of this curve with the mea~-
sured data. Within the respective interval the curwe of creep
can be written out directly with the aid of &, and 7, as

follows: €-¢,
~4 = 1 /1 _ 1)z
/12a/ £,°( f/ = F £, E / € 2
and the differential equation of creep at generally varisble
. 2 f ;df £ - t; + —i
strese and deformation as T, jz + = F & >

etes [7], [8] . For & longer time interval we could analogi-
cally consider a model consisting of more elements [7], [8] .
9. Note. Stress relaxation and creep in bending enable us

to make a good enough estimate of the creep in tension and
compression., Since the creep is linear, the two values are
almost identical for unreinforced plastics; the same is true,
except for a secondary disturbing effect of transverse fibres,
of fibre-glass plastics so long as the glass reinfarcement

is distributed uniformly across the strip thickmess. An appro-
ximate computation based on Boltzmann’s model, suitable for
non-uniform distribution is given in [7], [8].

10, Note. In the foregoing paragraphs we have assumed the
principle of superposition to be walid for both stress rela-
xation and creep under constant stress. When the stress is
suddenly released, the principle of superposition no longer
applies in the case of glass-fibre plastics [7], [8] ; the
deformation and stresses are only partially reversible, It
seems that this phenomenon can most simply be represented (ng.S)
by a rheologic model (7] , [8], in which an additional

Voigt ‘s unit is coupled in parallel with the first Voigt s
unit through a ratchet pawl opened for imcreasing and closed
for decreasing creep 3eformatios. When creep and stress re-
laxation under constant stress are involved, the ratchet

pawl is continuously opened and the principle of superposit-
ion applies.
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iable 1 / Elastice / :
LI fIG UL, A Ly £, Y, #°
0 0 1,000 ©
0,198 0,020 3,60°
0,396  0,04C 7,20
0,595 0,060 10,85 | 3,801 0,322 ©,680 67,18
0,796 0,080 14,50 | 4,671 0,336 0,640 71,60
1,008 0,160 0,975 18,20 | 4,330 ©C,349 0,600 75,79
1,207 (ylav 20,94 | 4,585 0,360 0,560 79,92
1,418 0,140 25,75 | 4,845 0,369 0,520 83,93
1,634 0,160 29,63 | 5,100 0,377 0,480 87,80
1,85 0,180 33,60 | 5,355 0,384 0,440 91,65
2,086 0,200 0,891 37,69 | 5,608 ©,390 0,400 95,37
2,325 0,220 41,91 | 5,860 0,395 0,360 98,99
2,575 0,240 46,30 | 6,116 0,398 0,320 102,57
2,839 0,260 50,89 | 6,382 0,401 0,280 106,20
3,121 0,280 55,48 | 6,649 0,402 0,240 109,75
3,427 0,300 0,734 60,94 | 6,921 0,403 U,200 113,25
3,765 0,320 66,58 | 7,202 0,403 0,160 116,75
4,148 0,340 72,85 | 7,498 0,395 0,120 120,32
4,602 0,360 80,11 { 8,445 0,391 0,000 130,72

809

[

~Fig.d



810

Ungureanu Ion, Ing., C.5c.

Building Research Institute (INCERC), Buchsrest,

Rumanias

Installetion for the Testing of Shell Models

Sunmary

In this psper, & specisl equipment is presented, for
testing shell structures, consisting of three scales, three
nets transmitting the loed to the model and a metallic frame-
work. The maximum aveilable force of this equipment is 30 000
kg. The model surface can reach a maximum of 3 x 9 = 27 m2 N
meaning that its maximum load is 1 000 kg/mz.

The surface of the model csn be totally or partially
loaded. The loads can be applied upwards or downwards on
every direction so as to simulate the wind action.

Although a load could be effected in & few minutes, it
can be maintained e@s long es it is necessary.

1. Introduction

. One of the main problems arising from testing the big

models of shells is the losding carrying out.

The device or equipment responsible for the 1load when
testing a model is bound to fulfill the following conditians:

8) to let the largest possible free portion of the mo-
del surface in order to permit observations and measurement
during the test ;

b) to allow quick and easy loading and unloading ;3

¢) to allow for a great number of load hypotheses (sym-
metric load, non-symmetric load, partial load etc.) ;

d) to permit the largest possible range of shell shape
to be used with regard to the load application, as well as



