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PENETRATION FRACTURE OF SEA ICE PLATI:
SIMPLIFIED ANALYSIS AND S12E EFreCT

By Zdenék P. Bazant,' Fellow, ASCE, and Yuan-Neng Li?

ABSTRACT: Vertical penctration of an object through a floating clastic-brittle plate
from the bottom up or the top down is studicd. Based on fickd observations, it is
assumed that many symmetric cracks grow radially from a small loaded arca, and
the maximum load is achicved at the initiation of circumferential cracks. Nevel's
approximation, in which the plite wedges between the rudial cracks are analyzed
as narrow floating beams of lincarly varying width, is adopted. This makes an
analytical solution possible. The rate of energy release due to the radial crack
growth is calculated according Lo lincar clastic fracture mechanics and the theory
of thin plates. This yiclds the dependence of the radial crack length on the load,
which is considered 1o be uniformlty distributed along a small circle. 11is confirmed
that there is asize etfect such that the nominal stress (foad divided by ice thickness
squared) that causes similar cracks o grow is proportional to (ice thickness) **
or, cquivalently, to (Iexural wavelengths) V2 However, the maximum load docs
not follow this size effect, because it s attained at the initiation of circumferential
cracks, which is governed by a strength type of criterion and causes no size effect.
When the size of the loaded arca is fixed, there is a size cffect duce to an increase
of toad concentration, that is, a decrease of the ratio of the loaded circle diameter
to the thickness. This size effect is intensificd by the size dependence of the ruptare
modulus for bending, but in the normal size range. such a size effect is not signil-
teant. The relation between the fength of the radial cracks and the applicd load
caleulated by fracture mechanics is also useful for other methods of predicting the
penctration load.

INTRODUCTION

This study deals with the penetration of a floating sca ice plate by a small
object, either from the top down or the bottom up. This is an important
problem in many respects, which has been analyzed by a number of inves-
tigators (Hertz 1984; Bernstein 1929; Korunov 1939; Assur 1956; Nevel
1958; Kerr 1975). Of main interest is the maximum force required for the
penctiation of the object. This force has been cateulated according to the
strength theory, either in the form of clasticity with a strength limit or in
the form of plastic imit analysis. However, ice is a brittlc—or, more pre-
cisely, quasi-brittle——material, and as experience indicates the mode of
faslure consists of cracking. In such a case, solution according to the strength
theory would be appropriate if the maximum load were achicved right at
the first crack initiation. Observations indicate that this is not the case. The
maximum load is typically achicved only after extensive crack growth |as
pointed out by Frankenstein (1963), and also reviewed by Kerr (1975)]. In
such a case, the analysis should correctly be carricd out according to fracture
mechanics. The most important difference between fracture mechanics and
the strength theory is the size effect. Its understanding is important for the
interpretation of experimental observations, and especially for the extrap-
olation of reduced-scale tests.
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The objective of the present paper is to analyze the penctration problem
according to fracturc mechanics and study the size effect, extending a pre-
fiminary study by BaZant (1992a). The basic concepts and hypotheses are
simifar to those in a recent study of thermal bending fracture of floating sca
ice plates by Bazant (1991).

As is well known from field observations, penetration through a floating
ice plate begins by propagation of radial cracks. They grow in a stable
manner as the load increases, and the maxinmm load is reached as circum-
ferential cracks begin to form between the radial cracks. As the circumfer-
ential cracks develop, the load decreases at increasing displacement. The
ice segment between two adjacent radial cracks may be considered to behave
approximately as a wedge-shaped beam of a linearly increasing cross-sec-

“tional width. The wedge-beam approximation, which was introduced by
Nevel (1958) and has been used in many studies not based on fracture
mechantes, s exact only if there are infinitely many radial cracks, with
infinitely small central angles. As has been confirmed by experimental stud-
ics [Nevel (1958), in his discussion with Heaps and Sterns], this approxi-
mation corrclates well with the actual deflection pattern in the wedge up
to a central angle of 60°, and remains a reasonable approximation up to
90°. The advantage of the narrow wedge—beam approximation is that the
problem becomes one-dimensional. We use this approximation in the
present study [another study (Liand Bazant 1994) will solve the actual two-
dimensional problem], in which a comparison with experiment data is also
given. The test data that exist in the open hiterature are insufficient to verify
the size effect, because they do not cover a sufficient range of sizes for one
and the same type of we.

BASIC EQUATIONS OF WEDGE-BEAM APPROXIMATION

Consider an infinitely extending clastic plate of thickness /i floating on
water of specific weight p [FFig. 1(a)], which acts exactly as an clastic foun-
dation of Winkler type. The dilferential equation of equilibrivm of the wedge

o

RNNNANNNNNNS = TSN
= P<-——ﬁzao -

> AN

—a — (b)

FIG. 1. (a) Floating Ice Sheet Subjected to Vertical Load; (b) Geometrical Defl-
nition of Wedge
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beam shown in Fig. 1(h) may be written as (I w")" + p = 0, in which w
= downward deflection; £ = Young’s modulus; /, = moment of incrtia
of the cross section; and p = vertical distributed force on the beam that is
caused by buoyancy. The primes denote derivatives with respect to the radial
coordinate r. Substituting I, = Ib; b = rg,; and p = pbwv, in which ¢, =
central angle of the wedge beam; p = unit weight of seawater; and [ =
hY12 = moment of inertia of the plate cross scction per unit width. We
assume that the deflections are not so large that water would flood the top
of the plate. Rearranging, we obtain the wedge-beam equation in the fol-
lowing form:

Ll d’? 1w
—~—([~—2<r([‘:> + pw = 0 ay <r<a (1)
rodr dr? .

It is to be noticed that this equation is valid only at radial coordinates less
than the length a of the radial cracks and larger than a certain small radius
a, that cannot be taken smaller than approximately the thickness it of the
plate. If the loading from the penetrating object is applicd over an arca
larger than i, then ay is taken as the radius of the circle of which the loading
is applied. Eq. (1) may alternatively be put in the form

iy AT
El (‘LL‘ 4 24 ") +opw =0 2)

dr rodr?

Eq. (2) ts writien under the assumption that the beam width at radial
coordinate r is equal to the arc length o, r. This is sufficiently accurate for
small wedge angles. For larger angles, it would be more realistic to take
the beam width as the chord length of the arc, e, b = 2r sin(y,/2).
However, since (1) is homogeneous in b, such a modification would leave
the equation unchanged (although it would affect the actual applied shear
force for a given total load). At the same time, it would be somewhat more
realistic to take the beam length coordinate as r cos(g,/2) instead of r,
because r is measured along the radial cracks while the beam length should
be measured along the axis of symmetry of the wedge. In practice, these
corrections are unimportant (which will be confirmed by the subsequent
paper).

It is convenient to introduce the length constant'! = (L21/p)'*, which may
be called the action radius. It characterizes the length over which the de-
flection due to a load at the tip of the wedge beam decays to a small value.
In terms of the nondimensional coordinate x = r/l, (2) may be rewritten
as

-~

{1 2 d'w
cw can 4+ o = 0; oy < x < a (3)
X

dx? dx?

in which the nondimensional limits of the range are a, = a,/l and « = a/
[

For radial coordinate r exceeding the crack length a, we assume the
deformation of the infinite floating plate to be axisymmetric. 'The plate
equation for axisymmetric bending is

2 2, .
D —(l—+1—‘i d;%!ld—“- + pw =0 a < r < oo 4)
drr  rodr dr® rodr
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in which D = EI/(1 — v?) is the plate bending stiffness of the elastic plate;
and v = Poisson’s ratio. At r = a, the narrow wedge beams are assumed
to be rigidly attached to the infinite plate, which means that the deflections
and deflection slopes of the wedge beams and of the axisymmetric plate at
r = a are equal. It should be noted that the connection region between the
wedge beams and the infinite plate is in a complex two-dimensional state.
The continuity condition is just an approximation, which is, however, quite
accurate when the central angle is small.

It is again convenient to introduce the length constant for the plate as L
= [Ellp(1 — v)|"* = 1/, where 7 = (I — v?)~ "%, L may also be called the
flexural wavelength because it represents the length over which an end
disturbance in a semiinfinite plate decays to e of the end value, Using
the nondimensional coordinate X = r/L., the governing differential equation
for axisymmetric bending of an infinite plate on clastic foundation may be
rewritten as

d? 1 d d?w 1 dw
+ — — + —— | +w =20 A< X <> 5
(Xm ,de) (dxz ,YdA) " )

in which A = a/l. = /7.

METHOD OF SOLUTION

Both (2) and (5) are linear fourth-order ordinury‘liffcrcntiul equations
with variable coefficients. Their general solutions are well known. The only
problem is to set up the proper boundary conditions and continuity con-
ditions at x = a. For x = «, the general solution of (5) that is bounded at
infinity can be written as

w(X) = d, ker(X) + d, kei(X) (6)

where d, and d, = general constants; ker(X) and kei(\X') = Kelvin functions,
which are related to Bessel functions ber and bei. The deflection slope in
nondimensional coordinate X may be defined as 0 = dwldX =
L(dwl/dr) = L0, has the general expression

0 = d, ker'(X) + d, kei'(X) (7

in which the prime denotes the derivatives of ker and kei with respect to
X. The constants can be solved in terms of the displacement and slope at

the boundary point (x = a or X = A)
M . - , TS A _
_ kei(A) . — kei(A) 0, 4 = ker(A) W, + ker( )0“
A ‘ A . A A

in which A = ker(A)kei'(A) — ker’(A)kei(A).
Furthermore, the nondimensional bending moment and shear force may
be defined as:

Wt = ML? dw N v dw) V- VIS d'w N d l dw
D \dx? Xxdx)’ D dXY  dY \ X dX
(Ya,b)

However, M, V, and 0 have the same dimension as the deflection w, which
has the dimension of a length. Since all these equations depend lincarly on

d, (8a,b)
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w, the actual dimension ot w is not important inour study. FFor the purpose
of simplicity, the term “nondimenstonal™ a5 used i this paper with the
specific meanming discussed here. In addition, the sign in our delinttion of
the nondimensional shear force difters from the conventional definition.
The purpose of dropping the negative sign is that the shear force in a cross
section with its normal in the negative r-direction would be in the positive
direction of deflection, so that the corresponding work be positive.

Combining (6) and (9), we can deduce the stiffness relation of the bending
momem and the shear force to the deflection and the sfope at the boundary
pomtr = a

M, = k0, + kv, (10a)

V” = l\'2|()“ + I\'nW” (l()[))

The stiffness coeflicients are expressed as follows:

’ ke ) ) ) ke
k,, = (kcr" + ikcr’) Xu ~<kcn" + l—\/kcu’) _[;_r (Ha)

: A X A
1 7 keit . Co) ] ke
ky, = | ker™ (X’ kcr') —% - ke A <¥ kcn’) ‘ ~iAL (11d)

The dependence of these cocflicients on the radial crack length a is plotied
in Fig. 2(«). Because the stracture is elastic, we must of course have &, =
ko, and the numerical results in Fig. 2(a) show that this is indeed so,
although a direct proof from the definition of ker and ke is ditficult.

To be consistent with the narrow wedge solution that has / instead of L.
as the action radius, we further introduce the bending moment and shear
force nondimensionalized with respect to [ as

- M2 - - vi? _
M = T = vk,,0, + Tk,2w,; V = Tl = 7K,,0, + 1K,

(12a,b)

where 0 = 10 = [(dw/dr) = dwldy. Bascd on the solution of (12), the
infinite plate for r > « can be treated as a spring support system of the
wedge beam,

The solution to the narrow wedge-beam equation (3) has been given by
Nevel (1958, 1961) in the following general form:

w = ¢, nevy(x) + ¢ nev(xv) + ¢y neva(v) + ¢, nel(x) (13)

in which nev, (x) (m = 0, 1, 2) and nel,(x) = functions defined by Nevel
in terms of the following infinite series:
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Nondimensional Plate Stiffness

Radius a
FIG. 2(a). Nondimenslonal Plate Stiffness
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FIG. 2(b). Deflection of Wedges

3 A
nev,(x) = x” 4 D (= 1)fxmr {H [+ 4)on + 4n - 1)?
k-1 n-1

nel,(x) = In(x) nevy(x) — D, (= [ky#r!

(m + 4n — 2)]} (14a)

73

k

{‘l' l. [(4n + 1)(4n)?

(4n - 1)]} [2. (4" '» [t 43’ Ay '+ l)J (14b)

The boundary conditions for the narrow wedge solution for the end points
of the radial cracks are the displacement continuity conditions. This means
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that the deflections of the wedge and of the plate must be the same at r =
a, and that the rotations of the wedges and of the plate at r = a must also
be the same. However, when the deflection and rotation of the plate are
given, the moment and shear foree are determined by virtue of (10). Evi-
dently, the moment and the shear force have to be provided by the wedge.
Thus similar equations must be given also for the wedge beam at r = «a as
follows:

-Mu = Ell“’u 7* Elldu; Vu = E?Iu’n + EZ’Z()U (IS(T,[))

where an overbar means the action radius ! is used for the_purpose of
nondimensionalization. It is casy to verify that &k, = 1%, k), = k,, =
1%, = 12k, kp = Thsa. For the radius of the loaded area (r = a,), the
boundary condition can be written as: '

M =0, V = PR2wa, (16a,b)

From these four conditions, the four constants ¢; (i = 1, 2, 3, 4) can be
casily determined. In (16), P is the total force acting on the rim at r = a,.
The moment and the shear foree can be related to the displacement woas

— Ml dw — vi? I d dw
M= = -8 oyl O 0N 17
Il dy? Il x dx ! dx? (17)

where Vand M = nondimensional shear force and bending moment per
unit width of the wedge.

BEHAVIOR OF SOLUTION

_ To compare our result with Nevel's, we introduce a nondimensional load
P = PPR2uEl and we assume that P, rather than P, has a unit value. The
deflection curves for a unit nondimensional load and for various values of
the relative crack length « are plotted in Fig. 2(b), for the case of a loaded
area of relative radius «, = 0.01. As we see, for short radial cracks (o -
a,), the wedge beam behaves like a rigid body. For longer cracks, the
bending of the wedge becomes more and more important. For very long
cracks (large a), the remote part of the wedge almost does ot deflect (i.e.,
the effect of the load does not spread beyond a certain distance), which is
roughly a — «, = 3. These features are typical of beams on elastic foun-
dation. For instance, it is known that in a beam of constant cross section
on an elastic foundation, the effect of the load does not spread beyond
approximately a = a (Hetényi 1946; Timoshenko 1959; Selvadurai 1979),
which means that a sufficiently long beam can be treated as if it were
infinitely long. ~

The moment distributions in the wedge are plotted under the condition
that the bending moment at the boundary of the loaded area (x = «) is 0.
These moment distributions exhibit similar characteristics as the deflections.
For a very short wedge beam, the bending moment is almost constant except
for a narrow portion near the loaded area (i.e., near x = «,) (see Fig. 3
for different o, values). For a very long wedge beam, the bending moments
are significant only within the range x < 3, beyond which the bending
moment is negligible. The nondimensional radius «, of the loaded area has
a strong effect on the maximum value of the bending moment in the narrow
wedge beam. Similar to the solution of an infinite plate loaded over a circle
of radius ay, the smaller the value of «,, the larger the magnitude of the
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MOMENT FOR UNIT LOAD
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FIG. 3. Moment Distributions of Wedges: (a) with o, = 0.01; (b) with o, = 0.1;
{c) with o, = 0.3

maximum negative bending moment (the negative moment is that which
causes tension on top of the plate). Furthermore, for a given total applied
force, the greater the concentration of the force (i.c., the smaller the value
of o), the larger the induced bending moments. In other words, the presence
of the radial cracks does not change the overall nature of the bending
imoment distributions.

Nevel (1958, 1961) solved the narrow wedge-beam equation for a beam
of infinite length instead of a finite length as we did herein. He assumed
the load to be uniformly distributed over the area of the circle of radius «,.
In the present solution, however, it is assumed that the portion of the wedge
under-the load is chopped off, which means that there is no bending moment
at the rim «, and the applied load is uniformly distributed as a line load
along the rim of all the wedges.
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It is useful to realize what is the difference between the foregoing two
boundary conditions. The present solution should approach Nevel's solation
when a— o, which means it should become almost identical when a become
sufficiently large. In Nevel's solution the wedge extends all the way to the
center and the load is applied uniformly over a circle of radius «,; in the
present paper the load is applied uniformly as a line load over the circum-
ference of this circle. Now, what is the effect of taking away a small portion
of the wedge? The effect is quite small and can be neglected. For instance,
if a, = 0.01, the largest deflection for very large o caused by a unit load
1s about 2.2, while Nevel's result is 2.1, The present result and Nevel’s result
for the maximum bending moment are both 0.94 for «, = 0.01, but 0.75
and 0.79, respectively, for a, = 0.1; they are 0.54 and 0.60 for «, = 0.3.
As we can see, it 1s only for large diameters of the penetrating object that
the difference between the solutions becomes substantial.

It 1s also interesting to examine the effect of the boundary condition at
the rim x = « of the penetrating object. We neglect the bending moment
at the rim, but in reality, due 1o rotations, there might be a certain com-
pressive stress near the top of the plate atx = o,. This would produce some
positive bending moment on the wedge, which would i turn reduce the
magnitude of the negative bending moment in the wedge. Although it s
difficult to determine the most realistic boundary condition, it is clear that
the results must lie between those for zero bending moment and those for
zero rotation at X = «, the latter case being certainly a gross exaggeration
of stiffness. The condition of a free boundary (no bending moment) is
conscrvative as an estimate of the bearing capacity, while the fixed (zero
rotation) boundary is conservative as an estimate of the necessary break-
through foad. As one example, numerical calculations show that the extreme
negative bending moment is reduced from .75 to 0.2 when the boundary
condition at x = «, 18 changed from a free end to ua fixed end, and the
location of the extreme bending moment shifts significantly away from the
center.

In theory, the present solution with nonzero a, should approach Nevel's
solution for «, = 0 when o, — 0. Numerically, one finds that the coefficient
of nely(x) approaches 0 when «, — 0. However, for the condition of zero
rim rotation, the numerical solution becomes totally irregular when «, be-
comes less than 1077, and then the zero rim rotation condition cannot be
enforced. From the physical viewpoint, though, this is not surprising, be-
cause one can certainly expect that it would be very difficult to hold the
wedge beam horizontal at an extremely small «, value.

FRACTURE ANALYSIS OF RADIAL CRACK PROPAGATION AND
SIZE EFFECT

The solution can always be written in a general form as

2

W= — (x; a, ) = PEx; g, o) (18)
2ald
in which F(x; «,, a) = a nondimensional function. The deflection at the
end x = «, can be written as
1Vl IVZ
— I'(x,, ay, @) = ——
2kl (ras o, @) 2l

The complementary energy of the structure under load P is

(o, @) (19)

W, =
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1 P
I = ‘2 W.,I’ = 3’"[[ /(H,,, u) (2())
Energy balance during radial crack propagation requires that

all*  Tall* P2l af(a,, 1)
da | da  A4AmEl O (2
in which n = number of the radial cracks (with uniform angular distribu-
tion); and G, = fracture energy of the material.

In writing the foregoing energy balance condition, we assume that the
material follows linear elastic fracture mechanics (LLIEFM), which is certainly
a simplification. In LEFM, the fracture process zone has a zero volume; in
rcality ice is a quasi-brittle material in which the fracture process zone has
a certain finite volume. However, the LEFM solution would be approached
asymptotically as the cracks are getting sufficiently long as compared to the
size of the fracture process zone.

Eq. (21) involves a second simplification, namely that the frontal edge
of the radial crack is a straight line normal to the plate. This assumption is
nevitable if the plate theory is used, because the normals are, in this classical
theory, assumed to remain straight and normal to the deflection surface. In
reality, of course, the frontal edge will not be normal to the plate and there
will be a certain region in which the radial crack will penetrate only partially
through the plate thickness, growing in the direction normal to the plate.
Such crack propagation could be described only by three-dimensional frac-
ture analysis. Again, however, the present solution should become more
realistic for longer cracks, which are getting much longer than the length
of the region in which the actual crack penetrates only partially through the
plate thickness.

FFrom (21) we can solve load P that is necessary to cause radial crack

nhG, =

propagation
WEIG 12 / BV
wnh )
P=2|— — (22)
/ Ja
et us define the nominal stress a,, = £//17 and the nondimensional nominal
. e o 1,240 o . . N
stress o = ax/f, = P/h’f;, where f; = tensile strength of the ice; and

denote glay, o) = V[af(ay, a)/da]2 Provided that df(w, a)/da > 0, we
then have the result

) nwtGG narl
& = *{,ﬁ";:(uu, W = /—j—'x(u‘., a)

(2,3
= (g‘;;) Vamlgla,, )i~ (23)

in which /, = EG,/f] = Irwin’s characteristic length of the process zone,
representing a matenial length characteristic.

The most interesting aspect of the result in (23) is that, for geometrically
similar cracks (same o and «,,, various sizes), the nondimensional nominal
stress decreases as i or as /Y2, This mieans that there is a size effect.

By contrast, according to all types of strength theory, there is no size
effect (Bazant 1992b). For LEFM, as is well known, the size effect in

~ 12

geometrically similar structures is always such that & is proportional to D ==,
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in which D = characteristic dimension of the structure. This general prop-
erty also applies to the present plate bending problem provided that the
characteristic dimension of the structure is taken as D = [ = flexural
wavelength. Normally, however, the characteristic dimension of the struc-
ture is taken as one of the geometric dimensions. In the present problem,
if the radius of the penctrating object is so small that it is irrelevant, the
only geometrical dimension is the plate thickness, h. It is thus quite inter-
esting that the size effect with regard to /i is not of the type I 2 (as a blind
application of the general LEEFM size effect might suggest) but i- % The
reason is that the plate thickness is not a dimension of the body in math-
ematical terms. Rather, due to the buoyancy force serving as an clastic
foundation, it is the ratio of beam stiffness to the specific weight of the
water, El/p = I, that provides a characteristic length in the two-dimensional
domain. .

The fact that the size effect is of the type & has already been shown
by Slepyan (1990) and Bazant (1992b). It is important to note that in term
of 1, the size effect acquires its familiar form of /=2 (this was not pointed
out in Slepyan’s work), so the general scaling law of linear fracture me-
chanics is preserved. 1tis also interesting that, as Bazant (1991) proved, the
size cffect i Y™ applics also to thermal fracture in floating plates caused by
crtical temperature drop.

The load point compliance C = w,/P is shown in Fig. 4(a) as a function
of « for various values of w,. The actual value plotted is not the actual
compliance C, but function f(«, «,), which is in direct proportion to C. The
compliance monotonically increases with « until it reaches a peak value,
after which it starts to show a very small oscillation around the peak level,
with a magnitude in the range of 10 4. Such a magnitude of oscillation is
so small that it cannot be visually discerned in the plot. Furthermore, the
magmtude is decreasing rapidly when a increases. The oscillation of the
solution is an intrinsic property of beams on elastic foundation. Nevel (1961)
demonstrated that the asymptotic form of the wedge beam solution for large
x can be represented by a linear combination of sine and cosine functions
modulated by an exponent function of negative exponent. Similar behavior
can be found for the functions ker(x) and kei(x) for axisymmetric plates
(Watson 1966).

Because [all*/aa], = (P*2)(0Claa), the compliance derivative 0C/da is
a characteristic of the energy release rate due to fracture. The derivative
dClaac is plotted in Fig. 4(b). We see that it decreases until « reaches ap-
proximately 2, after which it becomes zero, which means that the load I
required for further crack propagation tends to infinity. In other words, the
radial crack propagation is stable for the range of « plotted in the figure;
hence, the load required to cause crack propagation cannot be the failure
load. After a approaches 2, radial crack propagation is no longer possible.
The nondimensional radial crack length at which the compliance first be-
comes maximized will be denoted as ¥, which is a function of «, only.
Some typical values are shown in Table 1.

RUPTURE OF WEDGES DUE TO CIRCUMFERENTIAL CRACKS

We will assume the condition of load control, in which case the maximum
load is the failure load. The previous section has demonstrated that the load
required to drive the radial cracks increases monotonically with the load-
point deflection as well as the radial crack length. When a reaches o*, the
corresponding load P will become infinite. Before this can happen, of course,
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TABLE 1. Limiting Nondimenslonal Length of Radial Cracks
(1) (2) (3) (4) 5 (6) (7) (8) (9)

a, 1.0 0.8 0.6 0.4 0.2 0.1 0.05 0.01
o 2.43 2.33 2.24 2.16 2.08 2.05 2.03 2.02
of —a,| 143 1.43 1.64 1.76 .88 1.95 1.98 2.01

the wedges would simply break due to their limited tensile strength. Ac-
cording to the beam theory, the tensile stress of in the top fiber of the wedge
is

6M  6EI 3°w 3P 3’1 (x; a,, @) (24)
h*  1Ph? ax? wh? dx?
where in the last step, the expression (18) for the deflection w is used.
Defining the nondimensional nominal failure stress as
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a*F(x; ap, o
F(a,, a) = max ———————~—(_ 2" ) (26)
lG‘u“,uI ().l’ .

Eq. (25) relates the failure load P for a given a, to the radial crack length
a. The maximum moments expressed in term of £, (ay, «) s plotted in Fig.
5(a) and their locations are shown in Fig. S(b). As we can see, for a given
ay,, the maximum moment as a function of the radial crack Iunblh « INCreases
with « inttially, and then reaches a peak value. After that, again F,, starts
to oscillate with a very small magnitude around the peak value, similar to
the behavior observed for deflection w. The maximum moment in the wedge
beam is initially located at the tip of the radial cracks. When it reaches its
peak value, however, its location detaches from the crack tip and remains
approximately at the same posttion (in the nondimensional radial distance).

Since the nondimensional nominal stress o required for crack propaga-
tion cannot exceed its failure value 6, (i.c., 6 < a)), the following ine-
quality can be established:

nwl, i
[~ — 27
3 8 = 5 ) 7

This incquality must be satisfied during the process of radial crack propa-
gation, and when this becomes an equality, the wedge will break. The break
will be determined by the strength theory, because it occurs at the beginning
of formation of the circumferential cracks. This yields an equation to de-
termine the nondimensional crack length o, at which the wedges break at
the location of maximum moment, which does not necessarily lie at the tip
of the radial cracks. Eq. (27) can be put into a more compact form as

. . Ly . _ w Af (ay, @)
Glagy, o) = n n where G(a,, «) = () o

(28a.b)

The function G{ay, o) is plotted in Fig. 6. From (28) it can be seen that
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the nondimensional radial crack length « at which the wedges would break
for a given a, depends upon the number of cracks and the ratio of /,/1.
According to some ficld test data (Frankenstein 1963), n ranges from 3 to
10 for small punch radius a,, and can reach 30 when the punch radius is
large. On the other hand, for typical sea ice, we have 12 = 8 GPa; f, = |
MPu; K, = 0.1 MPa m'?, which yields

-2
ly, = EG,_ K. =00l'm (29)
R

The action radii for A = 0.1, 0.5, 1.0, and 3.0 mis [ = 2.9, 9.6, 16, and
37 m, respectively. In all cases, the nondimensional radial crack length o,
— ay is very close to (although always less than) the maximum value o* -
ay, as hsted in Table 1. For instance, when o, = 0.01, the maximum value
of a* = a,is 2.01. The estimated radial crack length for i = 0.1, 0.5, 1.0,
and 3.0 m are about 5.8, 19, 32, and 64 m, respectively. Knowledge of the
length of the radial crack at rupture can be very usetul in that it provides
a measure of how close the applied load is to the failure load (maximum
load). Frankenstein (1963) suggested using the formation of circumferential
crack as an indicator of failure; however, such an indicator is oo close to
the final breakthrough. On the other hand, the length of radial cracks
provides a quantitative measure of closeness of the applied load to the failure
load, therefore scems to be more useful.

Now consider again the size effect. The problem is two dimensional, and
the thickness A is not a dimension in the domain of the boundary-value
problem. It is merely a parameter. Therefore, the size effect will depend
on how the similarity is defined.

First, consider that a,/h is constant for all the sizes, which is the case of
geometric similarity in three dimensions. For this case, the dependence of
the nondimensional nominal strength 6, is shown by the solid curves in
Fig. 7(«). Now it is very interesting to note that, for larger a,/h, there is a
reversed size effect, and for smaller a,/h there is almost no size effect. The
cause for this scemingly strange size effect is that when ay/his constant, the
value «, = ay/l is increasing with the thickness h. 'The increase of ay, then
causes a decrease of the magnitude of the maximum negative moment in
the wedge beam, which in turn leads to a higher nominal load. However,
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there is another size effect in the apparent value of material strength that
will somehow offset this size effect. This size effect arises because the initial
nonlinear fracture process zone must develop to a certain finite size before
the maximum load is reached, with the peak stress occurring at a certain
distance from the top face of the beam rather than at the face. Frankenstein
(1963) observed that the formation of circumferential cracks in the ice plate
does not lead to immediate breakthrough, in some cases, the final failure
would occur until the crack opening at the mouth of the circumferential
cracks reaches to a few centimeters. Since polycrystalline ice is a quasi-
brittle material, this kind of size effect can be described either by the crack
band model (Bazant 1976; Bazant and Cedolin 1979; Bazant and Oh 1983)

1318




or by the fictitious crack model of Hillerborg et al. (1976). Based on the
latter, a very simple (although approximate) formula for the size effect on
the rupture modulus f, for bending of quasibrittle materials was proposed
by Li et al. (in press, 1994)

fn Vi, ih
m= F =] 4+ "—’3*'— (30)

where f; = uniaxial tensile strength of the icc and f, is the flexural strength
oftheice;l, = EG,/(f;)?is amaterial length. Since /,is different for different
materials, this equation can be adapted to different types of ice. Using (30),
one gets the dashed curves in Fig. 7(a), which show that for very small o,/
h there is a normal type of size effect; and for large a,/h, the opposite size
cffect still remains. Since [, for ice is in the order of a few centimeters, such
a size cffect is negligible if /i is more than 30 cm.

Assuming distributed microcracking, Bazant and Li (1993) proposed an-
other formula: m = | + 2[/h, where I, is an empirical parameter. This
formula has also predicted good agreement with test data.

Second, consider that a, is constant for all i1, in which case there is no
geometric similarity in three dimensions. This case is the most relevant to
a practical problem in which an aircraft of a fixed and known contact area
wants to land safely on an ice plate or a submarine of a fixed and known
contact area of its sail wants to penetrate upward through icc. For this case,
the size dependence of a, is shown in Fig. 7(b), where the solid curves
correspond to the case of constant f,,, and the dashed curves to the case f,
decreasing according to (30). Now we get the normal type of size effect all
the size range.

Third, consider that «, = a,/[ is constant for all the sizes. This the case
of geometric similarity in two dimensions, because the only characteristic
dimension presented in the two-dimensional problem is /. In this case there
is no size effect if f, is held constant, because the maximum negative mo-
ments in the wedge beam depends only on a,. The size effect can only
originate from the rupture modulus of the ice.

This last property is an interesting feature of the ice penctration problem.
In most other failure problems for quasi-brittle materials studied so far, for
example the diagonal shear failure, punching shear failure, torsional failure,
and bar pull-out failure for concrete structures, the situations at failure are
approximately geometrically similar over a broad range of practical cases,
but here this is not the case.

It may also be noted that in the present case the size effect can be
intensified by the randomness of strength, as described by Weibull statistical
theory. This statistical size effect applies only to structures that fail at crack
initiation, which is approximately the case for the circumferential cracks.
On the other hand, the statistical component of the size elfect becomes
negligible when the failure occur only after large stable crack growth, as it
typically does in concrete structures {as shown by Bazant and Xi (1991)].
In the present problem, large stable growth of radial cracks precedes failure,
but the radial cracks do not decide the maximum moment condition; rather,
the circumferential cracks do. The Weibull type of statistical size effect in
sea ice has been studied by Parsons (1991) and many others. However, the
interaction of the statistical strength with the size effect due to development
of a_large initial fracture process zone in the presence of stress gradient has
not yet been studied.

Finally, it should be noted that when the geometric dimension of the
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system (such as the thickness of the plate, the size of the punch, and so on)
is changed, the number of radial cracks would become different, as was
observed by Frankenstein (1963). 1t is expected that when the number of
the radial cracks is different, the maximum moment in the wedge that causes
the circumferential cracks is also different, because the central angle of the
wedge 1s different. Thus, there would be a size effect due to a change in
the number of radial cracks. This size effect cannot be studied by this
simplified version of analysis, because the effect of the wedge angle is
ignored by assumption. A detailed study on how to determine the number
of radial cracks and the associated size effect will be presented in a sub-
sequent paper (Li and Bazant 1994).

CONCLUSIONS

1. The failure process, which involves propagation of long radial cracks
and a maximum load controlled by the initiation of circamferential cracks,
can be effectively analyzed on the basis of Nevel’s narrow wedge beam
approximation, which makes the problem one-dimensional and analytical
solution feasible.

2. Geometrical similarity in the present problem means similarity relative
to the flexural wavelength [ = (I1/p)", not the plate thickness /i

3. The analysis confirms the recent general result that the size ceffect on
the nominal stress required for crack growth in the sea ice plate ts of the
type (thickness) %, provided that the cracks are geometrically similar.

4. Since in the present case the radial crack propagation is stable, the
final fumlure is not caused by crack propagation. Thercfore, the maximum
load is not determined by the radial crack growth; rather, it is determined
by the initiation of circumferential cracks, which is a strength type of failure.

S. For the practically most important case that the penetrating object has
a fixed constant size, there is o size effect in which the nominal strength
decreases with increasing size. This size effect is caused by concentration
of the applied load. The larger the plate thickness, the smaller is the ratio
of the loaded circle diameter to the thickness. The size cffect is further
intensilicd by the dependence of the rupture modulus for bending on the
plate thickness, which is due to the presence of the process zone. However,
this type of size effect is much weaker than that of (thickness) " and
disappears for i — .

6. This study demonstrates how the length of the radial cracks is related
to the applied load. Also it shows that the final failure would occur when
the nondimensional length of the radial cracks approaches approximately
twice of the flexural wavelength. Therefore, the length of the radial cracks
can be effectively used as a quantitative measure of closeness of the applied
load to the maximum load.
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