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Abstract: The asymptotic matching analysis in the preceding Part I has established a new kind of size effect, caused by p
softening of inelastic hinges in beams and frames. The present Part II analyzes various implications, particularly the size effec
maximum loads under load control or displacement control, the design loads, and the energy absorption of the structure.
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Continuing from pointA to pointB, the structure decelerates, an
at B its kinetic energy isWi2Wi8 , whereWi8 is the area of the
triangleABPi 11A, representing the energy stored in the structu
upon moving fromA to B;
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If Wi2Wi8.0, as shown in Fig. 1~a!, and if the damping is not
negligible, the kinetic energy has not been fully absorbed by
structure. So the structure continues to increase its load-point
placementw, i.e., the snapthrough continues, and the peakPi 118
can never be reached. In that case, the maximum load attain
under load control isPi . If finite damping is taken into account
then the condition of continuing snapthrough at loadPi may be
written as

xWi.Wi8 (3)

wherex5empirical damping factor,x,1.
If, on the other hand,Wi2Wi8,0 or, with damping,xWi

2Wi 118 ,0, as shown in Fig. 1~b!, then the kinetic energy gained
before pointA is insufficient for the structure to swing all the wa
to pointB. The forward movement stops short of pointB at some
point B8 for which the triangular area above the segmentAB8 is
equal toWi or, with damping, toxWi , and then the structure
begins to swing back. Without any damping it would permanen
oscillate betweenPi andB8, but since there always is damping
the oscillation will come to a standstill at pointA. Then the load
can be stably increased to the next peakPi 11 . So in this case the
snapthrough gets arrested and the maximum load attainable u
load control isPi 11 .

The behavior can get more intricate if there are many sub
quent peaks. In Fig. 1~c!, for instance, the second peak 4 is, und
load control, unattainable because triangle 3543 is smaller t
triangle 1231. However, the combined area of triangles 3543
7987 is smaller than the combined area of triangles 1231
5675, and so the snapthrough cannot reach all the way to poin
rather, the structure swings back, and after its oscillations
damped, the third peakP112 can be reached stably under loa
control.

If stable equilibrium at peak 4 in Fig. 1~c! were reached under
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Introduction

The complexity of analysis of beams and frames with soften
hinges was circumvented in the preceding Part I~Bažant 2003! by
adopting the asymptotic matching philosophy. This permitted f
mulating approximate size effect laws for the peaks and
troughs of the load–deflection diagram. The present Part II w
analyze the implications of these laws for the size dependen
of the maximum loads under load control or displacement cont
of the design loads, and of the energy absorption of the struct
All the definitions and notations made in Part I~Bažant 2003! are
retained.

Maximum Load or Displacement Attainable
Under Load or Displacement Control

When the load–deflection diagram has multiple peaksPi , it
might seem that the design should be based on the highest
But it is not so simple.

Consider first the case ofload control ~which may, for in-
stance, be imagined as loading the structure by a bucket tha
gradually being filled with water!. Figs. 1~a–c! illustrate various
possible responses for structures large enough so that the hi
soften one by one. The equilibrium~static! response paths are
marked by single arrows, the dynamic path by double arrows. T
vertical difference between the load values on the static and
namic paths, divided by the associated mass of the structure,
resents the acceleration of the load point. When peakPi is
reached, the structure undergoes dynamic snapthrough along
horizontal linePiAB or 1357. Moving from peakPi to point A
@Fig. 1~a!#, the structure accelerates and at pointA its kinetic
energy is given by the areaWi of the triangleAPi Pi8A, represent-
ing an energy released by the structure
URNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2003 / 651



able
Fig. 1. ~a!–~c! Snapthrough under load control and load capacity;~d!–~e! snapdown under controled displacement and maximum attain
deflection;~f! design loadPi

D corresponding to snaptrough caused by dynamic disturbance whose kinetic energy isE
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maxPi , becomes questionable because, under load control,
structure is unstable during each softening segment. Such a
sign becomes even more questionable when the structure is l
enough for snapbacks to occur, in which case it is unstable e
under load-point displacement control~Bažant and Cedolin 1991,
Chap. 7!.

A completely safe design is that for the lowest trough prece
ing the overall load maximum, minPi8 . But then again the safety
margin would often be unnecessarily high by far. A realistic d
sign loadP lies somewhere between maxPi and minPi8 , for a
smaller structure closer to maxPi and for a larger one closer to
min Pi8 .

To decide the proper design load rationally, one should ta
into account the geometric imperfections and possible dyna
disturbances. In structures with plastic hinges, a dynamic dis
bance in which the peak load is reached only temporarily lea
merely to a permanent deflection but in the case of postp
softening or even snapback it may trigger stability loss and s
den explosive failure.

The problem is similar to that of an axially compressed th
cylindrical shell~or a thin spherical dome!, for which the critical
load of a theoretically perfect shell~unattainable in practice! is
followed by a snapback to a very low residual load. It is now w
understood~e.g., Bazˇant and Cedolin 1991! that, due to inevitable
imperfections and dynamic disturbances, one must design
shell for that residual load~typically between 1/8 and 1/3 of the
theoretical critical load!. An effective semiempirical method ha
been developed to deal with this problem for shells.

Taking dynamic disturbances into account usually gua
against geometric imperfections as well. So let us now foc
solely on the latter, characterized by a given kinetic energyE that
might be accidentally imparted to the structure, e.g., by impac
vibrations of some carried object.

In the light of size effect, the question arises whether the sa
energyE should be considered for all the sizesD. Obviously it
load control, and then a switch to load control were made, t
structure would exhibit an unbounded snapthrough and the th
peakPi 12 could never be reached. Thus, a displacement con
during the initial loading can reduce the load attainable und
subsequent load control. A switch from displacement control
load control may be destabilizing.

When there are snapbacks, similar phenomena occur un
displacement control. In Fig. 1~d!, after reaching snapback point 1
~local maximum ofw!, the load, at constant load-point displace
ment, drops dynamically~due to motion of the rest of the struc
ture, except the load point!; this is called the snapdown~Bažant
and Cedolin 1991, Chap. 4!. Passing from 1 to 3, the structure
accelerates, and the complementary energy~enthalpy! given by
area 1231~minus whatever energy has been lost by dampin!,
gets converted into kinetic energy of the structure. Continui
below point 3, the structure decelerates and at point 5 the com
mentary energy given by area 3543~minus whatever is lost by
damping! has been transferred from kinetic energy of the stru
ture into its strain energy. For small enough damping, the sn
down in Fig. 1~d! does not become arrested because the trian
3543 is smaller than the triangle 1231. So the displacem
cannot exceed its value at point 1, and the second snapback p
4 can never be reached.

On the other hand, when area 3543 is larger than area 1
~reduced by whatever energy is lost by damping!, then point 5
cannot be reached@Fig. 1~e!#. The structure~except the load
point! swings back; the load value~actually a reaction at the load
point! increases at constant load-point displacement~an upward
movement toward point 1! and oscillates until the load value sta
bilizes at point 3. Then, under displacement control, the displa
ment can be increased stably to the next snapback point 4.

Design Load and Its Size Dependence

If the structure is large enough for the load-deflection diagram
involve softening segments, designing for the highest pe
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should not. For instance, one would not design for a bulldoz
passing over a pedestrian bridge. So it makes sense to assume
the larger the structure, the larger is theE value that should be
considered in design.

With this intuition, it will be assumed, somewhat arbitrarily
that structures should be designed for an imparted energy pro
tional to the strain energy stored in the structure at load peakPi ,
which is Pi

2/2Ki ; therefore

E5hPi
2/2Ki (4)

whereh5constant~size-independent! disturbance factor~such as
20%! to be decided on the basis of design experience~or, better,
probabilistic reliability analysis!.

If the structure is large enough forPi to be a peak, a safe
design load,Pi

D , is that for which the horizontal ‘‘snapthrough’’
line shown in Fig. 1~e!, lying at distanceDP below the peak, cuts
off a triangle of areaE. This area may be calculated as follows

E5
DP2

2K̄ i
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1
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whereKi8 is the slope from load peakPi to the next load trough
Pi8 . Substituting this into Eq.~4!, we obtain the design nomina
strength

sN
D5maxi sNi~12AhK̄ i /Ki !, sNi5Pi /bD (6)

HerePi , Ki8 , andK̄ i5functions of sizeD and an additional size
effect is caused by the fact that, for different sizesD, peaks of
different numberi yield the maximum. Plotting the size effec
curves of logsN

D versus logD, one observes, as expected, that th
larger theh, the stronger the size effect. Due to differences in t
sharpness of the subsequent spikes, the overall maximumsNi can
be associated with differenti for different D, even ifD is large.

Dependence of Energy Absorption on Structure
Size

The size effects of softening hinges are important not only for t
load capacity of redundant brittle beams and frames~as well as
plates!, which is the focus of this study, but also for the energ
absorption capability of structures, which is the most importa
characteristic for the resistance to earthquake, blast, shock,
impact!. The energy dissipated by the failure of a structure withN
softening hinges is

W5(
i 51

N

GfbiDi5D2(
i 51

N

Gf

bi

D

Di

D
}D2 (7)

wherebiDi5cross section area of hingei; and the ratiosbi /D
andDi /D5constant for geometrically similar structures.

For comparison, consider a plastic structure in which t
moment-rotation diagrams have a horizontal plateau long eno
for all the hinges to reach their plastic moment capacity simul
neously. In that case, the energy dissipated by the structure is

Wpl5(
i 51

N

spepbbihi l i5D3(
i 51

N

spepb

bi

D

hi

D

l i

D
}D3 (8)

where epb5ductility limit of the plastic material~the strain at
which the plastic material breaks!; and l i5effective length of the
JO
at

-

d

hinge region, which is known to be approximately similar
beam depth in the case of plastic behavior~i.e., l i /D'const).

So the size effect on the energy absorption capability o
structure with softening hinges is

W}Wpl /D (9)

Summary and Conclusions

1. The main idea of this two-part study is to apply the tec
nique of asymptotic matching to structures in which th
inelastic hinges lack a yield plateau but exhibit progress
postpeak softening of the bending moment at an increas
rotation. The softening is typically caused by propagati
of a tensile cohesive crack from the tensile face or by co
pressive fracture~or crushing! of the material at the com-
pression face. The crack or compression crushing ban
characterized by an approximately constant value of
energy dissipated per unit area, representing the tensile
compressive fracture energy of the material.

2. The postpeak softening of inelastic hinges implies the
istence of a size effect, both on the dimensionless pe
bending momentM̄ 0 in the hinge and on the dimensionles
postpeak bending stiffnessRt of the hinge.

3. The size effect onM̄ 0 is similar to that amply verified by
tests of the modulus of rupture and is caused by the dev
opment of a fracture process zone of a certain fixed de
Db attached to the beam face.

4. The size effect ofR̄t is due to propagation of a crack, or t
localization of compression crushing into a band of a fix
width. It causes the downward postpeak slopeR̄t of the
moment-rotation diagram to increase in magnitude asD3.
By contrast, if a softening stress-strain relation with no l
calization were assumed,R̄t would increase asD2.

5. In a large enough statically indeterminate beam or fram
the softening hinges form one by one, i.e., only one hinge
softening at a time. In that case the load–deflection
sponse is simple to solve. It represents a series of sp
whose width decreases to zero asD→`. ~Whether or not
this kind of behavior occurs for real structures is irreleva
since the main purpose of solving this simple asympto
case is to obtain a support for an asymptotic matching f
mula applicable through the entire range.!

6. The nominal strength for the peaks of the spikes on
load-deflection diagram in a large enough structure exhib
the same size effect as the modulus of rupture, i.e., the s
effect disappears for large enough sizes. The ratio of
load drop from each peak to the next trough increases
1/D. This is a very strong size effect, such that a size
crease rapidly leads to snapback instabilities and extre
sensitivity to geometric imperfections or dynamic distu
bances, similar to those seen in shells.

7. For large enough structures, it may be dangerous to b
the design on the maximum peak. A safe design load
pacity should be based on the analysis of geometric imp
fections or dynamic disturbances and lies somewhere
tween the maximum peak and the subsequent trough—
larger the structure, the deeper below the peak.

8. WhenD decreases, the troughs and multiple peaks on
load–deflection curve disappear, i.e., there is only one p
and no trough!. Thus, a small enough structure is insens
URNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2003 / 653
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tive to geometric imperfections and dynamic disturbanc
and a design based on the maximum load is safe.

9. Eventually, for small enoughD, two or more hinges soften
simultaneously. If that is the case, an exact yet simple a
lytical formula for the size effect is impossible. The ide
of the present approach is to skip analyzing this comp
case. Instead, an approximate and simple size ef
formula is obtained by asymptotic matching~‘‘interpola-
tion’’ ! between the nominal strength formula forD→0
and the nominal strength formula forD→`. The former is
easily obtained in the classical way—by plastic limit anal
sis.

10. The differences of the present scaling formulas from th
proposed by Bazˇant ~1984! are caused by two significan
differences in the failure behavior and assumptions:~1! The
failure is not due to propagation of one dominant fractu
or damage band but requires several fractures to take pl
in several hinge regions of beams; and~2! geometric simi-
larity of the crack lengths in the softening hinges in simil
structures of different sizes cannot reasonably be assum
654 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2003
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11. The ratio of the energy absorption capability of a la
structure with softening hinges to that of a structure w
plastic hinges decreases inversely to the structure sizeD.
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