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Abstract. - A review of some recent results obtained at Northwestern
University in probabilistic analysis of creep and shrinkage effects in
structures is presented. After summarizing results of extensive statis-
tical studies of test data existing in the literature, a Bayesian predic-
tion method is outlined. The prior probability distribution based on test
data from the literature is updated using limited test data for a given
concrete to yield a posterior probability distribution to be used in
desiqn with the given concrete. Subsequently, the effects of random
fluctuations of environmental humidity or temperature upon shrinkage and
creep are analyzed. The spectral method is generalized for this purpose
to linear aging systems. Finally, other sources of randomness, including

-randomness of creep increments due to the creep mechanism, are discussed.
Introduction
Creep and shrinkage appears to be the most uncertain phenomenon in
the design of concrete structures. The statistical variability of creep’
and shrinkage is far greater than that of concrete strength, yet statis-

tical methods have been so far well developed only for the latter. Part of

the reasén is that the problem of creep and shrinkage is more difficult,

and paft of the reason is that the consequences of a substantial error in
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creep and shrinkage prediction are generally less disastrous than they are
for errors in strength. Creep buckling excepted, they do not cause
structural collapse but merely put the structure out of service, as a
result of excessive cracking (which causes, e.g., reinforcement corrosion)
or excessive deflections. Nevertheless, for reasons of economy, it is
imperative to improve the prediction of the creep and shrinkage effects in
structures and, in particular, develop a method of design for extreme
rather than average creep predictions.

Practical probabilistic analysis of concrete creep and shrinkage has
recently been rendered meaningful by extraction of an-extensive body
of statistical information from the literature; see Ref. 1 and 2, in which
test data for 80 different concretes from various laboratories throughout
the world, consisting of over 800 experimental curves and over 10,000 data
points, have been_analyzed statistically and organized in a computerized
data bank [3]. It has been shown, that if no measurements for a given
concrete are made, the uncertainty of its creep and shrinkage prediction
on thg basis qf the chosen concréte mix p;rameters and the chosen design
strength is enormous. For all the data considered, it was determined [2]
that, on the whole, the prediction errors that are exceeded with a 10%
probability (90% confidence limits) are, for the best known practical pre-
diction models,as follows:

BP Model [1]: vy, = 31%

ACI - 1971 Model [4, 5]: Woo = 63%

CEB-FIP - 1978 Model [6]: wg, 76%

0
The first of these models.is to a greater extent than the others based on

physical considerations and is applicable over a much wider range of con-
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ditions. However, it is reiatively complicated. Tne second model is much
simpler, and still represents probably the optimum prediction method at
its degree of simplicity. The question of simplicity should, however, be
viewed in a proper perspective. The mentality of a stuctural designer is
opposite to that of a materials engineer. He does not mind to spend weeks
or months on stress analysis of structures, but considers it objection-
able if the determination of material properties that enter his analysis
takes more than 10 minutes. lYet, the material properties are, in case of
creep and shrinkage, a much greater source of error than any simplifica-
tions of analysis. The attitude of a materials engineer, who would prefer
spending weeks on determining his material properties and then 10 minutes
on structural analysis would probably lead to a smaller error. In any
event, structural engineers ought to devote, in the case of creep and
shrinkage analysis, at least the same time to the determination of creep
and shrinkage properties as they do to stress calculations [2]-

From the physical point of view, one can distinguish the following
four causes of randomness in concrete creep and shrinkage:

1. Randomness due to uncontrollable variations in material properties.

2. Randomness due to variations in the environment (weather).

3. Randomness of the creep or shrinkage increments due to the statis-

tical nature of the physical mechanism itself [8].

4. Measurement error.

The first of these causes of uncertainty is by far the worst. It may
be, howe;er, largelyeliminated by carrying out a few limited measurements
and applying £he Bayesian analysis which follows. Among the remaining
causes of uncertainty, the second one is worst. It will be aiso addressed

here. If the environment is perfectly controlled in the laboratory, or
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if a mass concrete with hardly any communication with the -environment is
considered, the second cause of uncertainty is also largely eliminated.
Then the randomness of the creep mechanism per se remains as the remaining
principal cause of uncertainty [8, 9]. As for the measurement error, it
represents an uncertainty that is not "felt" by the structure, but only
by the observer. Therefore, this error should not be included in the
creep and shrinkage prediction models for design, and must be eliminated
from the measured data.

The purpose of the present lecture is to summarize and review several
recent studies carried out at Northwestern University in collaboration with
J. C. Chern, T. S. Wang, T. Tsubaki, L. Panula, E. Cinlar, E. Osman, and

H. Madsen. No claims for an exhaustive coverage of the subject are made.

Statigtics of Existing Data

Before undertaking statistical analysis, test data reported in the
literature have to be first processed, for two reasons: (1) The data con-
tain random fluctuations due to measurement error, and (2) The reading
times have not been selected in a manner which would assure an unbiased
weighting of successive time intervals. To eliminate these effects, it is
most cenvenient and perhaps sufficient to smooth reported data points by
hand, and then to take test data points for statistical analysis as the
ordinates of the hand-smoothed curves at intervals spaced regularly
in.the logarithm of creep dur&tion or shrinkage duration, normally two
points per decade in the logarithmic scale.

The aforementioned approach to the processing of raw data from the
literature.has been followed in Refs. 1, 2, and 3. 1In a recent study at
Northwestern University, S. Zebich [3] developed a fully computerized data

bank involving essentially all the test data analyzed in Refs. 1 and 2.
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In this data bank, the data points are organizedvin subscripted arrays,
in which the first subscript refers to the number of the data point on the
creep curve, the second subscript to the number of the creep curve within
a certain data set, and the third subscript to the number of the data set.
Another integer array defines the number of all data points on each creep
curve, and the number of all curves in a given data set, and finally the
number of all data sets in the data bank. Two data banks were generated;
one for the points at properly spaced time intervals from the hand-smoothed
data curves, and one for the unprocessed original data as reported. This
data bank tremendously reduces the labor in extracting various statistics
from the data and carrying out statistical analysis.

The analysis in Ref. 1 and 2 established the statistics (principally,
the coefficient of variation) of the collection of deviations of hand-
smoothed data from the prediction formulas for the compliance function and
for the shrinkage strain. Statistically a more fundamental approach would
be to analyze the variability of the parameters of the prediction formulas
and use it to determine the variation of characteristics such as the co-
efficient of variation with the independent vafiables such as load dura-
tion or age at locading. Such an approacﬁ is, however, rather difficihit
because of the nonlinearity of the prediction formulas for the compliance
function and the shrinkage strain. To be able to carry out an anlysis of
this type, one needs to transform the prediction formulas into a linear
form-to which the standard linear regression analysis could bé applied.
This’appaaxs to be possible, and has been done by Zebich [3]. We summarize
brie;ly éome of the results.

We try to transform the prediction formula for creep on shrinkage

to the linear form
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y=a+bx+e (1)
in which x and y are the transformed independent and dependent variables,
b is the slope, a is the y-intercept, and e is the error. The transforma-
tion is such that for a perfect model b = i and a = 0.

Consider now basic creep, i.e., the creep at constant water content.
The double power law for basic creep [l, lO] may be transformed to the

following form:

(= creep coefficient)

]

y=E_J(t,t") -1
° (2)

ma) (£ -t -

b
1

[1+ 0, (2

in which J(t,t') = creep compliance (also called the creep function),
representing the strain at age t caused in concrete by a constant uniaxial
unit stress acting since age t'; EO' ¢1, n, m, and o = material parameters
defined in Ref. 10. The most important test data on basic creep, including
those of L'Hermite et al., Hanson and Harboe (Shasta Dam, Ross Dam, and
Canyon Ferry Dam), Browne (Wylfa vessel), Pirtz, et al. (Dworshak Dam) , and
Rostasy et al., have been subjected to regression analysis according to

Egs. 1-2. The resulting regression line (Eq. 1), as well as the 90% con-
fidence limit for the mean predictionand for the individual data points

are shown in Fig. la and the corresponding statistics are listed in Table 1,
in which ;, ; is the centroid. of data points, sx, sy are the standard
deviations of the data points, sb is the standard deviation of glope b,

s is the standard deviation of the data points from the regression line,
and r is the correlation coeffi€iant.

There are other ways to transform the double power law to a linear

form. One is
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J(t,t') E0 -1
y = log — B x =n log (t - t") (3)
t +
¢1 ( a)
and the regression analysis of the same data based on this equation is
shown in Fig. 1lb. Thé statistics are given in Table 1.
The ACI Model [4, 5, 10] can be transformed to a linear form as
follows
y = E(t") J(t,t') -1, x = cu[’l + 1ot - t'>"°'6]'1 (4)

in which E(t') is the conventional elastic modulus at age t', and Cu is
a material parameter calculated as a product of six other material para-—
meters [4, 30]. Regression analysis of the same test data according to this
eguation is shown in Fig. lc, and the statistics are again summarized in
Table 1.

The CEB Model [6, 10] can be transformed to a linear form (Eg. 1) as
follows

E
- oo 28 . - N - .
YOS BT (M - gy T BalE)e x = egBg et oelB () - B.(£D)] (5)

in which E28’ Ec, Ba, ¢d' Bd' ¢f, and Bf are material parameters and
functions defined in Ref. 6. The results of the regression analysis on
the same test data as before are shown for this model in Fig. 1d, and the
corresponding statistics are listed in Table 1.

The BP model for shrinkage can be brought to a linear form in various

ways, and one is
. r 2
€ T
o sh S
y = log (-———) -1, x = log = (t =t = to) (6)
€ A
T “sh t

Similarly, for the ACI Model, the linearization may be achieved as follows

0.0078
sh

y = log -1 x = log 55 - log t (7}
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Fig. 1 - Zebich and ﬁaiant's {1981) Comparison of Various Prediction Models

for Basic Creep with Existing Test Data (see Text); a, b - BP Model
(E¢...2and 3), ¢ - ACI Model, 4 ~ CEB Model.



and for the CEB Model as follows

€80

€
- _sh - -
y = log ( ) , X = log [Bs(t) Bs(to)] (8)

In these eguations, Esh is the shrinkage strain, % is the duration of dry-

ing, to is the age at the start of drying, Tt is the shrinkage-square half

sh

€ , and

time, proportional to effective thickness square, and €+ Tsh, s
o

Bs are material parameters and functions defined in Refs. 1, 2, 4, and

6. The most important shrinkage data from the literature, involving those aam
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on Hansen and Mattock, L'‘Hermite eﬁ al., Kesler et al., Troxel et al., and e
Keeton, have been used in regression analysis. The results for Egs. 6, 7,
and 8 are shown in Fig. 2a, b, ¢, respectively. The corresponding statis-
tics are listed in Table 1.

A similar regression analysis can be carried out for creep during
drying. In this case the iinear regression plots are, however, less rela-

vant, because creep at drying is a sum of a basic creep term and a drying

creep term, both of which cannot be simultaneously varied in the regression

plot. One of these terms must be fixed, and linear regression may then be

Tam w100 jem | Lem zam

carried out for the other term. For this reason, linear regression analy- - B S ]
sis of creep at drying for the BP Model would not be very' informative.

The regression plots in Figs. 1 and 2 visually demonstrate the degree

Y waLves

of agreement of the three models considered with the test data. Quanti-

tatively, the degree of agreement is reflected best by the correlation co-

efficient r in Table 1; for perfect correlation r = 1, and the more r ]

differs from 1, the poorer is the representation of test data. From these *mL
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comparisonstit appears, similarly to the conclusions of Ref. 1 and 2, that

sant's (1921) Comparison of Various Prediction Models

the BP Model agrees with test data clearly best.
a - BP Model

Fig. 2 - Zebich and Ba )
i i i ’ for Shrinkage with Existing Test Data (see Text);
The linear regression analyses in transformed variables must, however, . 02 = et model (Bq. 7). © - CEB Hodel (Eq. 8.

be regarded with reservation since the transformation of variables
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generally introduces bias, due to change of weighting of various time in-
tervals as well as possible superimposition of a deterministic dependence
(a blatant example of such bias was demonstrated for Ross' hyperbola in
Ref. 7). Therefore, in spite of certain advantages mentioned before, the
comparisons based on the regréssion plots in Figs. 1 and 2 should be con-
sidered secondary to the comparisons based directly on the deviations of

the compliance values or the shrinkage values [1, 2].

Table 1 -~ Linear Regression Statistics of Test Data

isti x s b s r
Statistic y S, v a b sij

a)Basic Creep |
B

Eq. 2, Fig. 1lal0.495 0.464 0.351 0.306 0.019 -0.999 0.005 0.304 0.820
Eg. 3, Fig. 1bl2.559 2.739 1.713 1.916 0.180 1.062 0.003 1.92 0.933

ACI
Eq. 4, Fig. 1c[0.630 0.520 0.335 0.521 -0.109 0.822 0.004 0.522 0.521
CEB
Eq. 5, Fig. 1d}1.703 -1.004 0.862 0.173 -2.107 -0.458 0.005 0.173 0.265

b) Shrinkage
BP

Eq. 7, Fig. 2afl1.423 1.484 2.855 1.912 0.240 0.899 0.004 1.915 0.870
ACI
Eq. 8, Fig. 2c L0.495 0.166 1.973 0.185 0.411 0.044 0.005 0.185 0.479
CEB
Eq. 9, Fig.. 2c|0.154 © -0.204 0.866 0.459 -0.050 0.116 0.012 0.460 0.146

_ Bayesian Statistical Prediction

The uricertainty due to material parameters can be greatly reduced if
at least some short-time data are measured for a given concrete at hand
[2]. These data may be used to update the predictions of a model based on

all the existing test data in the literature (prior information). A model
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of this type has been developed by Chern and Bazant [lﬂ at Northwestern
University, and will be now outlined‘briefly.

Many creep prediction formulas, including the double power law, may be
expressed in the linearized form

' =
Jit,tt) ql x + 9, te (9)

in which x may be called the reduced time, ql, a, are material parameters,
and e is the error. 1In particular, for the ‘double power law one may set
q = 0/, q, = WEG  x= (TN 4+a) (- e)? (10
in which EO’ ¢l' m, n, and a are the material parameters in the double
power law. Parameters m, n and a must be considered as fixed while para-
meters Eo and ¢1 are random and may be expressed from the random basic
material parameters 1 and 4,

Assume that the probability density distribution f'(ql, qz) of the
possible parameter values is known from prior experimental information on
various concretes. This distrigution is called prior.

Now assume that, for a given concrete, certain compliance values Jj
at some reduced times xj (3 =1, 2,...N) have been measured. We wish to
exploit this information to update the probability' density distribution

f'(ql, qz) to obtain an improved, posterior probability density distribu-

tion f“ql, qz). According to Bayes' theorem f12-17]:
" =k P(J,|q, ' 11
£'(ay, 9 = k PWlap) £(@y. ay) an
in which | denotes conditional probability, i.e., P(leqi) is the proba-
bility of observing values Jj under the condition that the parameter values

are q.; and k is a normalizing constant which assures that the integral of
i

f“(ql, q2) over the entire two dimensional infinite domain be unity, i.e.,
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1 -
k = J J P(leqi) £'(a;, q,) dq,dq, (12)
’ - =-co
The conditional probability P(Jj]qi) represents what is usually called the
- likelihood function.
Assuming, for the sake of simplicity, that the observed values Jl""

Jn are statistically independent of each other, we may set

N
P(leqi) =1

R £ (leql, q,) (13)

in which fj(leqi) is the probability density distribution of the random
variable Jj given that the observed parameter values are ql and qz. For
one given concrete, parameters 9,/ 9, are fixed, and so the function
.fj (jjlql' qz)‘describes the scatter of Jj in one and the same concrete.

Although objections may be raised due to the physical impossibility
of very large negative errors of Jj' we may assume, for the sake of
siﬁElicity, that the compliance values Jj for certain parameters values
. a, and a certain fixed reduced time xj is a normal random variable
with the mean (ql xj + q2) and standard deviation o, i.e.,

./J. - ql X, - q2\21

exp - |21 2 (14)

/3T \ o / J

£ (leql. a,) =

The standard deviation ¢ characterized the given concrete for which measure-
ments Jj-were taken. If these are ingdufficient to determine ¢ realiably,
one may use for o a typical value for any similar concrete.

Assuming o to be iﬁdebendent of x, we thus obtain the result

.N 1 2 |
z : A 08 S RN -

. - . _1 j 1 2 ' - 5N

£ (ql, qz) a, exp 5/ < p ) f (ql,qz), ag =k or2m (15)
J=1
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Thus, the posterior (updated) probability that the compliance J(x) at re-

duced time x will be less than some given value J may be determined as

p [o(x) < J] = L,, J_w oly(a,.a)] £"(qa;,a,) a q,d4q, (16)
in which
R \'4 —22/202
olyta.apl=v [3e0 < la;,q,] = e J e dz (17
V2T -

where ¢ represents the cummulative normal distribution function, and
Y(ql'qz) = (3 -q x-q,) /c.

althcugh again there exists objections in view of possible very
large negative errors in J, we adopt for the prior distribution f"(ql,qz)
a normal distribution. Properly, a bivariate distribution with two
variables q1 and q2 should be considered. Unfortunately, however, no
statistical data are available for the scatter of parameters q1 and qz.

The only data which are plentiful are those on the variability of J(x),

from which one can determine the normal distribution
[ _ 2
1 J - J
£ o] = —— expf-z (%}#) (28)
oj(x)/iﬁ P J

in which J is the mean of J, 05 is the corresponding standard deviation.

Now, if we substitute J(x) q; x + aQ, this distribution becomes a func-

tion of ql and qz, and may be approximately treated as the desired prior
distribution of the values of parameters aQ, and q,:
r s J(X) ~ g, X - g 2
' (q q)—#exp l( : 2>'
, = — _
1"72 0&/27( L 2 OJ(X)

(19)

We have replaced here the standard deviation oJ at any small x by the

standard variation 0& at the centroid of all data, i.e., 0& = mJ 30 where
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Jo is the mean of all observed J-values. The standard deviation at x may

be approximated as cJ(x) =W J(x) where wg is the coefficient of varia-

tion of the prior data, for which extensive data exist (Table 3 of Ref. 1).
What remains is to integrate Eq. 16. This has to be done numerically,
and caution is required. The shape of the integrant invariables 9, and qa,
is so complicated that direct application of numerical integration formulas
could not succeed. It is necessary to substitute new variables which
would make numerical integration feasible. The posterior distribution
has the general form
f* (g..,9,)) = a. exp [-(c q'2 +c_ g 2 +¢c,9, 9, +c, g, +
1772 0 17 2 2 3 71 %2 4 71
(20)
+ L]
c5 9, + el £ (), q)

in which ¢, c_... ¢, are certain constants. For the purpose of numerical

1 2’ 6

integration one needs to introduce a linear substitution

= + = :

u al ql + a2 q2 q3, v a, ql + ag q2 + ag (21)
with some coefficients ajr- Byreee Bgy such that the integrand in Eq. 20
is transformed to the form

2 2
£ (q,, q,) dg, dq, =c. e " VY auav (22)
) 1 2 0 -

Such a transformation is derived in Ref. 1l. 1In Eq. 22, numerical integra-
tion can be easily carried out using the Hermite-Gaussian formula.
In Fig. 3 we can see one of the examples calculated in detail in

Ref. 11. This example concerns the concrete for which creep was measured

by McDonald in Vicksburg (1975) [18]. First lone should note the
new prédiction and the 90% probability band based on the prior information
for all concretes [1]. We assume that only the first four data points of

McDonald are known to us, and we try to use these four points to up~

date the prior statistical information and compare the resulting prediction
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Fig. 3 ~ Example of Bayesian Prediction, Assuming only the First Four
Points Measured by McDonald (1975) to be Known and the Rest

’77
McDonald 1975, sealed ,/
7’
40L t' =90 days //’
@ =108 psi .
N =4 7P ,/’posterior 90%

J(4¢°)(1/psi)(X107%)

oo data used in analysis
s = data not used
[]

of them Unknown.

102
t-t° (days)

1
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to the remaining measuremgnts of McDonald which have not been

used in the analysis. Thg updated mean prediction and 90% probability
band have been obtained by numerical integration of Eq. 16, with Eq. 17
and Eq. 22, and are also Plotted in Fig. 3. Xnow that the updated, post-
erior mean prediction and 90% pfobability band are much closer to the
remaining test data than the prior prediction, and the 90% probability
band becomes much narrqwer than that for the prior information. The
improvement in prediction, based only on several short time measurements,
is indeed drastic. A similar improvement is documented by a number of
other examples in Ref. 11.

A similar Bayesian analysis can be carried.out for the BP formula for
creep during drying as well as for shrinkage. The same analysis can be
also carried out for various other creep formulas which can be brought to
the linearized form of Eq. 9.

It should be noted that the foregoing Bayesian analysis is similar in
various Tespects to the recent work of Tang [ 5] on Bayesian prediction of

settlement of oéean oil platforms.

Spectral Analysis of the Effect of Random Environment

As discussed in the introduction, the second major source of un-
certainty is the randomness of the flﬁcﬁuations of environmental humidity,
which produces random shrinkage stresses. a similar effect is due to ran-
dom environmental temperature, and may be analyzed in the same manner. The
magnitudes of the shrinkage stresses depends on the elastic modulus and isg
greatly offset by creep. Thecelastic as well as creep properties of con-
crete strongly depend on the age of concrete. - This introduces a major
complication for.analyéis, even if £he stress-strain relation and the

relation of shrinkage straiu to pore humidity are linearized.
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Generalizing -an analysis of random thermal stresses in a nonaging
viscoelastic thick-wall cylinder by Heller [19], the problem of shrinkage
stresses caused by random environmental humidity was solved by Tsubaki and
Ba%ant [20]. In view of aging, they useddirect integration of impulse
response functions. Subsequently it was shown, however, that a more
efficient, general solution procedure is possible using the spectral
approach [21]. The spectral method must hoﬁever be generalized for the
case of aging systems, which has apparently not been done so”far. Based
on Ref. 21, we will now explain this generalization briefly.

For a non-aging structure, the statistical characteristics of the
response‘ét a given point within the structure are those of the random
time variation of the response at that point (ergodic property). However,
this concept is inapplicable to an aging structure since the statistical
characteristics of the response themselves very in time. For an aging
structure, we must imagine an ensemble of a great number of identical
structures (systems) exposed to different realizations of the. input
environment or loading) with the same sta£istica1 properties, while tl
age t0 of the structure at the start of exposure or loading is the sam
for all these structures (Fig. 4a). Suppose we calculate the response
Qalue (e.g., the stress) at a certain point x and a certain age t

(t 2 t ) for all these structures, .and then we consider the ensemble of

o]
all these response values (labeled as 97 9pr Fgrees in Fig. 4a). The
statistical characteristics of the response that the engineer needs to
know are those of this ensemble.. He needs to know their dependence on
spatial croordinates x, as well as t and ﬁo.

Calculation of the statistical characteristics at each x and t from

all the values in this ensemble would, however, be too laborious. We»nee‘
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input ¢ (8)
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Fig. 4 - The Agirng Aspect of Response of a Concrete Structure

to Random Environment.
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to introduce some continuous variable to arrange all the realizations of
the input. This can be achieved by exploiting the fact that the input is
a stationary random process. Instead of taking the statistics of all the
responses (at x and t) for all realizations of the same input on various
identical structures (systems) built at the same t (Fig. 4a), we can con-
sider one and the same structure (system) exposed to the same input at

various times (Fig. 4b), provided that the age t_ at the beginning of the

0
exposure is the same for all cases. This is equivalent to shifting the
random history of input (environment, loading) in time (Fig. 4b) relative
to the instant the system is built, and considering only one and the same
system (structure) built at a certain fixed time and expased at the same
age tO'
Denote by 0 the time measured, e.g., from the birth of Christ or the
Big Bang. Let T be the time when the system was built, i.e., the concrete
was cast. Further, let t =8 - T be thg age of concrete, 90 be the time
when the system was exposed to the random stationary input (i.e., the
structure was exposed to dryiné or lqadiné), and t0 = 60 - T be the age

of the system (of the structure) at time 60 (see Fig. 4).. According to
the foregoing argument, we seek the dependence of the response

g(x, t, t_ 1) at a fixed age t (and a fixed location x) on the random

o]
input history £(8) = f(t + 1) as 1 is varied (Fig. 4b).

First we.need to determine the response to a single periodic com-
nonent of the input, eiwt, with w being the circular frequency and i the
imaginary unit. The response may be written as eiat Y(w, x, t, to) where
Y(w, x, t, to) is called the frequency response function (which is complex
valued). Note that this~fdnction depends separately on both t_and to,

whereas for non-aging systems it depends, in general, only on t - to (and
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if a stationary state has been reached, it is independent of t - po).

Determining the dependence of Y on t and t_ regquires sclving a Voltera

0

integral equation or a system of ordinary differential equations in time
[22].

The input spectrum F(w) is defined as the Fourier transform of input

£(0):
1 - iwd _ —1wb
L E(0) = 5 [ F(we du, Flw) = f £(8)e  ""do (23

-
-0

Because of linearity of the system, the Fourier transform of the general

response g(x, t, t_, T) must then be

0
Glw, x, t, tO) = F(w) Y(w, %, t, to) (24)

The response may be expressed as the inverse Fourier transform of G(...):

_ 1 im(t+t
glx, t, o T) = T f 6w, x, t, to)e:L ( )dw (25)
Substitution Eq.‘24 and Eq. 23 then provides

. «©

g(x, t, to:T) = %;— Y(s, x, t, to)eim(t+1) f(n)e_imndn dw (26)

The second integral can be easily evaluated if f(n) is a unit impulse at
time &, i.e., if £(n) = 6(n - 7) where & denotes Dirac delta function.
Let £ =6-f be the time lag after the impulse (Fig. 4d). The response g{...)

to the impulse f(n) is then the impulse response function y(x, t, to,vE).

W wd —iwr _ ieg
= @ ’

. . . =i . i
Hence, the second integral in Eq. 26 is e 1 , and since e e

Eq. 26 reduces to
@

. L - _
y(x, t, £k 2 Y(w, x, ty t & to)e do (27)

Thus, the impulse response function is the inverse Fourier transform of

the frequency response function, same as for stationary systems. Also,
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the frequency response function is the Fourier transform of the impulse

response function;

co

Y, x, t, t) = J y(x, £ t, E) o 1wt dg (28) .

o
in which the lower limit of integration, - =, has been replaced by O be-

cause y(x, t, t_, £) = 0 if £ < O.

0

The statistical properties of a stationary random process, such as
£(8), may be completely characterized by its autocorrelation functionm,

which is defined as
T

_ 1
Re ) = i o [ £()E0 + a0 = [£coreco + ]
-T
in which E is the expectation. The spectral density of input £(6) then is

(29)

related to Rf(A) as [23-26]:

(" ~iwh 1 (° i
Sp(w) = j R_(\)e A, R =5 J S, (W) i 4y (30)

-0 o0

Let us now calculate the autocorrelation function of response at fixed age
.t (and at fixed t0 and X) as 1T is varied, i.e., as the input history is
shifted against the instant the system is built. Since the response must
be stationary vith regard to T, this function may be defined in the usual
manner,

T

1 .
Rg(l,x,t,to)-;i: g g(x,t,to,r)g(x,t,to,r+l)dr

_r (31)

EE[B(xy t:t0>'[)g(x: t,to,T"‘A)J

Now, according to the Wiener-Khintchine relation [23], the spectral den-

sity of the response is given by the Fourier transform
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o0
~iwA
Sg(w,x,t,to) = Rg(x,x,t,to)e da (32)
which has the inverse
1 . jwx
Rg(k,x,t,to) = o Sg(m,x,t,to) e dw (33)

The last equation is crucial. The Wiener-Khintchine relation, of
course, applies only to stationary processes [23-26]. The responsé is non-
staionary as a function of age 5. The device that permits the use of the
Wiener-Khintchine relation is to freeze the age and consider the depend-
ence of the response at fixed t on the shift 1 of the stationafy input
against the instant the system is -built. As a function of 71, the response
is stationary.

The principle of superposition now yields

©
o

glx,t,t,T) = [ Y(x,t,t,8) f(T+t-€)dE=J Yt b, E) E(THe-E)dE (34)

)
where £ is the time'lag shown in Fig. 4e. The lower integration limit =-e
has been replaced by 0 because the future can -have no effect on the pre-~
sent, y(x, t,tO,E) =‘0 for £ < 0. Conseguently,

g(x,t,to,r) g(x,t,to,r-kx)

(35)
= y(x,t,to,E)'f(T+t—E)dE y(x,t,to,n) £ (t+A+t-n)dn
- OO - O
and assuming these integrals to be convergent, we obtain
E[g(x,t,to,T) g(x,t,to,r+h)] =
(36)

f fE[f('r+t-€) f(t+r+t-n) ly(x, t, to,E)y(x,t, tom)didn
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Recognizing here the autocorrelation functions of the input and the

response, we get

R, Oux,E,t )= R (E-nrh) y(x,t,10,E)y(x, t, £y, n)dEdn (3'))
and o
Sg(m,x,t,to) =-/’;g(k,x,t,t0)e-imxdx
- [:-mxd)_f'f me(E—nH)y(x,t,to,E)y(x,t,to,n)dEdn -
- J.J. (38)
=fny(x,t,to,£) e—:lmEdE["’ y(x,t,to,n) e—i(-w)nd“[“ Rf(g-n+l) e-m(g-m-l‘)dk

The integration over A in the last integral is at constant £ and n. Set-
ting £ - n+ X = ¢ and dX = d, we recognize the last integral to be

00
-iw X .
J Rf(c)e ¢ dg, which equals Sf(m), according to Eg. 30. According to

-0
Eq. 28, the first integral in Eg. 38 is Y(w,x,t,to), and the second one is
Y(-w,x,t,to). So we have Sg(m,x,t,to) = Y(w,x,t,to) Y(-m,x,t,to) Sf(m).

+ iY_, then Y(-w,...) = Y, 6 - iY_, i.e.,

F i cel) =
urthermore, if Y(w, ) ‘Yl P 1 5

*
Y{~w,...) =¥ (w,...) = complex conjugate of Y(w,...). Y{(w,..) Y(-w,..) =
2

2 .
Yl + Y2 = IY(wu...)Iz. Thus, we obtain the following fundamental result

Sylwx,t,t0) = Y(w,x,t,to)l2 S¢lw) (39)
This is the same as the classical result for stationary response of non-
aging systems [23],excepﬁ for the presence of arguments t and to. In fact,
ﬁhé; éhtire derivation is similar to that used for nonaging resﬁonse [é3].

Note that Eq. 39, is algébr;ic, while the relation between
the autocorrelation functions of the input and the output (Egq. 37) is

given by a double integral. This represents the main advantage of the

spectral approach to aging systems.
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Based on Eq. 39, the mean response and the mean square response can
be determined [21] in the usual manner [23]- In particular, if we split
the input and the response into the mean and the deviation fromvthe mean,
fee., £(8) = E(8) + £(0) and g(x,£,£,7) = Flx,t,t ,T) + gix bt ,T),

then the variance of the response may be shown [21] to be given as

00 o0
-1 . U 2_~
Var[g(x,t,to,r)] o J;msg(w,x,t,to)dw.- > J;MIY(w,x,t,to)l Sf(m)dw (40)

For a single frequency input, i.e., s;(w) =21 §(w - wo) = Dirac delta
functioq. Eq. 40 reduces to Var[ﬁ(...)] = lY(mo,x,t,to)[Var[f(...)].
Using the spectral approach just outlined, random shrinkage stresses
in a concrete half-space exposed at its surface to random environmental
humidity of a given spectrum have been analyzed in Ref. 22. The age
dependence of the viscoelastic properties of concrete was taken into
account, and so was the age dependence of the dr&ing diffusivity of concrete
in the diffusion equation. By a certain transformation of variables, the
determination of pore humidity in the half space has been reduced to the
evaluation of a certain integral, which could be done numerically with a
high accuracy. Complex variable expressions for the frequency response
functions of pore humidity and stress components in the half space have
been obtained and evaluated numerically. The dependence of these functions
on the current age of concréte and on the age when drying begins has been
determined. The standard deviations of pore humidity and of stress com-
ponents in the half space have been calculated; they have been found to
exhibit oscillations about a drifting mean. Numerical results demonstrated

that, for typical diffusivity values of concrete, the solution is non-

stationary for at least 50 years, for environmental fluctuations of
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dominant period 1 year. For this period, the fluctuations are not felt

at depths over 20 cm below the surface. The solutions have been plotted
graphically [22]. 1In Fig. 5 we demonstrate some of the results from
Ref. 22. Plotted is the standard deviation of pore humidity and of the
normal stress parallel to half space surface, produced by a single fre-

quency component of environmental humidity, with a period of 1 year. The
time dependence of the standard deviations is shown for various depths
below the surface and for various ages of the half space at the instant
when exposure begins. The drying diffusivity is considered as C{(t) =

61 t-o'213 mmz/day; the creep properties are the same as those for Ross
Dam concrete [1, 10], the Poisson ratio is 0.18 (independent of t and t'),
and the shrinkage strain increments are 0.0016 times the pore humidity
increments [22].

To analyze the long time response of an aging concrete structure sub-
jected to random environment or random loading, the finite element approach
has to be adopted. 1In a direct application of the foregoing analysis to
a concrete structure characterized by its compliance function, one would
have to evaluate numerically a vast number of history integrals over
periodic components for each point of the structure and each discrete time.
One can quickly realize that this approach is not feasible, even with the

largest computers. To make a numerical solution possible, the exponential

algorithm previously developed for the creep analysis of concrete

structures under steady load has been generalized for the case of periodic
loading [27]. 1In this approach, one first replaces the Volterra history
integral defining the étress—strain relation by a rate-type stress-strain

relation modeled by Maxwell chain with age dependent viscosities and

elastic moduli. The first-order differential equations characterizing the
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Maxwell chain are written in complex variables (complex stresses and
complex strains) and their solution is obtained for time intervals for
which the properties of the system may be considered as constant within
the time interval. These solutions are obtained exactly and yield re-
current relations for the complex—valued-stressesuand'stréinS‘add?the
complex-valued partial stresses of the Maxwell chain.(internal variables).
These recurrent algebraic relations may be cast in a form of an iﬁcre-
mental elastic stress-strain relation with inelastic strains that may be
evaluated in advance. These stress~strain relafions are characterized by
complex-valued incremental elastic moduli. Based on these moduli, one
evaluates, in the usqal manner, the complex-valued stiffness matrix of the
structufe for each time increment} and the comélex—valued nodal force
increménts equivalent to the inelastic strains. Solving the system of
finite element- equations yields complex-valued increments éf nodal dis-
placements and of stresses in the finite.elements. This Algorithm has
been programmed and applied to the analysis of a thick-wall cylindrical
vessel. The results have been fﬁund to be in excéllent agreement with

a  highly accurate solution based on the evaluation of history integrals

for the case when numerical evaluation is feasible [27].

Uncertainty Analysis of Structural Effects

The spectral analysis of structural response is no doubt too
sophisticated for regular design applications. - The Bayesian approach to
creep prediction is also intended for special structures and would not be
used in reg;lar design. For the usual creep and shrinkage analysis of
creep-sensitive structures, a simpler model is needed. One such model has

been recently presented by Madsen and BaZant [28]. This model yields the

elementary statistics such as the mean value function and the covariance
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function, including the variance function, which are of most interest for
serviceability analysis. Any deterministic creep and shrinkage formula
can serve as the basis for this approach. The deterministic formulas

are randomized by introducing the entering parameters as random variables,
and by further introducing random model uncertainty factors that
characterize the incompleteness or inadequacy of the deterministic
formulas. Statistics for the model uncertainty factors are derived by a
comparison between available test data and predictions for these tests
by the formulas. The creep and shrinkage formulas of the BP Model [1]
were chosen for this purpose. For the computation of the statistics of
the structural response, the method of point estimates for probability
moments [29] is used. 1In the simplest form of this approach only two
peints 1 * s need to be considered for each random variable (u = mean of
the variable, and s = its standard deviation). This approach reduces
the statistical analysis to a manageabie number of deterministic
structural analyse§ for various combinations of the two values for all
material parameters. The method has been demonstrated by numerous ex-
amples [28].

Concluding Remarks

Following a very rapid development of the mathematical ﬁodels and
experimental basis for creep and shrinkage analysis of concrete structures,
which has been witnessed during the last decade, the time is now ripe to
start developing probabilistically based methgds,and eventually include
some of them in code recommendations for practical design.  As demonstrated
in this paper and elsewhere, probabilistically based methods exist and are
feasible, and a statistical basis for a probabilistic approach is also

beginning to emerge, although much more work and refinement remains to be



done. Concrete creep and shrinkage is a highly uncertain phencmenon, Qith

a statistical variability that is larger than that of strength. The con-

sequences of a large error in predicting creep and shrinkage frequently

greatly shorten the service life of the structure, and sometimes may even

lead to catastrophic collapse, as in creep buckling or in case of
detrimental effects of creep and shrinkage on other types of structural
failure.

Design of concrete structures that are sensitive to creep should,
therefore, be made not for the mean predictions of creep and shirinkage
effects, as has been done up to now, but for extreme effects, determined
on the basis of a certain, judiciously chosen confidence limit. The
code-making societies would be wise to begin tackling this problem.
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