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Abstract: The asymptotic matching analysis in the preceding Part | has established a new kind of size effect, caused by postpeal
softening of inelastic hinges in beams and frames. The present Part Il analyzes various implications, particularly the size effects on thi
maximum loads under load control or displacement control, the design loads, and the energy absorption of the structure.
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Introduction P/ 1 1 .

_ _ _ _ =%k Kk /Pi—P) 1)
The complexity of analysis of beams and frames with softening i+1 i
hinges was circumvented in the preceding PéBidzant 2003 by Continuing from pointA to pointB, the structure decelerates, and

adopting the asymptotic matching philosophy. This permitted for- 4; B its kinetic energy iSV,— W/ , whereW! is the area of the

mulating approximate size effect laws for the peaks and the yiangleABP, A, representing the energy stored in the structure
troughs of the load—deflection diagram. The present Part Il will upon moving fromA to B:

analyze the implications of these laws for the size dependencies

of the maximum loads under load control or displacement control, , (Pigi— P)?| 1 1 Pi.1 P

of the design loads, and of the energy absorptign of the structure. i~ 2 Kizi Pi1i—Pl, \Kisr Kio @)
All the definitions and notations made in PafBlazant 2003 are

retained. If W;—W,/>0, as shown in Fig. (&), and if the damping is not

negligible, the kinetic energy has not been fully absorbed by the
structure. So the structure continues to increase its load-point dis-
placementw, i.e., the snapthrough continues, and the pRak;

can never be reached. In that case, the maximum load attainable

Maximum Load or Displacement Attainable
Under Load or Displacement Control

When the load—deflection diagram has multiple pe&ks it under load control i; . If finite damping is taken into account,
might seem that the design should be based on the highest onethen the condition of continuing snapthrough at Idgdmay be
But it is not so simple. written as

Consider first the case dbad control (which may, for in- ,
stance, be imagined as loading the structure by a bucket that is xWi>W, 3
gradually being filled with water Figs. Xa—d illustrate various wherex=empirical damping factory<1.
possible responses for structures large enough so that the hinges If, on the other handW,—W/<0 or, with damping,xW,
soften one by one. The equiIibriur(p;tatiQ response paths are —W!, ,<0, as shown in Fig. (b), then the kinetic energy gained
marked by single arrows, the dynamic path by double arrows. The pefore point is insufficient for the structure to swing all the way
vertical difference between the load values on the static and dy-y, pointB. The forward movement stops short of poBiat some
namic paths, divided by the associated mass of the structure, rPpoint B’ for which the triangular area above the segmaBt is

resents the acceleration of the load pqint. When pPakis equal toW, or, with damping, toxyW;, and then the structure
rea_ched, th_e structure undergoes_dynamm snapthrough along thBegins to swing back. Without any damping it would permanently
horizontal lineP;AB or 1357. Moving from peale; to point A oscillate betweer; andB’, but since there always is damping,
[Fig. (@], the structure accelerates and at pohnits kinetic e gsgillation will come to a standstill at poiAt Then the load
energy is given by the ared; of the triangleAPP/A, represent-  can pe stably increased to the next p@ak; . So in this case the
ing an energy released by the structure snapthrough gets arrested and the maximum load attainable under
load control isP; . ;.
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Fig. 1. (a)—(c) Snapthrough under load control and load capadity:-(e) snapdown under controled displacement and maximum attainable
deflection;(f) design IoadDiD corresponding to snaptrough caused by dynamic disturbance whose kinetic enérgy is

load control, and then a switch to load control were made, the maxP,, becomes questionable because, under load control, the
structure would exhibit an unbounded snapthrough and the third strycture is unstable during each softening segment. Such a de-
peakP; ., could never be reached. Thus, a displacement control sjgn becomes even more questionable when the structure is large
during the initial loading can reduce the load attainable under enough for snapbacks to occur, in which case it is unstable even
subsequent load control. A switch from displacement control to nder load-point displacement contt@azant and Cedolin 1991,
load control may be destabilizing. Chap. 7.

~ When there are snapbacks, similar phenomena occur under A completely safe design is that for the lowest trough preced-
displacement control. In Fig.(d), after reaching snapback point 1 ing the overall load maximum, mi . But then again the safety

(Ioca;l rgaxmlém ofw), tlre Ioatd, at (t:pnste;rlthIoad-fmfn:hdlspllace- margin would often be unnecessarily high by far. A realistic de-

tmure: ’exg()ergst thyenzlic?;lg{?)g;ﬁl:;isoi?ga:ﬁg dothe esr::?l; d(o) V\(rB(:IEZ rr];Jc sign loadP lies somewhere between mBxand minP/, for a

and Cedolin 1991, Chap.)4Passing from 1 to 3, the structure fnr?nag(,ar structure closer to m& and for a larger one closer to

accelerates, and the complementary endemthalpy given by P . .

area 1231(minus whatever energy has been lost by damping . tTO deuds tt:e properth§|gn I(}adt.ratlonalg/, onelslhogld takfe

gets converted into kinetic energy of the structure. Continuing :;”i at():coun Ie gtjeortne ne 'Tﬁerl ect_lor;]_s an po§S| € yg_a;nlc

below point 3, the structure decelerates and at point 5 the (:omple-bIS ur gnceﬁ_. hn E ruc urlf? Wé ' plas '% (;ngels, a ynaml_(lz lls lg'

mentary energy given by area 354®inus whatever is lost by ance in which the peak loa IS reached only temporarily leads
merely to a permanent deflection but in the case of postpeak

damping has been transferred from kinetic energy of the struc- ! ) . o
ture into its strain energy. For small enough damping, the Snap_softenlng or even snapback it may trigger stability loss and sud-

down in Fig. 1d) does not become arrested because the triangle 461 explosive failure. - _ _
3543 is smaller than the triangle 1231. So the displacement The problem is similar to that of an axially compressed thin
cannot exceed its value at point 1, and the second snapback poingylindrical shell(or a thin spherical domefor which the critical
4 can never be reached. load of a theoretically perfect shellnattainable in practigeis

On the other hand, when area 3543 is larger than area 1234followed by a snapback to a very low residual load. It is now well
(reduced by whatever energy is lost by dampirthen point 5 understoode.g., Baant and Cedolin 199%hat, due to inevitable
cannot be reachefFig. 1(e)]. The structure(except the load  imperfections and dynamic disturbances, one must design the
point) swings back; the load valu@ctually a reaction at the load ~ shell for that residual loadtypically between 1/8 and 1/3 of the
point) increases at constant load-point displacemant upward theoretical critical loagd An effective semiempirical method has
movement toward point)land oscillates until the load value sta- been developed to deal with this problem for shells.
bilizes at point 3. Then, under displacement control, the displace- Taking dynamic disturbances into account usually guards
ment can be increased stably to the next snapback point 4. against geometric imperfections as well. So let us now focus
solely on the latter, characterized by a given kinetic enérthyat
might be accidentally imparted to the structure, e.g., by impact or
vibrations of some carried object.
If the structure is large enough for the load-deflection diagram to  In the light of size effect, the question arises whether the same
involve softening segments, designing for the highest peak, energy& should be considered for all the sizBs Obviously it

Design Load and Its Size Dependence
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should not. For instance, one would not design for a bulldozer hinge region, which is known to be approximately similar to
passing over a pedestrian bridge. So it makes sense to assume thaeam depth in the case of plastic behavia., |; /D~ const).

the larger the structure, the larger is tBevalue that should be
considered in design.
With this intuition, it will be assumed, somewhat arbitrarily,

that structures should be designed for an imparted energy propor-

tional to the strain energy stored in the structure at load Bgak
which is P?/2K; ; therefore

E=mPZ2K; 4)

wherem=constant(size-independepdisturbance factofsuch as
20%) to be decided on the basis of design experigiucebetter,
probabilistic reliability analysis

If the structure is large enough fd?; to be a peak, a safe
design loadPP, is that for which the horizontal “snapthrough”
line shown in Fig. 1e), lying at distance\ P below the peak, cuts
off a triangle of are&. This area may be calculated as follows:

AP? 1 1 1

2K, K Ki K[

1 1 (Pi Pi’)
Ki P—P{\Ki K

©)

whereK; is the slope from load peaR; to the next load trough
P/ . Substituting this into Eq(4), we obtain the design nominal
strength

oR=max oyi(1-\nKi/K), on=Pi/bD  (6)

HereP;, K{ , andE =functions of sizeD and an additional size
effect is caused by the fact that, for different siZgspeaks of
different numberi yield the maximum. Plotting the size effect

curves of logrk versus lodD, one observes, as expected, that the
larger then), the stronger the size effect. Due to differences in the

sharpness of the subsequent spikes, the overall maximyroan
be associated with differemtfor differentD, even ifD is large.

Dependence of Energy Absorption on Structure
Size

The size effects of softening hinges are important not only for the

load capacity of redundant brittle beams and frarf@swell as
plates, which is the focus of this study, but also for the energy

absorption capability of structures, which is the most important
characteristic for the resistance to earthquake, blast, shock, and 6.

impac). The energy dissipated by the failure of a structure \ith
softening hinges is
N N bi Di
W=2, GibD;=D2Y, Gz o *D? )
= =2 DD

where b;D;=cross section area of hingeand the ratios; /D
andD; /D =constant for geometrically similar structures.

So the size effect on the energy absorption capability of a
structure with softening hinges is

We Wy /D 9)

Summary and Conclusions

The main idea of this two-part study is to apply the tech-
nique of asymptotic matching to structures in which the
inelastic hinges lack a yield plateau but exhibit progressive
postpeak softening of the bending moment at an increasing
rotation. The softening is typically caused by propagation
of a tensile cohesive crack from the tensile face or by com-
pressive fracturéor crushing of the material at the com-
pression face. The crack or compression crushing band is
characterized by an approximately constant value of the
energy dissipated per unit area, representing the tensile or
compressive fracture energy of the material.

The postpeak softening of inelastic hinges implies the ex-
istence of a size effect, both on the dimensionless peak
bending momenm, in the hinge and on the dimensionless
postpeak bending stiffne$ of the hinge.

The size effect oM is similar to that amply verified by
tests of the modulus of rupture and is caused by the devel-
opment of a fracture process zone of a certain fixed depth
D, attached to the beam face.

The size effect oR; is due to propagation of a crack, or to
localization of compression crushing into a band of a fixed
width. It causes the downward postpeak sldpeof the
moment-rotation diagram to increase in magnituddas

By contrast, if a softening stress-strain relation with no lo-
calization were assume®, would increase aB?.

In a large enough statically indeterminate beam or frame,
the softening hinges form one by one, i.e., only one hinge is
softening at a time. In that case the load—deflection re-
sponse is simple to solve. It represents a series of spikes
whose width decreases to zero@s-»«. (Whether or not
this kind of behavior occurs for real structures is irrelevant
since the main purpose of solving this simple asymptotic
case is to obtain a support for an asymptotic matching for-
mula applicable through the entire range.

The nominal strength for the peaks of the spikes on the
load-deflection diagram in a large enough structure exhibits
the same size effect as the modulus of rupture, i.e., the size
effect disappears for large enough sizes. The ratio of the
load drop from each peak to the next trough increases as
1/D. This is a very strong size effect, such that a size in-
crease rapidly leads to snapback instabilities and extreme
sensitivity to geometric imperfections or dynamic distur-
bances, similar to those seen in shells.

For comparison, consider a plastic structure in which the
moment-rotation diagrams have a horizontal plateau long enough "
for all the hinges to reach their plastic moment capacity simulta-
neously. In that case, the energy dissipated by the structure is

N N

For large enough structures, it may be dangerous to base
the design on the maximum peak. A safe design load ca-
pacity should be based on the analysis of geometric imper-
fections or dynamic disturbances and lies somewhere be-
bi h; | tween the maximum peak and the subsequent trough—the

Wpl:;_ Upepbbihili:DSizzl GpepbBBBOCDS (8)

where e ,=ductility limit of the plastic material(the strain at
which the plastic material breaksandl; =effective length of the

larger the structure, the deeper below the peak.

WhenD decreases, the troughs and multiple peaks on the
load—deflection curve disappear, i.e., there is only one peak
and no trough Thus, a small enough structure is insensi-
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tive to geometric imperfections and dynamic disturbances, 11. The ratio of the energy absorption capability of a large
and a design based on the maximum load is safe. structure with softening hinges to that of a structure with
9. Eventually, for small enougB, two or more hinges soften plastic hinges decreases inversely to the structurel¥ize

simultaneously. If that is the case, an exact yet simple ana-
lytical formula for the size effect is impossible. The idea
of the present approach is to skip analyzing this complex
case. Instead, an approximate and simple size effect
formula is obtained by asymptotic matchiritjnterpola-
tion”) between the nominal strength formula f&r—0
and the nominal strength formula fBr—o. The former is
easily obtained in the classical way—by plastic limit analy-
sis. References

10. The differences of the present scaling formulas from those
proposed by Bamnt (1984 are caused by two significant Bazant, Z. P. (1984). “Size effect in blunt fracture: Concrete, rock,
differences in the failure behavior and assumpti¢hsThe [metal.”J. Eng. Mech.110(4), 518-535. _ _
failure is not due to propagation of one dominant fracture Baznt, Z. P.(2003. “Asymptotic matching ar_‘alys's of ,Sca“ng of struc-
or damage band but requires several fractures to take place, tural failure due to softening hinges. I: TheoryJ: Eng. Mech.,
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