FRACTURING TRUSS MODEL: SIZE EFFECT IN SHEAR FAILURE OF
REINFORCED CONCRETE

By Zden&k P. BaZant,' Fellow, ASCE

ABSTRACT: The classical truss model (or strut-and-tie model) for shear failure of reinforced concrete beams
is modified to describe fracture phenomena during failure. The failure is assumed to be caused by propagation
of a compression fracture across the concrete strut during the portion of the loading history in which the
maximum load is reached. The compression fracture may consist of a band of splitting cracks that later inter-
connect to form a shear crack or a shear fracture band inclined to the strut. The width of the fracture band is
assumed to occupy only a portion of the strut length and to represent a fixed material property independent of
the beam depth. The energy release from the truss is calculated using two alternative approximate methods: (1)
using the potential energy change deduced from the concept of stress relief zones; and (2) using the comple-
mentary energy change due to stress redistribution caused by propagation of the fracture band across the com-
pressed concrete strut. Both approaches show that a size effect on the nominal strength of shear failure must
exist and that it should approximately follow the size effect law proposed by BaZant in 1984, The physical
mechanism of the size effect is also explained in a clear and simple intuitive manner. Finally, it is shown that
the applied nominal shear stress that causes large initial diagonal cracks to form also exhibits a size effect.

INTRODUCTION

Although much has been learned about the shear failure of
reinforced concrete beams during this century, the physical
mechanism is still not adequately understood. The shear failure
in a quasi-brittle material such as concrete involves progres-
sive evolution of distributed damage and its localization into
fracture, which causes a size effect. This is a major problem
of the mechanics of solids today. It is a problem of great dif-
ficulty, in which simplified mathematical formulations are at
this time inevitable.

The classical approaches to shear design of reinforced con-
crete beams are of two types: (1) empirical equations based
on the concept of strength, which have been used for a long
time in the ACI Code 318 (Building 1985) as well as other
codes [CEB-FIP 1990 (Model 1993), Eurocode EC2, 1991
(Design 1991)]; or (2) formulations based on the lower bound
theorem of the theory of plasticity. These approaches exhibit
no size effect, i.e., the nominal strength of the beam at failure
is predicted as independent of the beam size when geometri-
cally similar beams are considered.

In the literature, there exist over 470 experimental studies
of the shear failure of reinforced concrete beams. Among
them, there exist only 10 studies, most of them recent, that
include the beam size as a variable parameter and provide a
direct evidence of size effect; see Leonhardt and Walter
(1962a,b), Riisch (1962), Kani (1967), Bahl (1968), Taylor
(1972), Walraven (1978, 1981), Chana (1981), Iguro et al.
(1985) [also Shioya et al. (1989); Shioya and Akiayama
(1994)), BaZant and Kazemi (1991), Khorasgany (1994), and
Walraven and Lehwalter (1994). Furthermore, there are very
recent large-size test data by Gopalaratnam at University of
Missouri, Columbia, orally presented at the ACI Convention
in Denver in 1996.

Kani’s (1967) study was the first that provided unequivocal
evidence of a strong size effect. All the test data available in
the literature in the mid 1980s, which included several hundred
test series, were statistically analyzed for the evidence of size
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effect by BaZant and Kim (1984, 1985), BaZant and Sun
(1987) and BaZant and Cao (1986). Because test data for one
beam size from one laboratory had to be compared to test data
for another beam size from another laboratory, and because
most studies varied simultaneously several parameters and did
not adhere to geometrical scaling, it came as no surprise that the
scatter was very high. Nevertheless, a size effect was clearly
discernible. With the recent data, the existence of a strong size
effect [e.g., Mihashi et al. (1994), BaZant et al. (1994)] is now
clear and has become widely accepted, contrary to the situation
a decade ago. The problem is how to explain it and model it.

To explain the size effect, three theories have been pro-
posed: (1) a Weibull-type theory of random strength; (2) the
theory of fracture energy release [based on BaZant (1983,
1984)]; and (3) the theory of fractal character of crack surfaces
or microcrack distributions (Carpinteri et al. 1994, 1995a,b).

Weibull’s theory (1939) [which underlies the power law
used in the Japanese code for shear failure of beams (Design
1986; Standard 1991; Okamura and Maekawa 1994)] is the
classical explanation of size effect. But it applies only to struc-
tures that fail at the initiation of macroscopic fracture from a
microscopic flaw, for example, brittle metallic structures. This
theory has been shown (BaZant et al. 1991; BaZant and Xi
1991) to be inapplicable to structures that fail after large stable
growth of damage or fracture, which is the case for concrete.
The fractal theory is not viable because it was shown that the
mathematical consequences disagree with the experimental ev-
idence, and the fractal hypothesis does not match the known
physical mechanism (BaZant 1995a,b, 1996, 1997). That
leaves the energy release theory.

There are several clues indicating that the energy release
theory ought to apply. It is now well understood that whenever
the load-deflection diagram of a structure exhibits postpeak
softening (Fig. 1) and the softening is not caused by overall
buckling of the structure, damage localization must be taking
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FIG. 1. Dependence of Effective Stress-Strain Diagram of
Compression Strut on Beam Size




place and must cause a size effect. As shown by dimensional
analysis and the theory of similitude, when the criterion of
failure of a material is expressed solely in terms of a critical
stress or critical strain, no size effect can exist, but when the
material failure criterion is expressed in terms of energy, as in
fracture mechanics, the size effect must occur (BaZant 1994).
An asymptotic analysis of the general failure conditions ac-
cording to quasi-brittle fracture mechanics independently again
shows that a size effect must exist, and application of the tech-
nique of asymptotic matching yields a formula for the size
effect (BaZant 1995a,b, 1996, 1997a). The nonlocal finite el-
ement models and nonlinear fracture mechanics provide fur-
ther support (BaZant et al. 1994),

For the diagonal shear failure in particular, a fourth type of
explanation was proposed by Reineck (1991), Collins and
Mitchell (1991), and Collins et al. (1996). The hypothesis was
that (1) the width of the major cracks at failure is approxi-
mately proportional to the beam depth (size); (2) the failure
load depends on the transfer of shear stress across the cracks
due to friction and aggregate interlock; and (3) the increase of
crack opening reduces the shear stress transfer capability. Of
course, whenever there is any dependence of the stress on the
displacement (rather than the strain), in this case the crack
opening, a size effect is engendered. However, there are four
arguments indicating that the foregoing hypothesis cannot ex-
plain the main source of the observed size effect:

1. The crack width is not proportional to the beam depth
and is governed mainly by the spacing and size of re-
inforcing bars (Hsu and Zheng 1996).

2. The main cracks at the moment of failure run predomi-
nantly in the direction of the compressive principal
stress, which is the essential assumption of the truss
model or strut-and-tie model [e.g., Schlaich et al.
(1987)], and so the major cracks (Fig. 2) transmit no
significant shear stresses that would matter. (Considering
transmission of significant shear and normal stresses
across the diagonal cracks would be tantamount to re-
jecting the truss model, or strut-and-tie model.)

3. The opening of the diagonal shear crack at failure of a
simply supported beam is the widest at the bottom of the
beam while the failure of the material occurs in the com-
pression zone near the top of the beam.

4. The crack opening width, anyway, does not control the
maximum load (it controls the cracking load), and con-
sequently, because a widely opened diagonal crack forms
before the maximum load, the opening width of this
crack must be relevant to the cracking load rather than
the failure load.

Applying the condition of energy balance, BaZant and Kim
(1984) introduced the size effect law as a correction of a
strength-based formula for the nominal shear strength and
showed that it allows a distinctly better statistical agreement
with the existing test results. This study was extended by Ba-
Zant and Sun (1987). For prestressed concrete and for punch-
ing of slabs, it is further extended by BaZant and Cao (1986,
1987). However, a simple, intuitively clear physical explana-
tion of the mechanism of size effect in shear failure has not
been given. To offer such an explanation is the objective’of
the present study. However, the objective is not to propose
definitive design formulas and procedures. This will require
extensive comparisons with the existing test data and with
other design formulas. The goal of the present study is to elu-
cidate in the simplest possible manner the physical mechanism
of size effect by using fracture mechanics. Fracture mechanics
is a theory in which it is recognized that, if the strength limit
of the material has been attained, a break of the material will
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FIG. 2. Various Types of Localized Fracture of Compression
Struts and Stress Relief Zones (Unshaded)

occur if and only if the structure-load system can supply the
energy required to cause the break.

The analysis that follows exploits the classical truss model,
which was proposed by Ritter (1899) and Morsch in 1902
(Morsch 1922) and was experimentally further verified by
Whithey (1907, 1908), Talbot (1909), and others. In this
model, approximately straight and parallel cracks are assumed
to form in the direction of the compressive principal stress
before the maximum load is reached (Fig. 2). As is now well
understood, the principal tensile stress does not get reduced to
zero, since the cracks are cohesive cracks capable of trans-
mitting crack-bridging tensile stresses. However, the crack-
bridging stresses are certain to be much smaller than the tensile
strength of concrete, while the magnitude of the compressive
stresses in the compressed struts of concrete between the par-
allel cracks must be at or near the compression strength limit,
which is about 10 times higher than the tensile strength. It
follows that the crack-bridging stresses, while nonzero, must
be negligible in comparison to the compressive stresses. This
fact justifies the truss model, recently often called the strut-
and-tie model.

This simple but powerful model was improved by introduc-
tion of rational criteria for determining the angle of the dom-
inant diagonal cracks. These criteria were based first on energy
minimization (Kupfer 1964) and later on Mitchell and Col-
lins’s (1981) adaptation of Wagner’s (1929) condition (for web
buckling in steel girders) stating that the average strains in the
stirrups, longitudinal steel bars, and diagonal compressions
struts must be compatible [this was called the compression
field theory; see also Collins (1978) and Vecchio and Collins
(1986)]. Another version of the truss model extending Kani’s
concept of shear transmitting teeth was presented by Reineck
(1991).
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Thiirlimann (1976) and Nielssen and Braestrup (1975) pre-
sented a strict plasticity formulation of the truss model based
on the normality rule, yield surfaces exhibiting slip with di-
latancy, and the lower bound theorem of the theory of plastic-
ity [see also Marti (1980, 1985a,b)]. Concrete, however, is not
a plastic material. The plastic limit analysis does not apply to
concrete, since concrete exhibits strain softening, which is a
phenomenon describable only by the energetic failure concept
of fracture mechanics. Therefore, the plastic limit analysis can-
not capture the effect of structure size. This classical approach
implies the failure to occur simultaneously along the entire
failure surface (as a single-degree-of-freedom mechanism),
which is a basic (but usually unstated) hypothesis of plastic
limit analysis. In reality, the failure occurs progressively, the
more so the larger the structure. This calls for a fracture me-
chanics approach.

In particular, a diagonal compression strut cannot fail si-
multaneously along the entire length and width. Instead, it fails
by progressive fracture of concrete within a certain critical
zone occupying only a portion of the length and width of the
strut. How large a portion depends on the beam size. Further-
more, the crushed zone propagates across the strut while the
rest of the strut is getting unloaded, releasing its energy and
thus driving the failure. Hence, the apparent compression
strength of the strut cannot be constant but must decrease with
an increasing length of the strut (or the beam depth).

Fortunately, however, the truss model need not be discarded.
It suffices to modify it by introducing the energetic concept of
fracture mechanics. How to do this in a simple manner is the
idea of the approximate analysis that follows. This analysis
avoids a rigorous solution of the nonlinear boundary value
problem, which can be accomplished only numerically, e.g.,
by finite elements. Such a “‘brute-force’’ numerical solution is
appropriate for checking a design but can provide neither in-
sight into the failure mechanism nor simple formulas suitable
for design.

BASIC DEFINITIONS AND HYPOTHESES

The size effect represents the size dependence of the nom-
inal shear strength of a beam, which is defined as

v, = V,/bd )

where V, = value of the applied shear force V at the ultimate
(maximum) load; d = depth of the longitudinal reinforcement
below the top face of the beam (Figs. 2 and 3); and b = width
of the rectangular cross section of the beam. For the sake of
simplicity, the beam is considered to have a rectangular cross
section, although a generalization to flanged cross sections
would not be difficult. To separate the size effect from other
effects, one must compare beams of different sizes that are
geometrically similar.

The shear span a is defined in Fig. 3(b) for a simply sup-
ported beam with two symmetric concentrated loads. When a
uniform load is present, the shear span may be defined as a =
M/V, where M is the bending moment in the critical cross
section, leaving the analysis that follows unchanged.

Hypothesis 1. The truss model, which simplifies the problem
by making the stresses statically determinate and easy to cal-
culate, is assumed to be a valid approximation.

If the truss model is valid, the failure can occur only by
ductile failure (i.e., yielding) of the steel ties or longitudinal
bars, or by brittle failure of the compression struts. The former
type of failure is well understood, and we are interested only
in the latter. Assuming the compression struts to be straight is
a simplification (if the shear force V varies, it would be more
accurate, but more complicated, to consider a compression
arch).

If a yield or strength criterion were applicable, the concrete
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FIG. 3. (a) Compression Strut in Beam without Stirrups and
Fracture Zone Propagating across Compression Strut during
Failure; (b) Stress Relief Zones Caused by Fracture Band Prop-
agating across Compression Strut in Beams of Different Sizes

would fail simultaneously everywhere in the strut. However,
because concrete is brittle and exhibits postpeak strain soft-
ening in compression, the failure of concrete must localize into
a fracture zone. The size of this localized zone is independent
of the beam size and is decided mainly by the size and spacing
of material heterogeneities (especially the large aggregate
pieces) and by the value of Irwin’s characteristic length of the
material, [ = EG,/(f})* (introduced for concrete by Hillerborg),
where E = Young’s modulus, G, = fracture energy, and f; =
tensile strength. So, the following, essential, hypothesis is rea-
sonable.

Hypothesis II. The compression strut fails only within a por-
tion of its area, and the depth of the localized failure zone is
independent of the beam size (Fig. 2).

Hypothesis 1II. The failure modes (or failure surfaces) at
maximum load of beams of different sizes are geometrically
similar.

Hypothesis III means that, for example, the shear span a
[Fig. 3(b)] and the length ¢ of the material failure zone or
fracture zone at maximum load are geometrically similar. In
other words, the ratios a/d and (for large enough sizes) c¢/d are
assumed to be constant. This hypothesis is of course applicable
only within a certain range of sizes. However, experience from
testing as well as finite element analysis indicates that this
range covers the size range of practical interest.

The localized failure of compression strut, postulated in hy-
pothesis II, may occur in various ways (Fig. 2). Most likely,
the failure zone at maximum load consists of a band of split-
ting cracks in the strut direction, propagating laterally (BaZant
and Xiang 1996), which is what is considered in the following.
This band may be located anywhere along the strut length
[Figs. 2(a,c,d)]. The location of this band within the strut is
immaterial for the analysis that follows, although we will pic-
ture the location on top [Fig. 2(a)], which seems most likely.
In postpeak deflection, the splitting cracks either interconnect
and produce a failure that looks like a shear failure [Figs.
2(b-d)], although the failure did not start by shear, or they
lead to onset of compression crushing of concrete [at the end
of the test; however, after the load has been reduced to zero,



compression crushing is observed only in T-beams; Leonhardt
(1977)]. Alternatively, a propagating shear fracture, inclined
with respect to the strut [Figs. 2(b,c)], may already exist.at the
maximum load. Which of these detailed fracture modes takes
place is immaterial for the simplified analysis based on the
truss model. They all lead to mathematically equivalent results.

Denying that at maximum load the concrete is fracturing
due to compression in the struts would be tantamount to de-
nying the validity of the truss model (strut-and-tic model) it-
self. If this model is valid, then (1) diagonal tensile cracks
must form before the maximum load; (2) only negligible ten-
sile and shear stresses can exist on the planes of these cracks;
and (3) the compression struts between these cracks must be
aligned in the direction of the compressive principal stress in
concrete. Only under these conditions can the concrete, stir-
rups, and longitudinal bars be treated as a truss.

The energy release due to fracture propagation can be cal-
culated in two ways: (1) from the change of the potential en-
ergy of the structure-load system at constant displacement; or
(2) from the change of the complementary energy of the struc-
ture at constant load [see, e.g., BaZant and Cedolin (1991)].
We will examine both approaches in a simplified manner and
show that they give approximately the same results.

ANALYSIS BASED ON STRESS RELIEF ZONE AND
POTENTIAL ENERGY

Longitudinally Reinforced Concrete Beam without
Stirrups

The typical pattern of cracks forming during the failure of
a simply supported beam is seen in Fig. 3(a) (which shows
the left-end portion of the beam only). Although, after the
failure, only one final diagonal crack emerges, cracks of var-
ious orientations form during the loading process. The first
cracks caused by shear loading are tensile cracks of inclina-
tions of approximately 45°. On approach to the maximum
load, these cracks interconnect and form a larger crack running
approximately along the line connecting the application points
of the load P and the reaction V in Fig. 3(a). This major crack
is free of shear stresses and has approximately the direction
of the maximum principal compression stress oy.

According to the truss model (or strut-and-tie model), we
may imagine that most of the load is transferred through the
shaded zone called the compression strut (in the case of dis-
tributed load it would be more accurate to consider a com-
pressed arch). The normal stress in the direction orthogonal to
the strut is essentially zero, and the material can expand freely
in that direction.

The failure behavior is approximately idealized as shown in
Fig. 3(b) for two geometrically similar beams of different
sizes. Although for calculation purposes the compression strut
is assumed to represent a one-dimensional bar connecting the
points of application of P and V, it has a finite effective width,
denoted as kd [Fig. 3(b)], where d is the depth to the rein-
forcement and k& is approximately a constant, independent of
the beam size.

As suggested by some experimental observations and sup-
ported by finite-element results, the progression of failure at
maximum load is caused by onset of compression failure of
the concrete near the upper end of the compression strut, pro-
vided that the longitudinal bar is anchored sufficiently so that
it cannot slip against concrete near the beam support. Aside
from the fact that the compression fracture occurs only within
a portion of the length of the strut, the basic premise of the
present analysis is that the width 4 of the fracture zone in the
direction of the strut is, for a given concrete, approximately a
constant (which is probably approximately proportional to the

maximum aggregate size and also depends on other material
characteristics).

The fact that A, in contrast to the length and width of the
stress-relieved strip in the strut [the white strip 56785 in Figs.
3(b,c)], is not proportional to the beam size is the cause of the
size effect. If and only if the depth A of the fracture band were
proportional to the beam size, there would be no size effect.
For calculation purposes, we will assume that the compression
failure of the material consists of a fracture band 12341 [Fig.
3(b)] growing vertically across the strut upward or downward,
or both (which of these, is immaterial for the present analysis).

Microscopically, the compression fracture may be regarded
as internal buckling of an orthotropically damaged material
(BaZant and Xiang 1996). The fracture process begins by for-
mation of dense axial splitting microcracks in the direction of
maximum compression, which reduces the transverse stiffness
of the material, thus causing the microslabs of the material
between the microcracks to buckle laterally. This idea, which
is an adaptation to damaging materials of the idea proposed
by Biot (1965) for elastic materials, has recently been pursued
in detail elsewhere (BaZant and Xiang 1996). However, these
details are not needed for the present analysis. Neither is it
important that the fracture band is pictured propagating ver-
tically. If it propagated across the strut in an inclined or hor-
izontal direction, the calculation results would be equivalent.

The growth of the fracture band, which causes the load-
deflection curve to reach a maximum load and subsequently
decline, relieves the compression stress from strip 56785
shown in Fig. 3(b). The reason that the boundaries of the stress
relief zone, that is, the lines 16, 25, 38, and 47, are parallel to
the direction of the strut is that the material is heavily weak-
ened by cracks parallel to the strut. Otherwise a more realistic
assumption would be a triangular shape of the stress relief
zone, as considered in the case of tensile failures (BaZant
1984; BaZant and Cedolin 1991, chapter 13); see the expla-
nation in Appendix I.

Now, how to make the size effect intuitively clear with min-
imum calculations? To this end, note that the area of stress
relief zone 56785 in Fig. 3(b) is proportional to ca, where
¢ is the length of the fracture band at failure. Since ca =
(c/d)(ald)d?, and c/d and a/d are constants independent of d,
the area of stress relief zone is proportional to d°. Because the
average strain energy density in the strut is proportional to the
nominal shear stress at ultimate load vZ, the total energy re-
lease from the stress-relieved strip 56785 of the strut is pro-
portional to v2d”. However, assuming that the energy dissi-
pation per unit volume of the fracture band is constant, the
energy dissipation in the entire fracture band is proportional
to d, because the area of the fracture band is proportional to
ch = (c/d)hd. Therefore, varying the beam size d, v2d® must
be proportional to d, which means that v, must be proportional
to 1/\/d. This represents a size effect, in fact a very strong
size effect (corresponding to linear elastic fracture mechanics).

In summary, the cause of the size effect is simply the fact
that the energy release from the structure is approximately pro-
portional to vid?, whereas the energy consumed by fracture is
approximately proportional to d.

Let us now do the calculations in detail. The condition that
the entire shear force P must be transmitted by the compres-
sion strut yields for the axial compression stress in the strut
the following expression:

P L A Y @
*“ bkdsinOcos® k \d a

where 6 = inclination angle of the compression strut from the
horizontal (note that tan 8 = d/a). The strain energy density in
the strut is 02/2E,, where E, = Young’s modulus of concrete.
The volume of the strut is abc (where b = beam width). There-
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fore, the loss of potential energy from the beam caused by
stress relief during the formation of compression fracture band
at constant load-point displacement is, approximately:

2 2 2
I, = Te gbe = ——2t (Z + ‘_1> abc 3)

2E, 2Ek*\d a

The minus sign expresses the fact that this is an energy loss
rather than gain. According to the principles of fracture me-
chanics [see, e.g., BaZant and Cedolin (1991), section 12.1],
the energy release rate due to the growth of the fracture band

is obtained as
oIl viab (a d :
=-|=]| = =+ = 4
[ dc :I,, 2E.k? (d a) @

The energy dissipated by the fracture band may be ex-
pressed on the basis of the fracture energy G, characterizing
the axial splitting microcracks in the fracture band. The length
of these cracks is A (width of the band), and their average
spacing is denoted as s.. The number of axial splitting cracks
in the band is c/s.. Thus the total energy dissipated by the
fracture band is W, = (¢/s.)bhG;. Differentiating with respect
to ¢, we find that the energy dissipation in the fracture band
per unit length of the band, AR, is

== Gf (&)

In this equation, however, it would be too simplistic to con-
sider A as constant through the entire evolution of the com-
pression fracture band. Naturally, the fracture band must ini-
tiate from a small zone of axial splitting cracks. The length of
these cracks first extends in the direction of the strut until they
reach a certain characteristic length h, Only then does the
fracture band grow across the strut at roughly constant width
h = hy [see the intuitive picture of the subsequent contours of
the fracture zone in Fig. 3(a)]. Such behavior may be simply
described by the equation

c

h=h ©6)

° we + ¢
where h,, w, = positive constants, h, representing the final
width of the fracture band. Thus, strictly speaking, our hy-
pothesis of a constant width of the fracture band (hypothesis
II) means that the final width h, rather than % is a constant.
Constant w, will surely have different values for different con-
cretes (e.g., it will probably increase with the maximum ag-
gregate size d, and with Irwin’s characteristic length /=
EG,If!*, which necessitates further study).

The increase of R with ¢, as described by (5) with (6),
represents what is called the R-curve behavior [because R rep-
resents the resistance to fracture; see, e.g., BaZant and Cedolin
(1991), BaZant and Planas (1997)]. The R-curve behavior in
tensile fracture is also caused by the growth of the fracture
process zone size. Here, however, this growth is expressed
indirectly in terms of the length of the axial splitting cracks
in the fracture band.

If, alternatively, the peaking of the load is caused by prop-
agation of a shear crack of the kind shown in Fig. 2(b), one
should introduce the fracture energy of the compression-shear
crack I'; and write the critical energy required for crack growth
as

c

R=T,b )]

wo + ¢

But this is equivalent to (5) with (6) if one sets I'; = G, hy/s.,.
So, from now on we will consider that the peaking of the load
is due to propagation of a band of splitting cracks, and the
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FIG. 4. Size Effect in Shear Fallure of Concrete Beam in Terms
of Logarithm of Either v, or v, — v,

solution for the case of peaking due to compression shear frac-
ture will be automatically obtained by replacing hy/s. with
I'/G,.

The balance of energy during equilibrium propagation of
the fracture band requires that

G=R (8)

Substituting here the expressions in (4)—(6), one obtains the

result
-2
d
U =, <1 + d_o) 9

in which the following notations have been made

-1
d a  d
dy = wy E; U= K, ((—1 + ;) (10a,b)
BT ok [P dd
K.=VEGs; ¢, =k wos. @ld (11a,b)

Here the expression for K, is that for the fracture toughness
(the critical stress intensity factor) of the axial splitting micro-
cracks. An important point is that, because of our assumptions
(constant c/d, a/d), the values of do, v, and ¢, are constant,
independent of size d. The value v, is the limiting (asymptotic)
value of the nominal shear strength for very small size d.

Eq. (9) represents the size effect law proposed by BaZant
(1983, 1984). This law was introduced into the analysis of
diagonal shear failure by BaZant and Kim (1984, 1985), how-
ever, on the basis of a more general and less transparent ar-
gument.

By the same calculation procedure, it can also be easily
shown that if, contrary to hypothesis II, the width A of the
fracture band were proportional to d instead of obeying (6),
there would be no size effect. But if 4 would vary with d other
than proportionally, there would always be a size effect.

If the constant w, were taken as 0, one would have vy, x
d~"?, which is the size effect of linear elastic fracture me-
chanics (LEFM), representing the strongest size effect possi-
ble. However, most experimental data exhibit a weaker size
effect, which implies that the constant w, should be considered
finite.

The plot of the size effect curve given by (9) is shown in
Fig. 4(a). This curve represents a smooth transition from a
horizontal asymptote corresponding to the strength theory or
plastic limit analysis to an inclined asymptote of slope —1/2,
corresponding to LEFM. The approach to the horizontal as-
ymptote means that the plasticity approach, that is, the truss
model, can be used only for sufficiently small beam sizes d.

For very small beam sizes d, we may substitute in (2)
0. = f% = compression strength of the strut, and replace v, by
plastic nominal strength u,. From this we can solve

-1
v, = kf? (g + S) (12)

which is equivalent to (10). Thus, the size effect law in (9)
can be alternatively written as




1+4
do

d

) (

-1/2
) (13)
which shows also the effect of the relative shear span a/d on
the nominal shear strength. Note that f cannot be expected to
represent the uniaxial compression strength f. of concrete,
since the progressively fracturing concrete in the strut is under
high transverse tensile strain in the other diagonal direction
and has been orthotropically damaged by cracking due to pre-
vious high transverse tensile stress (Hsu 1988, 1993). So f? is
a certain biaxial strength of concrete, depending both on the
uniaxial compression strength f! and the direct tensile strength
fi. This dependence needs to be calibrated by shear tests of
beams.

It is interesting to determine the ratio to the nominal
strength for bending failure a%, The ultimate bending moment
in the cross section under the load P is M, = Va = o%bad.
From the moment equilibrium condition of the cross section
under the load P we also have M, = (f,pbd)k,d, in which f,
is the yield strength of the longitudinal reinforcing bars, p is
the reinforcement ratio (which means that pbd is the cross
section area of the longitudinal reinforcing bars), and k,d rep-
resents the arm of the internal force couple at the ultimate load.
As is well known, k, is approximately constant. Equating the
expressions for M,, we obtain 0% = pf,k,d/a. Considering now
(13), we conclude that

v, = kf? (f; +

This equation shown that the ratio of the nominal bending
strength to the nominal shear strength of the beam decreases
when the relative shear span a/d increases, which confirms a
well-known fact. It means that slender beams, for which a/d
is large, fail by bending, while deep beams, for which a/d is
small, fail by shear. However, as is clear from (14), the relative
shear span a/d at the transition between the shear and bending
failures is not constant but is larger for a larger beam size d.
To express it precisely, we set

1s)

in (14). This furnishes a cubic equation for the transitional
shear span a/d, which will obviously exhibit a size effect.

There is a question whether the progressive fracturing of
concrete reduces the compression stress all the way to zero. It
could be that the compression stress o, is reduced to some
small but finite residual strength o,. However, this seems re-
alistic only when we consider beams with stirrups, which pro-
vide some degree of confinement. Without confinement, a fi-
nite residual strength might not exist. If o, were nonzero for
the present case, it would have the effect of adding a constant
term to the right-hand side of (9).

The tensile strength of concrete f; has played no direct role
in the foregoing analysis. The tensile strength is not a material
parameter in LEFM, nor in the R-curve model of nonlinear
fracture. It does appear in the cohesive (fictitious) crack model

b
ON=1,

oy pfhks d? d or the crack band model. However, those models are too com-
o kf? I+ 1+ % (14) plicated for achieving a simple analytical solution. The tensile
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strength, of course, controls the initiation of the inclined shear
cracks; however, their growth is governed by fracture energy.
In the present analysis we take the view that the inclined
cracks due to shear loading have already formed before the
maximum load and thus no longer grow during failure.

Does shear stress transmission across cracks due to friction
and aggregate interlock play any role? It could, although ac-
cording to the present analysis it cannot be significant. As
shown in Fig. 3(a), only cracks rather curved within the area
of the compression strut can be subjected to shear and normal
loading. Their capability of shear stress transmission decreases
with the crack width, and the crack width may be assumed to
increase with an increasing beam size, which obviously would
also introduce a size effect [this idea was proposed by Reineck
(1991)]. The cracks are the most inclined to the compression
strut direction and are opened the most widely at the bottom
of the beam. However, the maximum load appears to be con-
trolled by progression of compression fracture near the major
crack at the top of the beam. For this reason, the effect of
crack opening on the shear stress transmission across cracks
can hardly play a major role in the size effect on the maximum
load.

Beam with Stirrups

Consider now a beam with stirrups (Fig. 5). The stirrups
cause the diagonal cracks due to shear to be more densely
distributed. The first hairline cracks, shown by the thin dashed
lines in Fig. 5(a), form near the neutral axis (with inclination
about 45°) before the maximum load. These cracks later in-
terconnect and form continuous major cracks at inclination
angle 8 with the horizontal (Fig. 5). These cracks run in the
direction of the maximum principal compressive stress o,
transmitting crack-bridging normal and shear stresses that are
negligible compared to the compressive stresses in the struts
between the cracks. This means that the resistance of concrete
to diagonal tension may be neglected, o; =~ 0. This makes the
truss statically determinate. It is this circumstance that makes
the well-known simple analysis of the truss model possible.

The failure at maximum load is assumed to be caused by
the progressive fracture of concrete in the compression struts
between the major inclined cracks. Similar to beams without
stirrups, a fracture band that consists of dense axial splitting
microcracks first widens to its full width 4 and then propagates
sideways as shown in Fig. 5(b). For the case of a positive
bending moment, this fracture band forms near the top of the
beam and may be assumed to propagate horizontally, left or
right, or both. The direction of the propagation of the fracture

band is actually not important for the present analysis, and the
same results would be obtained if the band propagated at other
inclinations to the compression strut. An important point, how-
ever, is that the final length h, of the axial splitting cracks,
that is, the final width A, of the band, is a material property,
independent of the size of the beam. If the width A, of the
band were proportional to beam depth d, there would be no
size effect. Since it is less than proportional to d, there must
be size effect.

Thus, the cause of the size effect is the localization of the
compression failure of the strut into a fracture band of a fixed
width and the growth of this band across the strut.

An important point is that the stirrups as well as the lon-
gitudinal steel bars are not necessarily yielding during the fail-
ure at maximum load. They might not have yielded before the
fracturing of the strut began, or they may have yielded and
unloaded. There is no reason why the yielding of steel should
occur simultaneously with the progressive compression frac-
ture.

The formation of the fracture band 12341 [Fig. 5(b)] may
again be assumed to relieve the compression stress from the
entire length of the compression struts in the region 12561
[Fig. 5(b)]. This causes a release of strain energy from the
compression struts, which is then available to drive the prop-
agation of the fracture band. This represents the mechanism
of failure at maximum load.

With the stress relieved from the aforementioned compres-
sion struts, the beam acts essentially as shown in Fig. 5(c), as
if there were a gap in concrete (provided the residual strength
of crushed concrete is neglected). However, since the steel is
not in general yielding, this does not represent a failure mech-
anism. A failure mechanism can be created only when a suf-
ficient number of compression struts are crushed as shown in
Fig. 5(d), in which case even nonyielding bars permit free
movement because the bending resistance of the bars is neg-
ligible. However, this type of collapse mechanism corresponds
to a state at which the load is already reduced to a very small
value [such as state III in Fig. 5(e)]. Thus, the stress relief at
maximum load does not imply the structure to become a mech-
anism.

First let us explain the size effect mechanism in the simplest
possible terms. The area of the compression struts from which
the compression is relieved, that is, area 12561 in Fig. 6, is
proportional to cd, which is equal to (c/d)d> But since the
failure is assumed to be geometrically similar for beams of
different sizes (shown in Fig, 6), ¢/d is a constant, and so the

B - Crushing
) band
(area ~ d)

R - Stress
relief
strip

(area ~ d?)

FIG. 6. Stress Redistribution into Cross-Hatched Portion of Compression Strut Caused by Propagation of Fracture Band, for Beams

of Different Sizes (Simply Supported)
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area of the stress relief zone is proportional to d*. The strain
energy density before the stress relief is proportional to
v2/2E,, and so the total energy release is proportional to
v2d® The area of the fracture band is proportional to ch =
(c/d)hd. Since both h and ¢/d are constant for beams of dif-
ferent sizes, the area of the fracture band is proportional to d,
and so is the energy dissipated in the fracture band. So, con-
sidering the failures of geometrically similar beams of differ-
ent sizes, v2d® must be proportional to d, which means that
v, must be proportional to 1/\/d. Again, same as for the beam
without stirrups, we thus obtain a size effect, and it is the
strong size effect of LEFM. In practice, the size effect for
smaller beam sizes is weaker because of the R-curve behavior
of the fracture band 12341.

We assume the stirrups to be uniformly distributed
(smeared). Equilibrium of the forces in the compression struts,
ties, and longitudinal bars [Figs. 6 and 5(f)] requires that

F. ybd 1 _ 2y,
bdcos®  sin®bdcos®  sin 20

(16)

g, =

where 6 = inclination of the compression struts; F, = com-
pression force in the strut; and o, = compression stress trans-
mitted by the strut (which in general is not equal to the stan-
dard compression strength . of concrete and depends on the
size of the beam in a manner to be determined). Equilibrium
on an inclined cross section of the beam parallel to the com-
pression struts further requires that

o, = (Vs/A,d)tan § = v,sb tan 6/A, an

where A, = cross section of the stirrups; s = spacing of the
stirrups; and o, = tensile stress in the stirrups, which in general
is not equal to the yield stress. The stress in the longitudinal
bars is obtained from the moment equilibrium condition in a
cross section and is o, = M/A,k,d, in which M = bending
moment, A; = cross section area of the longitudinal bars, and
k,d = arm of the internal force couple in the cross section. It
is assumed that the steel bars are designed strong enough to
resist stresses o, and o, safely.

We do not attempt to determine the angle 6 of the diagonal
cracks and the struts by fracture analysis, since the diagonal
cracks delineating the struts are assumed to be formed before
the maximum load, and not during failure. Rather we adopt
the method introduced into the truss model by Collins (1978)
in his compression field theory, in which he used the compat-
ibility condition for the average strains in the truss in a similar
way as Wagner (1929) used the compatibility condition for
approximate analysis of the shear buckling of the webs of steel
beams (Collins and Mitchell 1981). The average strains of the
truss are defined as the strains of a homogeneously deforming
continuum that is attached to the joints of the truss at the nodes
(tops and bottoms of the stirrups). According to the Mohr cir-

cle shown in Fig. 5(f) (in which € denotes the strains, and g,
is the strain in the longitudinal bars), the overall compatibility
of the average strains of the struts, the stirrups, and the lon-
gitudinal bars requires that

€, —& _ (Gv/E:) _ f(o-c)
& — ¢ (0,/E) —f(00)

tan’ = (18)

Here the strains have been expressed in terms of the stresses
assuming the steel not to be yielding and denoting by f(o.)
the stress-strain diagram of concrete. [For the precise method
in which the strains entering (18) are calculated, see Collins
(1978) and Collins and Mitchell (1981)]. The foregoing cal-
culation, of course, requires that the diagonal cracks and the
struts be aligned with the direction of the compressive prin-
cipal strain, which coincides with the direction of the com-
pressive principal stress.

The fracture analysis begins by expressing the potential en-
ergy change (Fig. 7) caused by the formation of the fracture
band of length ¢ at constant load-point displacement

_ 2
(c. — o) b

IL=- 2E,

cd a9

The minus sign reflects the fact that this is an energy loss
rather than gain.

The stress o, in the foregoing equation represents the resid-
ual compression strength of the fracture band in concrete. In
this study the residual compression fracture strength o, is con-
sidered an empirical property. However, it can be mathemati-
cally expressed on the basis of the concept of internal buckling
of a material heavily damaged by axial splitting microcracks,
as proposed in BaZant and Xiang (1996).

The energy release rate may be calculated as

_ a_IIc _ (o, — Gr)2
= l: 3 :Iu = —ZEC bd (20)

The energy dissipation rate (fracture resistance) of the fracture
band is again given by (5), i.e., R = G;bh/s., in which the
width of the fracture band may be assumed to evolve again
according to (6), i.e., h = hoc/(wy + ©).

Substituting now (16) and (17) into (20), and using the frac-
ture propagation criterion, i.e., ‘¢ = R as in (8), we obtain an
equation that can be easily solved for v, This provides the
result

=12
d
U= Yy <1 + 170> + v, @20

in which we introduced the notations

do = wy 2 (22)

C
sin 20 h c
U="—0i 1=K / 2s;vo \/; sin 20 (23a,b)

The size effect described by (21) is plotted in Fig. 4 in two
ways, in terms of log v, and of log(v, — v,). By virtue of the
residual compression strength, the nominal shear strength of
the beam tends at infinite size to a finite value. An equation
of the form of (21) was proposed on the basis of general con-
siderations in BaZant (1987).

The question whether the confinement of concrete by stir-
rups suffices to cause the residual compression strength o,, and
thus the residual nominal strength v,, to be nonzero needs to
be studied further.

JOURNAL OF ENGINEERING MECHANICS / DECEMBER 1997 / 1283




ANALYSIS BASED ON STRESS REDISTRIBUTION
AND COMPLEMENTARY ENERGY

The truss model also allows an easy alternative calculation
of the energy release on the basis of complementary energy
II*. For the sake of simplicity, we now consider the residual
strength v, = 0, although a generalization to finite v, would be
feasible.

In the truss model, we isolate the representative cell limited
by the shaded zone in Fig. 6. This cell must alone be capable
to resist the applied shear force V. The fracturing of concrete
in the band 12341 (Fig. 6) is considered to relieve the stress
completely from the inclined strip 12561. If the applied shear
force V is kept constant, the stress in the cell must redistribute
such that all of the compression force in the inclined strut is
carried by the remaining strips, shaded in Fig. 6. After that,
all of the complementary energy in concrete in the cell is con-
tained in the shaded strips and (upon noting the energy density
given by the shaded area in Fig. 7) may be expressed as
I1* = (¢212E,)V in which V' = b(d cos 8 — ¢ sin 8)d/sin 6 =
volume of the shaded strips (Fig. 6), G. = F./b(d cos 6 —
¢ sin 0) = average normal stress in the direction of the strut,
and F, = V/sin 8 = y,bd/sin 8 = compression force transmitted
by the strut. This yields, for the complementary energy after
the stress redistribution at constant shear force V, the expres-

sion
2
I = ( v,,d) bd .

sin 8/ 2E.(d cos 8 — ¢ sin 0)sin 6

As is well known from fracture mechanics [e.g., BaZant and
Cedolin (1991), section 12.1[, the energy release rate is ob-
tained by differentiation of the complementary energy at con-
stant load (or constant shear force V)

oIl* vibd®
—3 < —4 L 2
€ [ ac :IV 2E, sin*0(d cos 8 — c¢ sin 8)° 25

This must be equal to the energy dissipation rate, which is
given by the following equations, same as before:

bh h
%=—Gf, h= o
Se wy + €

(26a,b)

There is now one difference from the previous approach. In
(20), the energy release rate was constant, while in (25) it
increases with c. This difference should not surprise since both
solutions are approximate. In the case of variable %, which is
a typical case in fracture mechanics, the crack length at max-
imum load, that is, at a loss of stability, need not be considered
as empirical, as done in our previous calculation based on the
potential energy change, but can be calculated from the sta-
bility criterion. It is well known that, at the limit of stability,
the curve of energy release rate at constant load must be tan-
gent to the R-curve (BaZant and Cedolin 1991, chapter 12)

¢ dR

— = 27

dc dc @n
[This stability criterion could not be applied to the previous
case with (20), because in that case, due to the approximations
made, we had 9%/9c = 0 and thus ¢ was interdeterminate.]
Because % = R, an equivalent condition is

which is more convenient. We may now substitute here the
expressions in (25) and (26), and carry out the differentiations.
This leads to a quadratic equation for ¢/d, whose only real
solution is
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This represents a theoretical expression for the length of the
crushing band at maximum load (i.e., at stability loss).

It may now be observed that c/d tends to zero as the size d
— oo, In that limiting case the stress relief region would be-
come an infinitely narrow strip, which would not be a realistic
model. Therefore, (29) is meaningful only for sufficiently
small sizes. For this reason, and for the sake of simplicity, we
consider the second term under the square root in (29) to be
small compared to 1. Because \/1 + 2x =~ 1 + x when x <<
1, (29) for small 4 yields the approximation:

g_cote
d- 3

(30

Substituting this into the fracture propagation criterion ¢ = R,
along with (25) and (26), we obtain an equation whose solu-
tion furnishes the simple result

B (1 + 1) a1

in which we have introduced the notations

[ 2n
dy=3wotan 8; v, =K, ° sin 20 Vot 8 (32,33)
27SCW0

The result we have obtained has the same form as (21),
although the expressions for the size effect constants d, and
vy, are partly different. The differences reveal the degrees of
uncertainty caused by the simplifications of analysis we made.
The comparison of (21) and (31) indicates that the general
form of the size effect we obtained ought to be realistic, al-
though the coefficients d, and v, cannot be fully predicted by
the theory, but must be calibrated on the basis of experiments.

SIZE EFFECT ON NOMINAL STRESS AT
CRACKING LOAD

It has been suggested that the size effect might not be of
concern because the current ACI code [ACI 318; Building
(1992)] and other codes are intended to provide safety against
the cracking load at which large diagonal cracks form, rather
than against the collapse load, which is considerably higher.
However, the nominal stress corresponding to the cracking
load also exhibits size effect. There are two possibilities to
define the cracking load.

Load-Causing Cracks of Given Relative Depth

One possibility is to define the cracking load as the load
that produces initial diagonal shear cracks of a depth d, rep-
resenting a given percentage of beam depth d, i.e., such that
the ratio d,/d is a given constant [Fig. 8(a)], say 0.5. We imag-
ine an array of the initial cracks, as shown in Fig. 8(a). The
formation of each initial crack causes stress redistribution in
triangular zones 1321 and 1341, shaded in Fig. 8(a). (In con-
trast to Fig. 6, the stress relief zones are not strips, nor elon-
gated triangles, because the material is not orthotropically
damaged before the initial cracks form.) For the sake of sim-
plicity, these zones may be assumed to consist of triangles with
angles roughly 8 = 45°, each two triangles making a square.
The shape of these zones and the length of the initial cracks
obviously determines their spacing.

Before the initial diagonal cracks form, the vertical stress in
the beam is 0, and so the stirrups have no stress, while shear
force V is resisted by shear stresses in concrete taken approxi-
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(a) Stress Redistribution Zones for Initial Diagonal Shear Cracks; (b) Tensile Stress-Displacement Diagram for Opening of

Cohesive Crack, Localization of Openings of Diagonal Cracks into One Major Diagonal Crack in Beam with Stirrups, and Mohr Circle
of Strains; (c) Localization of Openings of Diagonal Cracks into One Major Crack in Beam without Stirrups and Mohr Circle of Stresses

mately as v = V/bd. The strain energy initially contained in the
shaded square cell in Fig. 8(a) is II¥ = (v¥2G.)b(c; cos 6)-
(c; sin 9) = v*(1 + v)bc? sin 8 cos O/E, where G, = E_/2(1
+ v) = elastic shear modulus of concrete, v = Poisson ratio
(v =~ 0.18), and ¢, is defined in Fig. 8(a). After the initial cracks
form, the diagonal tensile stress in the shaded square zone is
reduced to O and the applied shear stress v is then carried by
truss action in the cell, i.e., by tensile stress o, in the vertical
stirrups, given by (17), and by diagonal compressive stress o,
given by (16). So the strain energy contained in the cell after
the initial cracks form is approximately calculated as II¥
o22E)b(c; sin 0)(c; cos 8) + (0X/2E,)A,(cH/s) sin © cos 6
where o, = vbs tan 0/A,, 0. = —u/sin 6 cos 0. For the sake of
simplicity, we assume 6 = 45°. The complementary energy
change per crack at constant V is AIl* = II¥ — II¥, which

yields

Consider now the final infinitesimal crack length increment
dc;, by which the crack size ¢; is reached [the shaded square
zone in Fig. 8(a) grows with ¢, and at the end of this increment
it touches the square zone corresponding to the adjacent
crack]. During this increment, the change of complementary
energy is [9(AIl*)/dc/])dc;. This must be equal to the energy
consumed and dissipated by the crack, which is bRdc;; R is

1—v
2

bci?
E,

bs E,

* . H
All 4nA,,)’ "=E

€34)

the crack resistance, which represents the critical energy re-
lease rate required for crack growth. In general R depends on
¢;, representing the so-called R-curve behavior. This depen-
dence may be approximately described as

C;
fCo + ¢

(35

where ¢, = a positive constant. For large enough ¢, R = G, =
fracture energy of the material. The balance of energy during
the crack length increment requires that

I(ATT*)

C;

dc, = bR dc, (36)

Substituting here (34), we obtain an equation whose solution
yields for the size effect on the applied nominal shear stress
v, at initial cracking the following equation:

d -12
Uer = Uero 1+ d_
cr0

in which the following constants have been introduced:
-iq12
d E.G; bs 1+ v
=|—=2 + —
Uro [ <2 A, ) ] (38a,b)

dcrO =Co :1; o 2
Note that the ratio d/c; is assumed to be a given constant by
which the cracking load is defined. Eq. (37) shows that the

37
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applied nominal shear stress at cracking follows the size effect
law proposed by BaZant (1984). As a special case, this equa-
tion applies to a beam without stirrups (4, = 0).

Load-Causing Cracks of Given Opening Width

Another possibility is to define the cracking load as the load
that produces cracks of a given critical width w,. Consider
first the beams with stirrups. Under a certain load, a number
of parallel diagonal cracks may initiate. The cracks are cohe-
sive. This means that crack-bridging stresses are transmitted
across the cracks (due to aggregate pullout and other phenom-
ena). Reduction of the crack-bridging stress to zero requires a
considerable opening displacement of the crack, as is clear
from the typical stress-displacement diagram used in the co-
hesive (fictitious) crack model; see Fig. 8(b). Furthermore, it
is known that when many parallel cracks form, only one of
them may open widely while the others unload and close. In
fact, such a localization of crack openings into one among
many parallel cracks is a necessity unless there is enough re-
inforcement to ensure a stiffening rather than softening behav-
ior [see chapter 12 in BaZant and Cedolin (1991)]. Thus, un-
less the stirrups are extremely strong, the situation as shown
in Fig. 8(b) must be expected.

Since the reduction of the crack-bridging stress to zero re-
quires a very large opening, we consider that the stress is re-
duced only to a certain small but finite fraction &, of the tensile
strength f/ of concrete. Consider now the relative displace-
ment between points 5 and 6 at the bottom and top of the
beam, lying on a line normal to the cracks after one large crack
forms. This displacement may be approximately expressed as
Au, = (d/cos 8)(k,f[/E;) + w,,, in which d/cos 8 is the length
of the line segment 56, and w,, is a critical crack opening
displacement at which the crack bridging stress is reduced
from f,; to k. f, [Fig. 8(b)]. Dividing this by the length of
segment 56, we obtain the average normal strain in the direc-
tion orthogonal to the diagonal cracks:

_ Au, kf{ wg,cos0
& = =— 4+ ————
“  dflcos 0 E, d

Displacement Au, or strain &, must be compatible with the
overall deformation of the truss. Imagining the nodes of the
truss to be attached to a homogeneously deforming continuum,
this condition means that strain &_ must be tensorially com-
patible with the normal strains €, in the inclined struts and €,
in the vertical stirrups, as well as with the principal direction
angle 0. This strain compatibility condition may be easily de-
duced from the Mohr circle in Fig. 8(b). Noting that 14 =
(e, — g)cot 0, R = 05 = 01 = 14/sin 20 = (¢, — €)cot 8/sin
20, § = g, + 2R, we obtain the following expression for the
average strain in the direction orthogonal to the diagonal
cracks:

(39

€, — & €,

2
Z & 4
S’ 0 sin@ cot'd (40)

é, =EL-+

In terms of the stresses, €, = o /E,, €, = o /E,, in which E; =
elastic modulus of steel and E, = secant modulus for the com-
pression strut at the moment the diagonal cracks form, which
is less than the initial elastic modulus but larger than the secant
modulus for the peak stress point of the compression stress-
strain diagram. Here, the stresses may be expressed from the
equilibrium conditions of the truss: o, = v, sb tan 0/A,, o, =
~2uv,/sin 26 where A, = cross section area of one stirrup, and
v, = V., /bd = nominal stress corresponding to the shear force
at the moment of formation of large diagonal cracks. Substi-
tuting these expressions into (40), we obtain

2 sb cot’d
g, = + 20 a1
&= Gin 20 (A,,E, E:“) Y “h
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Setting this expression equal to (39), we obtain an equation
for v, the solution of which furnishes the result

Uer ! ( 2)
cr — Ve
v, + Vo 4

Here we introduced the notations

b cot’®
= si 20 d + —
vy = sin O cos AL E=

-1
o
. - k’fllvcr

© %= cos 8

(43a,b)

Eq. (42) describes a size effect that is an alternative to (37).
The asymptotic constant value v, exists because we assume
that the critical crack opening w., corresponds to nonzero crack
bridging stress k.f;; if this stress were neglected, we would
obtain v. = 0.

Consider now a beam without stirrups. This problem is
more complicated because there is no truss model that could
give the value of the average strain along line 2-3 in Fig. 8(c).
Other simplifications are therefore needed to obtain a simple
result. We will assume that the normal strains along the line
segment 2-3 in Fig. 8(c) may be approximated according to
the beam theory. The shear stress in the vertical plane is dis-
tributed parabolically, and so at point 1 at middepth of the
beam (neutral axis) it has the value 7, = 1.5v,,. From the Mohr
circle in Fig. 8(c), we then obtain the normal stress o, in the
direction 2-3 at point 1 and the corresponding strain: €, =
1.5v,, sin 26/E,. The normal strain in the direction 2-3 may
also be assumed distributed parabolically, in which case the
average normal strain along this line is &, = v, sin 20/E,.
Multiplying this by the length of segment 2-3, we obtain the
relative displacement between points 2 and 3 in the direction
2-3:

4 _ B n o -4 (44)

Au,, =€
Has 'cos 6 E, cos 0

At the same time, in analogy to (39),

kf:
Auyy = —_
“23 cos 0 E,

+ W 45)

Equating the last two expressions, we obtain the same equation
as (43), that is, v, = v. + vo(w./d), in which we now make
the notations

2k.fi

_ Ew,,
% = 3sin 20

= 4
%= 35in 6 (46a,6)

CONCLUSIONS

The classical, widely used, truss model (or strut-and-tie
model) for the shear failure of reinforced concrete beams can
be modified to capture the fracture behavior characterized by
an energy release and localization of damage into a fracture
band within a portion of the compressed concrete strut.

If the analysis of the maximum load based on the truss
model is valid, the concrete strut must, during the portion of
loading history in which the maximum load is reached, un-
dergo compression softening in a propagating fracture band
(consisting of splitting cracks or shear crack inclined to the
strut).

Analysis of the energy release into the fracture band shows
that a size effect on the nominal strength at shear failure of a
reinforced concrete beam must occur and that it should ap-
proximately follow the size effect law proposed by BaZant
(1983, 1984, 1987). Conversely, the fracture behavior of the
truss model (strut-and-tie model), particularly the damage lo-
calization with energy release, provides an explanation of the
size effect widely observed in many tests, beginning with those
of Kani (1967).




The applied nominal shear stress that causes the initial large
diagonal cracks also exhibits a size effect. The law of this size
effect depends on how large diagonal cracks are defined.

The size effect formulas derived here have not yet been
calibrated and verified by the available test results for beams.
The expressions for the coefficients in these formulas need to
be studied further in order to develop a design procedure in-
corporating the size effect.
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APPENDIX|. SIZE EFFECT IN ORTHOTROPICALLY
DAMAGED MATERIAL

A clue to the shape of the stress relief zones considered in
the preceding analysis may be obtained by comparing the
stress relief zones in isotropic and highly orthotropic materials.
For isotropic materials, the stress relief zone that gives a good
approximation to the nominal strength oy is shown in Fig.
9(a). For the case of highly orthotropic materials such as a
composite with unidirectional fiber reinforcement, the stress
relief zone becomes highly elongated and reaches to the end
of a specimen. A similar situation arises in compression fail-
ure, in which long and densely distributed axial splitting
cracks form before failure [Fig. 9(c)]. Propagation of a fracture
band transversely to the direction of compression releases
stress from a zone that is so elongated that it may be approx-
imately considered as a strip with parallel boundaries.

In Fig. 9(a), the energy consumed by fracture is proportional
to the crack length ¢, but because c/d is assumed constant
when the specimen size d s varied, the energy release is also
proportional to d. On the other hand, the energy release is
proportional to the area of the stress relief zones, which is
proportional to cd = (c/d)d*® or to d*, which means the energy
release is proportional to oyd®. Thus, oxd’ must be propor-
tional to d, which means that the nominal strength oy must be
proportional to 1/A/d. The same is true for the situation in Fig.
9(c).

For the case of compression failure, the area of the fracture
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FIG. 9. Stress Relief Zones in (a) Isotropic Panel with Tensile
Crack; (b) Highly Orthotropic Panel with Tensile Crack or Crack
Band; and (c) Compressed Panel with Dense Axial Splitting
Cracks and Compression Fracture Band

| ON

band is proportional to ¢, and thus to d which characterizes

energy dissipation. The area of the strip from which the stress

is relieved is proportional to cd = (c/d)d?, that is, to d?, which

means that the energy release is proportional to o%d> Since

this must be proportional to d according to energy balance,

the size effect is again such that oy is proportional to 1V4d.
In the full equation form, the energy relese is

s = 2% peg @7
< = 2E,

while the energy consumed is

‘W:b@hf (48)

<

From the condition 811¥/d¢c = 3W,/dc one obtains the equation
(0%/2E)bd = G;bh/s.. Solving for the nominal strength, one
obtains the size effect expression for the compression failure

2h 1
oy = ;‘ EG; W 49)

This is of course a simplified formulation giving a size effect
of LEFM type, In practice, due to R-curve behavior or other
phenomena, an equation of the type of (21) may be derived
in general for a panel failing in compression.
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