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Abstract. The paper presents a computational approach and numerical data which facilitate the use of the
smeared-tip method for cohesive fracture in large enough structures. In the recently developed K-version of the
smeared tip method, the large-size asymptotic profile of the stress intensity factor density along a cohesive crack
is considered as a material characteristic, which is uniquely related to the softening stress-displacement law of the
cohesive crack. After reviewing the K-version, an accurate and efficient numerical algorithm for the computation
of this asymptotic profile is presented. The algorithm is based on solving a singular Abel’s integral equation. The
profiles corresponding to various typical softening stress-displacement laws of the cohesive crack model are com-
puted, tabulated and plotted. The profiles for a certain range of other typical softening laws can be approximately
obtained by interpolation from the tables. Knowing the profile, one can obtain with the smeared-tip method an
analytical expression for the large-size solution to fracture problems, including the first two asymptotic terms of
the size effect law. Consequently, numerical solutions of the integral equations of the cohesive crack model as well
as finite element simulations of the cohesive crack are made superfluous. However, when the fracture process zone
is attached to a notch or to the body surface and the cohesive zone ends with a stress jump, the solution is expected
to be accurate only for large-enough structures.

Key words: Fracture, size effect, scaling, cohesive crack, quasibrittle materials, asymptotic approximation,
smeared-tip method, computation.

1. Introduction

The cohesive crack model has become generally accepted as a realistic simplification of quasi-
brittle fracture of materials such as concrete, rock, sea ice, toughened ceramics, and various
composites. In this model, all of the inelastic deformation is lumped into a line, which makes
it possible to treat the whole body as elastic. The basic idea of the cohesive crack model,
originated by Barenblatt (1959; 1962), is that the stress sigularity at the crack tip is eliminated
by the cohesive stress acting on the crack surfaces. The cohesive (or fictitious) crack model
has been refined, formulated numerically, and adapted to various materials by a number of
researchers (Palmer and Rice, 1973; Knauss, 1973, 1974; Hillerborg et al., 1976; Kfouri and
Rice, 1977; Petersson, 1981; Needleman, 1990; Planas and Elices, 1992, 1993; Planas et al.,
1994; Bažant and Li, 1995; Smith, 1999; Zi and Bažant, 2002). For a detailed exposition, see,
e.g., Bažant and Planas (1998).

An effective approach to solutions with the cohesive crack model is the smeared-tip method,
in which the solution is represented as a superposition of infinitely many solutions for sharp
cracks of various crack lengths and infinitely small stress intensity factors. The tips of these
cracks are continuously distributed (i.e., smeared) along the cohesive crack (Planas and Elices,
1986, 1992, 1993; Bažant, 1990; Bažant and Beissel, 1994; Bažant and Planas, 1998). In this
manner, the solution for a structure with a cohesive crack, under a given load, may be con-
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Figure 1. (a) Superposition of LEFM cracks and (b) notations of the cohesive crack model

structed according to the linear elastic fracture mechanics (LEFM) if it is known how the stress
intensity factor KI and the crack opening profile for a unit load depends on the crack tip loca-
tion. For large enough structures, the asymptotic near-tip crack opening profile corresponding
to the stress intensity factor may be used as an approximation and then it suffices to know
KI as a function of the relative crack length α. The smeared-tip approach is computationally
more efficient and better suited for obtaining analytical asymptotic approximations than the
compliance function approach used by Hillerborg et al. (1976), Petersson (1981) and others
(Needleman, 1990).

Once the asymptotic stress intensity factor density, called the q-profile, corresponding to a
given stress-separation law of the cohesive crack model is established, it can be used for simple
asymptotic solutions for a structure of any geometry for which the stress intensity factor as
a function of α is known. The objective of this paper is to present solutions of the q-profile
for various typical stress-separation laws used for quasibrittle materials. The K-version of the
smeared tip method and the size effect laws derived from it, which were outlined by Bažant
(2001) and derived in detail by Bažant (2002), will be reviewed to introduce the subject.

2. Review of K-Version of Smeared-Tip Method

In the smeared-tip method, one superposes the LEFM solutions of the given structure for
various lengths of sharp cracks (Figure 1a), whose tips are continuously distributed (smeared)
along the assumed crack path. Such superposition is used to represent the solution for a cohe-
sive crack (Figure 1b). Any opening profiles and any stress profiles can be represented in this
way.
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For a single LEFM mode I crack,

P = b
√

D KI (α)/k(α) (α = a/D) (1)

where P = applied load or a parameter of a system of distributed or concentrated loads,
b = body thickness, KI = mode I stress intensity factor (SIF) for a crack tip located at α;
k(α) = √

g(α) = dimensionless SIF function (i.e., KI for D = b = P = 1). For a body of
given geometry, α = a/D = relative crack length, g(α) = dimensionless energy release rate
function; a = actual crack length, and D = characteristic size (or dimension) of the structure.
The stress σ on the crack line ahead of the crack tip and the crack opening width w behind
the crack tip are, according to LEFM,

σ (ξ) = KI(α)S(ξ, α), α ∈ (0, ξ ) (2)

S(ξ, α) = 1√
2πD(ξ − α)

[1+ b1(ξ, α)(ξ − α)

+b2(ξ, α)(ξ − α)2 + . . . ]
(3)

w(ξ) = KI(α)W(ξ, α), α ∈ (ξ, L/D) (4)

W(ξ, α) =
√

32

E′√π

√
D(α − ξ) [1 + c1(ξ, α)(α − ξ)

+c2(ξ, α)(α − ξ)2 + . . . ]
(5)

where E′ = E/(1 − ν2) for plane stress, E′ = E for plane strain, E = Young’s modulus,
ν = Poisson ratio, L = length of assumed crack propagation path, ξ = x/D = dimensionless
coordinate along the crack path; σ = cohesive (crack bridging) stress, w = crack opening
width (= separation of crack faces), b1, b2, . . . , c1, c2, . . . are nonsingular dimensionless
functions of ξ and α which depend on the geometry (shape) of the structure. Functions
b1, b2, . . . , c1, c2, . . . can be approximated by polynomials obtained by curve-fitting finite
element results.

The applied load P , cohesive stress σ and crack opening width w obtained by superposition
of (1), (2) and (4) for infinitely many cracks with continuously distributed (smeared) tips may
in general be written as

P =
∫

dP = b
√

D

∫ L/D

0

dKI(α)

k(α)
(6)

σ (ξ) =
∫ ξ

0
S(ξ, α) dKI(α), w(ξ) =

∫ L/D

ξ

W(ξ, α) dKI(α) (7)

where L is the final length of the crack at total break and dKI(α) is the SIF of the smeared
tips lying between α and α + dα. The relative coordinates at the beginning and the end of the
cohesive portion of the crack, representing the fracture process zone (FPZ), will be labeled as
α1 and α2 (Figure 1b). It will be convenient to introduce a further dimensionless coordinate

ρ = α − α1

2θ
, with θ = lf

D
= 1

2 (α2 − α1) (8)
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where α1 = the end of the stress-free crack portion, α2 = the tip of the cohesive crack (end of
FPZ), and lf = one half of FPZ length.

The q-profile along the FPZ may be characterized as

dKI(α) = KcD

2lf
q[ρ(α)] dα = Kc q(ρ) dρ (9)

where Kc = fracture toughness (critical SIF), q(ρ) = q-profile = dimensionless SIF density
as a function of dimensionless crack length ρ. It is assumed that function q(ρ) is such that the
function q(ρ)/

√|ω − ρ| be integrable for 0 < ω < 1; see Equations (3) and (7). This also
guarantees the total SIF at the cohesive crack tip to vanish (note that boundedness of q(ρ)

is sufficient but not necessary to satisfy these conditions). For D → ∞ the fracture process
zone in the relative coordinate α becomes a point, and so LEFM must apply, which means that∫

dKI = Kc = fracture toughness of the material, or

I1 =
∫ 1

0
q(ρ)dρ = 1 (10)

The smeared-tip method can be formulated in two versions. In the original version, labeled
here the P-version (Planas and Elices, 1986; 1992, 1993; Bažant, 1990; Bažant and Beissel,
1994; Bažant and Planas, 1998), the SIF of the smeared crack tips between α and α + dα was
associated not with an SIF increment dKI (α) but with a load contribution dP = p(α)Ddα

where p(α) was the load-sharing distribution. The present approach is labeled the K-version
since the smeared crack tips are associated with the increments of KI . The relation between
p(α) in P-version and q(α) in K-version is

p(α) = bKc

√
D

2lf k(α)
q[ρ(α)] (11)

Unlike the asymptotic q-profile q(ρ), the asymptotic distribution p(α) is not size- and
shape-independent, and so its asymptotic form is not a material property. Although Planas
and Elices (1992, 1993) gave the expression for function q(ρ), they used in their asymptotic
analysis the P-version only. The difference between the P- and K-versions is of course nothing
but a substitution of a new variable, but the K-version is much more convenient.

For sufficiently large structures, the higher order terms with functions b1, b2, . . . , c1, c2, . . .

may be neglected. Then Equations (7) and (8) simplify as follows:

σ (ρ) = Kc

2
√

πlf
S(ρ), S(ρ) =

∫ ρ

0

q(ω)dω√
ρ − ω

(12)

w(ρ) = 16Kc

√
lf

E′√π
W(ρ), W(ρ) =

∫ 1

ρ

q(ω)
√

ω − ρdω (13)

It will be convenient to write these equations also as

σ (ρ) = ft

S(ρ)

S(1)
, w(ρ) = wf

W(ρ)

W(0)
(14)

where ft = tensile strength of material and wf = crack opening displacement at which the
cohesive stress σ completely reduces to zero.
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If Kc, lf and the profile q(ρ) are known, and if the structure is so large that the FPZ is fully
developed (Smith, 1995, 1999), Equations (12) and (13) provide a parametric description of
the stress-displacement curve σ (w) of the cohesive crack model. Indeed, choosing a series of
values of ρ, the corresponding pairs of w and σ can be obtained by evaluating the integrals
S(ρ) and W(ρ), which are independent of structure size and shape. Thus, for each K-profile,
there exists a corresponding stress-displacement curve (softening law) σ (w) of the cohesive
crack model. Vice versa, assuming this relationship to be invertible, one can find for each ft

and wf the values of Kc, lf and function q(ρ). So the q-profile, q(ρ), and the FPZ length, 2lf ,
are alternative material properties. A cohesive crack model defined by the q-profile is asymp-
totically equivalent to the standard cohesive crack model defined by the stress-displacement
curve. For aymptotic analysis, a fixed q-profile can be used, along with lf as the material
fracture characteristic instead of the standard softening law.

If the shape of the softening law is fixed (i.e., if only vertical and horizontal scalings of a
given softening curve are considered), as specified by RILEM Recommendation for concrete,
the cohesive crack model is characterized by only two material parameters, which may be
chosen either as ft and wf or as ft and GF where GF = fracture energy = area under the
complete curve of stress versus crack opening displacement. According to Irwin’s relation,

GF = K2
c / E′ (15)

To relate lf to the basic parameters of the cohesive crack model, Rice’s J-integral (Rice, 1968)
giving the energy flux J into a fully developed FPZ may be utilized. The J-integral path must
envelop the entire fracture process zone. Following Rice (1968), we choose a J-integral path
that begins at the lower crack face at α1, runs along this face to α2, then along an infinitely
small circle around the cohesive crack tip, and finally back to α1 along the opposite crack face;

J =
∫ α2

α1

σ (α)
d[−w(α)/2]

dα
dα +

∫ α1

α2

σ (α)
d[w(α)/2]

dα
dα

= −
∫ 1

0
σ (ρ)

dw(ρ)

dρ
dρ

(16)

(which further yields Rice’s relation J = ∫ wf

0 σdw). If the FPZ is fully developed (i.e. if
σ = 0 at ρ = 0), it can move forward only if J = GF , and so this condition must be met
asymptotically. Assuming this, substituting Equations (12) and (13) or (7), and taking into
account Equation (15), one obtains

J = 2I 2
0

π
GF = ftwf I 2

0

2S(1)W(0)
(17)

with the notation

I0 =
√∫ 1

0

(∫ ρ

0

q(ω) dω√
ρ − ω

) (∫ 1

ρ

q(η) dη√
η − ρ

)
dρ (18)

Since J = GF asymptotically, it follows from (17) that

I0 = √
π/2, 4S(1)W(0)GF = πftwf (19)

To determine the half-length lf of the fracture process zone, one may now express from
(12) the condition σ (1) = ft . Thus, taking into account the last expressions in (17) and (19),
one obtains
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lf = S2(1)

π
lch = π

16 W 2(0)

E′w2
f

GF

, lch = K2
c

4f 2
t

(20)

where lch represents Irwin’s characteristic length. Now it should be noted that, in view of
Equations (10) and (13), W(0) ≤ 1, and so a lower bound on the half-length of the fracture
process zone, for any shape of the stress-displacement law, is

lf min = π

16

E′w2
f

GF

(21)

This lower bound was derived in a different way by Planas and Elices (1992, Equations 4.23
and 4.26).

The fact that neither D nor k(α) appears in (20) confirms that the hypothesis of size- and
shape-independence of lf agrees with the neglect of functions b1, b2, . . . , c1, c2, . . . for large
sizes. According to Equations (6) and (9), the nominal strength of the structure, which is a
load parameter defined as σN = P/bD, may now be expressed as

σN = Kc√
D

∫ 1

0

q(ρ) dρ

k[α(ρ)] (22)

If the q(ρ)-profile along with lf and k(α) are known, then σN can be evaluated from (22). In
this manner, the large-size asymptotic size effect curve of the cohesive crack model can be
computed for any given structure geometry provided that the function k(α) characterizing the
geometry is known. For many geometries, this function is given in handbooks (Tada et al.,
1985; Murakami, 1986), and for others it can be adequately approximated by curve-fitting
elastic finite element results.

The size effects can be classified into three cases according to the geometry of the structure.
In each case, the asymptotic size effect can be obtained from the asymptotic expansion of (22)
in terms of the powers of θ , as suggested by Bažant (2001). Only the resulting size effect
laws are listed below. The detailed derivations, including an appraisal of the role of various
higher-order terms, are given by Bažant (2002). The first case is the case of positive geometry
(k′(α) > 0), where the fracture starts from the notch or a pre-existing stress-free (fatigued)
crack. As expected, the analysis leads in this case to the classical size effect law proposed in
Bažant (1983, 1984), i.e.

σN = σ0

(
1 + D

D0

)−1/2

(23)

in which

σ0 = Kc

k0
√

D0
(24)

D0 = γ0lf = γ0

π
S2(1)lch = 4k′

0

k0
I2lf = 4k′

0

πk0

K2
c

f 2
t

I2S
2(1) (25)

with the notations

γ0 = 4k′
0

k0
I2, I2 =

∫ 1

0
q(ρ) ρ dρ (26)
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Here k0 = dimensionless stress intensity factor for α = α0 = notch tip. A point to note
from (25) is that the transitional size D0 depends on the softening law. This means that the
brittleness number of a structure, defined as β = D/D0, depends on the material used.

Structures may also fail at the initiation of fracture from a smooth surface of the body or in
the interior, which is case 2. A typical example is the standard test of the modulus of rupture
of concrete beams. The size effect is written as

σN = σ∞
(

1 + Db

D

)
(27)

in which

σ∞ = KcI3√
2g′

0lf
, Db = I4〈−g′′

0 〉
2I3g

′
0

lf = I4〈−g′′
0 〉

I3g
′
0

1

2π
S2(1)lch (28)

and

I3 =
∫ 1

0

q(ρ)√
ρ

dρ, I4 =
∫ 1

0
q(ρ)

√
ρdρ (29)

(where I3 ≥ 1 and I4 ≤ 1). Here, g0 = value of dimensionless energy release rate function
for α = α0 = notch tip. The Macauley brackets 〈..〉 in (28) represents the positive part of the
argument.

When the initial fracture geometry is negative, i.e., k′(α) < 0, the crack grows stably under
increasing load (an example is a panel with a small centric crack loaded on the crack faces).
Failure under load control will occur only when the fracture geometry changes from negative
to positive, which is case 3. The size effect then takes the form

σN = σ0

(
D1

D + D1
+ D

D0

)−1/2

(30)

in which

D1 = 4k0k
′′
0I5

(
lf σ0

Kc

)2

, D0 =
(

Kc

k0σ0

)2

(31)

and, since ρ0 = ρ(α0) = 1
2

I5 =
∫ 1

0
(ρ − 1

2 )2q(ρ)dρ (32)

The difference between the optimum data fits with (23) and (30) is normally less than the
scatter of test results.

The value of the small-size nominal strength σ0 cannot be determined from the present
asymptotic theory. It can be determined by using plastic analysis to solve the cohesive crack
model for the case that D 
 lf . In that case the cohesive stress along the entire crack path
is nearly uniform, as if the crack were filled by a plastic glue, and the analysis proves that σ0

must be finite.

3. Computation of q-Profiles

As mentioned before, the asymptotic q-profile has a one-to-one relationship to a softening
law, and may therefore be regarded as a material property. If Equations (12) and (13) are
substituted into the dimensionless softening law,
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σ

ft

= f

(
w

wf

)
(33)

one obtains the integral equation∫ ρ

0

q(ω)dω√
ρ − ω

= F(ρ) (34)

in which the right-hand side is

F(ρ) = S(1)f

(
1

W(0)

∫ 1

ρ

√
ω − ρ q(ω) dω

)
(35)

Since all the variables are dimensionless, the q-profile is independent of any dimensional
parameters and depends only on the shape of the softening law. Note that the structure size D

is absent from (34).
Equation (34) has a weakly singular kernel and represents an integral equation of the first

kind for function q(ρ). This equation, whose equivalent form in terms of p(ρ) was introduced
by Planas and Elices (1992) (see also Bažant and Planas (1998, Equation 7.5.67), represents
the well-known Abel’s integral equation if the right-hand side F(ρ) is known. In the spe-
cial case of a linear (triangular) softening curve (wf = w0), Equation (34) simplifies to the
following linear integral equation of the first kind:

S(ρ)

S(1)
+ W(ρ)

W(0)
= 1 (36)

Getting an analytical solution of (34) is not easy. It is known only for the Dugdale-type
(rectangular) softening law (Planas and Elices, 1993). The basic idea of the numerical algo-
rithm which was invented by Planas and Elices (1993) is adapted for this study. They used a
piece-wise linear approximation on uniformly spaced intervals. The uniform spacing worked
well for the simple triangular softening law even with small number of subdivisions since for
that law the slope of q(α) is quite uniform through the entire softening range.

However, for the softening laws in use for concrete, particularly bilinear softening laws
with extra long tail (ELT), q(α) changes rapidly in the initial part. Unless a uniform mesh with
very fine subdivisions is used, the error in the initial part is relatively large compared to that
in the remaining part. The initial part is very important regarding the size effects for positive
geometries (cases 1 and 2), and so it is advisable to use in that part a finer mesh.

Computations show that the laws characterized by a steep initial drop and a very flat long
tail are reproduced from the q-profile without any noticeable error when 100 subdivisions
are used. However, 100 subdivisions are not necessary. It is more efficient, and sufficient for
accuracy, to refine the subdivisions only in the initial part (Figure 2). Therefore the length of
the intervals in the subdivision is changed gradually from 0.01 to 0.2. This reduces the total
number of subdivisions to 30 and is achieved by setting

�ρi = ρi+1 − ρi = ce−kρi (1 ≤ i ≤ 30) (37)

in which ρ1 = 0.0, ρ30 = 1.0, c = 0.2, and k = 2.9458900.
The stress and the crack opening displacement are interpolated by a set of discrete inter-

polation functions in which a linear shape function, φ(ω), is used for the sake of simplicity
(Figure 3);
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Figure 2. The softening curve (left) and the corresponding q-profile (right) reproduced with 30 subdivisions: the
dashed line by uniform spacing and the solid line by exponential spacing (the latter almost coincides with the
analytical curve).

Figure 3. The linear base function with variable nodal spacing, used to approximate q-profile.

S(ρi) =
(∫ ρi

0

φj (ω)√
ρi − ω

dω

)
qj =

∑
j

Lij qj (38)

W(ρi) =
(∫ 1

ρi

√
ω − ρiφj (ω)dω

)
qj =

∑
j

Uij qj (39)

in which

φj(ω) =




1 + c−1ekωi−1(ω − ωj) for ωj−1 < ω < ωj

1 − c−1ekωi (ω − ωj) for ωj < ω < ωj+1

0 otherwise

(40)

Lij and Uij are constant lower and upper triangular matrices, and qj is a column matrix
of nodal values. The integrals in (38) and (39) can be calculated analytically. The integral
equation (34) is discretized as∑

j

Lij qj =
∑

k

L30kqkf

( ∑
l Uilql∑

m U1mqm

)
(41)

Equation (34) and its discrete form, Equation (41), are insufficient to solve the problem. There
are infinitely many q-profiles as the solutions. The additional condition required to obtain a
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Figure 4. Analytical softening laws (solid lines) and the lines (dashed) reproduced from the q-profiles on the right
using 30 exponentially varying subdivisions (the dashed lines are mostly undistinguishable from the solid input
lines).

unique q-profile is Equation (10) stating that the area under the q-profile must be 1.0. Practi-
cally, it is preferable to solve Equation (41) first for a fixed value of one of qi , typically q30,
and subsequently scale the q-profile to make the area equal to 1.0, according to Equation (10).
An iterative algorithm to compute the q-profile may be summarized as follows: (a) Compute
the right hand-side of Equation (41) using the previous iterate of the q-profile, but for the
first iteration assume a uniform q-profile. (b) Solve the q-profile from the left hand side of
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Table 1. The stress intensity factor density profiles for triangular, bilinear, and ELT softening laws.

ρ Triangular Petersson Wittmann et al. (1988) Exponential

(1981) (0.157,0.250) (0.135,0.250) (0.111,0.250) QEX ELT

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.200000 0.849558 0.407870 0.345225 0.359922 0.380037 0.051842 0.155200

0.310957 0.935248 0.453959 0.383966 0.400044 0.422105 0.087204 0.172577

0.390976 1.075710 0.534354 0.452865 0.471300 0.496616 0.132242 0.205593

0.454192 1.138059 0.578381 0.490984 0.510397 0.537094 0.183185 0.224934

0.506666 1.189093 0.618765 0.526186 0.546361 0.574146 0.243189 0.243451

0.551624 1.221442 0.650946 0.554434 0.575017 0.603419 0.313197 0.259082

0.591005 1.244511 0.679408 0.579501 0.600299 0.629063 0.394961 0.273567

0.626073 1.259665 0.704663 0.601756 0.622591 0.651492 0.490180 0.287083

0.657699 1.269262 0.727873 0.622132 0.642860 0.671722 0.600815 0.300132

0.686511 1.274452 0.749667 0.641084 0.661574 0.690243 0.728994 0.313050

0.712979 1.276206 0.770678 0.659045 0.679170 0.707505 0.877034 0.326239

0.737462 1.275186 0.791498 0.676349 0.695976 0.723842 1.014386 0.340168

0.760241 1.271902 0.812841 0.693303 0.712288 0.739543 1.242564 0.355454

0.781541 1.266734 0.835807 0.710201 0.728373 0.754866 1.465014 0.372955

0.801546 1.259980 0.935720 0.727356 0.744503 0.770056 1.716919 0.393914

0.820406 1.251865 2.144074 0.745135 0.760971 0.785366 1.999901 0.420192

0.838247 1.242566 2.418016 0.764013 0.778127 0.801078 2.314625 0.454650

0.855175 1.232218 2.802637 0.784688 0.796426 0.817530 2.660252 0.501808

0.871279 1.220921 3.034241 0.808358 0.816527 0.835166 3.033773 0.569015

0.886636 1.208748 3.225127 0.837889 0.839519 0.854622 3.429217 0.668607

0.901315 1.195744 3.354861 2.777613 0.867696 0.846912 3.836824 0.822097

0.915372 1.181927 3.440242 4.506939 1.669777 0.903931 4.242291 1.068711

0.928859 1.167286 3.483223 5.373447 5.204020 0.940655 4.626306 1.483876

0.941821 1.151773 3.488585 6.055927 6.166555 5.037750 4.964558 2.221969

0.954297 1.135289 3.458570 6.434490 7.199171 7.466705 5.228402 3.621996

0.966323 1.117649 3.394475 6.587814 7.624333 8.769636 5.385983 6.479251

0.977930 1.098500 3.295290 6.510574 7.710255 9.322868 5.402767 12.660595

0.989147 1.077056 3.155056 6.200630 7.380761 9.089455 5.236620 24.942680

1.000000 1.050158 2.941343 5.551491 6.520243 7.902657 4.777411 32.044469

I1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

I2 0.577231 0.740843 0.786831 0.784721 0.779617 0.849376 0.895147

I3 1.489370 1.268471 1.223341 1.228947 1.237885 1.109404 1.105492

I4 0.737093 0.844129 0.871412 0.869547 0.865837 0.916790 0.937519

I5 1.223914 1.599210 1.715875 1.713136 1.703099 1.843406 1.983880

S(1) 2.148285 3.361051 4.437308 4.710724 5.040733 4.283968 9.622699

W (0) 0.737064 0.844131 0.871414 0.869549 0.865837 0.916787 0.937518
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Table 2. The stress intensity factor density profiles for bilinear softening curves, whose GF /Gf = 2.5.

ρ The positions of the kink points (ω̄, σ̄ )

(0.077, 0.150) (0.091, 0.190) (0.102,0.230) (0.111,0.270) (0.118,0.310) (0.123,0.350)

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.200000 0.316602 0.343269 0.370938 0.398944 0.427620 0.432327

0.310957 0.351732 0.381310 0.411978 0.442992 0.474715 0.479922

0.390976 0.415006 0.449346 0.484862 0.520692 0.557240 0.563235

0.454192 0.450013 0.486690 0.524536 0.562623 0.601369 0.607719

0.506666 0.482397 0.521082 0.560898 0.600868 0.641414 0.648055

0.551624 0.508379 0.548492 0.589674 0.630910 0.672621 0.679448

0.591005 0.531410 0.572666 0.614914 0.657109 0.699667 0.706628

0.626073 0.551804 0.593957 0.637016 0.679910 0.723046 0.730098

0.657699 0.570396 0.613276 0.656967 0.700381 0.743911 0.751024

0.686511 0.587581 0.631056 0.675243 0.719039 0.762819 0.769972

0.712979 0.603727 0.647699 0.692280 0.736355 0.780283 0.787461

0.737462 0.619103 0.663499 0.708399 0.752681 0.796682 0.803874

0.760241 0.633942 0.678710 0.723878 0.768319 0.812345 0.819546

0.781541 0.648446 0.693555 0.738961 0.783536 0.827565 0.834777

0.801546 0.662803 0.708241 0.753878 0.798588 0.842627 0.849856

0.820406 0.677200 0.722977 0.768861 0.813737 0.857830 0.865092

0.838247 0.691834 0.737983 0.784164 0.829276 0.873516 0.880841

0.855175 0.706924 0.753514 0.800081 0.845557 0.890120 0.897561

0.871279 0.722734 0.769878 0.816985 0.863048 0.908254 0.915911

0.886636 0.739599 0.787481 0.835385 0.882426 0.928898 0.936985

0.901315 0.757974 0.806895 0.856038 0.904794 0.953994 0.963170

0.915372 0.778518 0.828992 0.880197 0.932329 1.296577 1.889660

0.928859 0.802268 0.855254 0.910307 1.160857 4.602187 4.553272

0.941821 0.831040 0.888635 0.953199 5.943449 5.383692 5.331318

0.954297 0.868585 0.937576 7.678646 7.005794 6.302668 6.116189

0.966323 0.926129 10.102043 9.662315 8.197928 6.667001 6.436074

0.977930 15.104265 14.495522 11.102572 8.492573 6.746275 6.485222

0.989147 24.265599 15.633470 11.012774 8.251976 6.463856 6.208868

1.000000 20.541118 13.296150 9.477575 7.187407 5.714078 5.501976

I1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

I2 0.818640 0.802502 0.786210 0.770147 0.754319 0.751668

I3 1.197232 1.214172 1.231511 1.248835 1.266240 1.269128

I4 0.889308 0.879580 0.869715 0.859947 0.850261 0.848643

I5 1.801305 1.760774 1.720067 1.680131 1.641060 1.634497

S(1) 7.771279 6.369514 5.455790 4.809113 4.330614 3.966973

W(0) 0.889307 0.879579 0.869715 0.859946 0.850261 0.840629
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Equation 41). (c) Scale the q-profile according to the unit area condition of Equation (10).
(d) Go to (a) and repeat the entire procedure unless a prescribed tolerance has been met.

The softening laws reproduced from the q-profiles for the assumed triangular, bilinear and
quasi-exponential softening stress-displacement laws are compared in Figure 4. The differ-
ences are in most places invisible.

The q-profiles for the triangular, Petersson’s (1981), Wittmann et al.’s (1988) and exponen-
tial softening laws are tabulated in Table 1. In addition to that, Table 2 gives the q-profiles for
various bilinear softening laws that have different locations of the ‘kink’ (or knee) point (point
of slope change) but are characterized by the same ratio of the total area to the area under the
initial segment, GF /Gf = 2.5. The ratio of 2.5 is a rough mean estimate for concrete, made
by Planas et al. (1992), (Guinea et al., 1994), and was found to agree optimally with extensive
test data by Bažant and Becq-Giraudon (2001). The q-profiles for bilinear softening stress-
displacement laws with other locations (w̄, σ̄ ) ≡ (w0/wf , σ0/ft ) of the ‘kink’ points, can be
obtained by interpolation from Table 2.

It is interesting to see how q-profiles are related to the size effect law. When q = 1.0, one
gets Equation (23) corresponding to the classical Bažant’s size effect law (Bažant, 1984). The
effective fracture process zone length cf obtained by fitting this classical size effect law to
the test data is about 30% greater than one half of the length of the actual cohesive zone lf
because I2 ≈ 0.75 (see the tables attached).

4. Conclusions

1. The smeared-tip method characterized by the profile of the stress intensity factor density
is an effective approach to solving cohesive crack problem, suited particularly for large-
size asymptotic approximations. In this method, the large-size asymptotic profile of the
stress intensity factor density (q-profile) can be regarded as a material characteristic that
is uniquely related to the softening stress-displacement law of the cohesive crack.

2. An efficient and accurate algorithm for computing the asymptotic q-profile for a given
softening stress-displacement law of cohesive crack is developed. It is based on solving a
singular Abel’s integral equation. Tables giving the q-profiles for various typical softening
laws are presented. The q-profiles for various bilinear softening laws can be obtained by
interpolation from the table.

3. If the q-profiles of a given softening stress-displacement law and the function giving
the stress intensity factor as a function of the crack length are known, one can obtain
the solutions of cohesive fracture problems without solving the integral equation of the
cohesive crack model and without resorting to finite element analysis.

4. The present solution can be expected to be accurate only if the fracture process zone does
not end with a significant stress jump. This is the case for maximum loads of structures of
initially negative geometry (KI decreasing with crack length). For positive geometry, this
limits applicability to large enough structures.
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