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TECHNICAL PAPER

Size Effect on Diagonal Shear Failure of

Beams without Stirrups

by Zden&k P. Bazant and Mohammad T. Kazemi

Presents the results of recent tests on diagonal shear failure of rein-
JSorced concrete beams without stirrups. The beams are geometrically
similar, and the size range is 1:16. The test resulls indicate a signifi-
cant size effect and show a good agreement with Ba%ant’s law for size
effect. Scatter of the test results is much lower than that previously
Sfound by studying extensive test data from the literature, which have
not been obtained on geometrically similar beams. The tests also show
that preventing bond slip of the longitudinal bars (by providing end
anchorage with hooks) causes an increase of the brittleness number
of the beam. It is concluded that the current design approach, which
is intended to provide safety against the diagonal crack initiation
load, should be replaced or supplemented by a design approach based
on the ultimate load, in which a size effect of the fracture mechanics
type, due to release of stored energy, must be taken into account. A
relatively simple adjustment of the existing formula might be suffi-
cient for design, although determination of the brittleness number of
the beam deserves more study.

Keywords: beams (supports); brittleness; cracking (fracturing); crack propaga-
tion; failure; fracture properties reinforced concrete; shear properties; struc-
tural design; tests.

The diagonal shear failure of reinforced concrete
beams has long been known to be a brittle type of fail-
ure. As a consequence, a larger safety margin is pro-
vided by the capacity-reduction factor in the codes.
However, all the consequences of brittleness have not
been fully appreciated. Brittleness also necessarily ini-
plies the existence of size effect on the failure load,
which is due to the release of stored elastic energy and
the progressive nature of failure. This aspect of britile-
ness has so far been neglected by design codes.

The present code formulas have been calibrated to
provide adequate safety against the initiation of diago-
nal shear cracks. However, the crack initiation load is
not proportional to the ultimate (maximum) load. It
can be much smaller, or only slightly smaller,' depend-
ing on beam size and other factors. Therefore, the ex-
isting design formulas cannot be expected to provide a
uniform safety margin against failure. Ideally, the di-
sign should insure proper safety margins against both:
(1) failure, and (2) crack initiation. The first criterion is
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certainly the most important if preventing catastrophic
collapse is the primary objective of design.

Several studies** have recently addressed the size ef-
fect, exploiting the test data that exist in the literature
(see the survey of data sets in Reference 4). These anal-
yses confirmed the theoretical prediction that there is
indeed a significant size effect, but did not confirm the
precise form of the size-effect law, because the scatter
of the data was too large. The excessive scatter oc-
curred because the previous tests were not carried out
with geometrically similar beams and the size ranges
tested were insufficiently broad. The lack of similarity
required adjustments to be made according to known
approximate formulas for the effect of other factors,
like shear span, which involve additional errors that
have nothing to do with the size effect and thus ob-
scure the size effect. So the need for further tests satis-
fying geometrical similarity conditions became appar-
ent. The purpose of this paper is to report the results of
such tests and identify from them the size effect more
clearly.

REVIEW OF SIZE-EFFECT LAW
The size effect is defined by comparing geometrically
similar specimens or structures of different sizes. The
ultimate load (maximum load) P, is characterized by
the nominal siress at failure

P,
On = €y (1

in which b = thickness of the structure (in the case of
two-dimensionally similar structures), 4 = characteris-

ACI Structural Journal, V. 88, No. 3, May-June 1991.

Received Sept. 18, 1989, and reviewed under Institute publication policies.
Copyright €© 1991, American Concrete Institute. All rights reserved, including
the making of copies unless permission is obtained from the copyright propri-
etors. Pertinent discussion will be published in the March-April 1992 AC/
Structural Journal if received by Nov. I, 1991.

ACI Structural Journal / May-June 1991



Zdendk P. Balant, FACI, is Walter P. Murphy Professor of Civil Engineering
at Northwestern University, Evanston, lll., where he served as founding Direc-
tor of the Center for Concrete and Geomaterials. He is a registered structural
engineer, a consultant 10 Argonne National Laboratory, and editor-in-chief of
the ASCE Journal of Engineering Mechanics. He is chairman of ACI Commit-
tee 446, Fracture Mechanics; a member of ACI Committees 209, Creep and
Shrinkage of Concrete, and 348, Structural Safety, chairman of RILEM Com-
mittee TC 107 on Creep, of ASCE-EMD Programs Committee, and of SMiRT
Division of Concrete and Nonmetallic Materials, and a member of the Board
of Directors of the Society of Engineering Science. Currently he conducis re-
search at the Technical University in Munich under the Humboldt Award of
U.S§ Senior Scientist.

Mohammad T. Kazemi holds a PhD in structural engineering from Northwest-
ern University. He holds MS and BS degrees from Sharif University of Tech-
nology, Tehran. His current research interests includes fracrure mechanics of
concrete and other quasi-brittle materials. He is a faculty member ai Sharif
University. ’

tic dimension of the structure, and ¢, = coefficient in-
troduced for convenience. It does not matter which di-
mension of the structure is used for d because only rel-
ative values are of interest; e.g., one can use the beam
depth, beam span, or shear span. Coefficient ¢, can be
defined to make o, represent the maximum bending
stress in the beam, or the average shear stress, or any
other convenient stress value.

When geometrically similar structures of different
sizes fail at the same o,, we say that there is no size ef-
fect. It can be verified that size effect is not exhibited
by plastic limit analysis, nor by elastic analysis with an
allowable stress criterion, nor any failure criterion
based on a failure surface in the stress space or the
strain space. This means that g, = constant = Bf, ob-
tained from plastic limit analysis (B = nondimensional
constant and f, = any measure of strength, also a con-
stant). The absence of size effect is due to the fact that
the failure is, according to plasticity, always simulta-
neous throughout the structure, occurring as a single-
degree-of-freedom mechanism. Fracture mechanics, on
the other hand, deals with failures which are nonsimul-
taneous, i.e., propagating. The propagation nature of
failure gives rise to size effect, unless the failure occurs
(or is assumed to occur) at the first initiation of frac-
ture. According to linear elastic fracture mechanics —
the simplest fracture theory in which the fracture pro-
cess is assumed to be concentrated at a point (the crack
tip) — one must always have o, = (const.)xd™"?, which
represents the strongest possible size effect. Applicabil-
ity of such a size effect to diagonal shear was first an-
alyzed in a pioneering study of Reinhardt,’ who initi-
ated study of the problem from the fracture mechanics
viewpoint.

For propagating failures in which the fracture proc-
ess is not concentrated at a poini, but takes place within
a finite zone ahead of the fracture front, the size effect
is transitional between plasticity and linear elastic frac-
ture mechanics. A transitional size effect may be sim-
ply described by the law proposed by BaZant®

oy =Bf, (0 + B  F=dd 2
in which d, and B are empirical constants and ratio § is
called the brittleness number’ (which must be distin-
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guished from the brittieness numbers of Gustafsson and
Hillerborg® and Carpinteri®).

Eq. (2) has been rigorously derived from various rea-
sonable simplifying hypotheses. It can be derived® by
dimensional analysis and similitude arguments from the
hypothesis that the dissipated energy depends on: (1)
length of the fracture of cracking zone and (2) its area.
If only the first part of the hypothesis is made, the size
effect of linear elastic fracture mechanics results, and if
only the second part of the hypothesis is made, there is
no size effect, as in plasticity. Eq. (2) also results from
fracture mechanics when the fracture process zone
ahead of a sharp crack tip is assumed to have a certain
constant length which is a material property and is in-
dependent of the structure size.

It must be emphasized that Eq. (2) is approximate.
However (in comparison with the inevitable statistical
scatter in concrete testing), the accuracy is sufficient for
size ranges up to 1:20, which is good enough for most
practical purposes. More complicated formulas for a
broader range of applicability have been considered;™'
however, the additional parameters were found not to
be independent of the structure shape, while Eq. (2)
seems to work well for any reasonable specimen or
structure shape tested so far.

In the case of structures that have no notches, appli-
cability of Eq. (2) rests on the assumption that the ul-
timate load is not reached at the first initiation of
cracking or damage, but is reached only after a large
damage, or fracture zone, or both, develops. In fact, a
good design practice requires concrete structures to be
designed so that the ultimate load will be much larger
than the first cracking load, and this guarantees the ex-
istence of a large cracking or damage zone at the mo-
ment of failure. This zone has a similar effect as a large
fracture or notch, causing stress redistribution with
stress concentrations at the fracture or damage front.

Applicability of Eq. (2) to structures also requires
that the shape of the major crack and the contour of
the cracking zone at ultimate load, observed on speci-
mens of different sizes, be approximately similar. It
may happen that Eq. (2) works only up to a certain
size, beyond which this condition is no longer satisfied
and a transition to a different failure mechanism takes
place (such a limit of applicability has, for example,
been found for the case of Brazilian split-cylinder tests).

TEST SPECIMENS AND PROCEDURE

Two different test series with effective beam depths
d as given in Table 1 have been carried out (d = dis-
tance from the compression face to the centroid of ten-
sile reinforcement). In the first series, with sizes in the
ratio 1:2:4:8, the longitudinal reinforcing bars were
straight, while in the second series, with sizes in the ra-
tio 1:2:4:8:16, the reinforcing bars were provided with
right-angled hooks at the beam ends to prevent bond
slip and bar puliout at failure. In the smallest speci-
mens of the first series, pullout failures with bond slip
were observed, causing the failure mechanism to change
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Fig. 1—Test-specimen geometry (1 in. = 25.4 mm)

at least partially from diagonal shear to bending. The
length-to-height ratio of all the beams was L/h = 6,
and the span-to-depth ratio was ¢/d = 7. The loads
were positioned so that the shear span was always a, =
3d (see Fig. 1) and the total cross-sectional height & =
5d/4 and 16d/13 for the first and second series, respec-
tively.

The thickness of all the specimens was b = 38.1 mm
(1.5 in.). In the present tests, because the same thick-
ness was kept for all sizes, the largest beams had a
rather thin and slender (elongated) cross section. Nev-
ertheless, the slenderness of the cross section was much
below the critical value for which lateral buckling
would take place.

It may be proper to cite the reasons for the beam
thickness to be kept constant (two-dimensional similar-
ity) rather than increased in proportion to the beam
depth (three-dimensional similarity).

1. The surface layer of concrete, of a thickness
roughly equal to the maximum aggregate size, has, in-
evitably, a considerably smaller contznt of large aggre-
gate pieces and a considerably larger content of mor-
tar. This phenomenon, called the ‘‘wall effect,’’ is
known to cause the fracture front to advance on the
surface farther than in the interior, and may be ex-
pected to cause the thickness average of the fracture
energy to vary as the thickness increases.

2. The midthickness of the specimen is roughly in the
state of plane strain and the surface layer is approxi-
mately in the state of plane stress, which also causes the

270

Table 1 — Results of diagonal shear tests at
Northwestern University

(I} Unanchored bars

(11) Anchored bars

f = 6790 psi) f! = 6700 psi)
| P | ¥ Observed d, p, | ¥ Observed
in. | kips v failure mode in, kips v failure mode
0.8 822 :gg Bar pullout 13/16 ?33 %;3 Diagonal shear
: 071 |16 and bending 105 | 245 and bending

1.46 | 1.72 1.32 | 1.54
1.6 | 1.33 |1.56 1.625 | 1.21 | 1.4t

1.39 1 1.63 1.43 | 1.67

Diagonai shear

2.47 | 145 3.25 2.43 | 1.42 (single main
3.2 2.51 | 1.48 2.26 | 1.32 | peak, failure
2.33 | 1.37 | Diagonal shear 2.00 | 1.17] at one side
(single main only)
peak, failure
408 {1.20| at one side 3.28 | 0.96
only) (3.76) | — | Diagonal shear
X {two peaks,
6.4 4.40 | 1.29 | Diagonal shear 6.5 3.77 1.10 major cracks
7 4.63)| — | (two peaks) ) (5.44) | — | at both sides)
4.56 | 1.34 | Diagonal shear 3.69 [ 1.08

(single peak)

4.62 | 0.67 | Diagonal shear
Not tested 13.0 5.06 |0.74 (single main
4.16 | 0.61 peak)

1in. 254mm1k1p=1000lb—4448N] psi = 6895 Pa.
v, = oy = P,/2bd, v. = 1.222 and 1.212 MPa (177 2 and 175.8 psi) for the
first and second series, respecuvely [see Eq. (3)].

fracture energy to be different near the specimen sur-
face than it is in the interior. The average fracture en-
ergy thus can be kept constant only if the specimen
thickness is constant.

3. According to linear elastic fracture mechanics, the
Poisson effect causes the singularity at the surface ter-
mination of the crack front edge to be different from
that in the interior. The effect of this difference must
diminish if the thickness increases.

4. When the specimen thickness is varied, additional
size effects are produced by diffusion phenomena such
as heat conduction and drying; for example, hydration
heat causes the core of a thicker specimen to heat to
higher temperatures than does the core of a thinner
specimen, which affects the development of strength as
well as damage.

5. Changes of thickness might also cause a Weibull-
type statistical size effect.

Despite these theoretical reasons, however, no signif-
icant effect of thickness on the diagonal shear strength
has been observed in tests within a realistic thickness
range.”

The longitudinal reinforcing bars used for both test
series were cold-drawn deformed steel bars with
strength 690 to 890 MPa (100 to 130 ksi). Because of
difficulties in obtaining bars of geometrically similar
cross sections, it was decided to make only the cross-
sectional areas geometrically similar and use for all the
specimens various combinations of bar sizes D2 and D3
whose effective areas are 12.90 and 19.75 mm? (0.020
and 0.030 in.2), respectively. The bar locations and size
combinations used for various specimen sizes are shown
in Fig. 1, for both test series. The reinforcement ratios,
p = A/bd, were 1.65 and 1.62 percent for the first and
second series, respectively (A, = cross-sectional area of
reinforcement).
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A microconcrete was used (for reasons of economy),
with maximum aggregate size 4.8 mm (3/16 in.), essen-
tially the same as that used by BaZant and Pfeiffer.'®
The water:cement:aggregate ratio was 1:2:4 (by
weight). The compression strength of concrete f! was
46.8 and 46.2 MPa (6.79 and 6.70 ksi) for the first and
second series, respectively, as measured on cylinders 76
mm (3 in.) in diameter and 152 mm (6 in.) high. Nei-
ther admixtures nor air-entraining agents were used.
Mineralogically, the aggregate was siliceous river sand.
Portland cement C 150 (ASTM Type I) was used.

All the beams were cast in plywood forms. The forms
were stripped at 1 day of age. Subsequently, the speci-

mens were cured until the day of the test at 95 percent

relative humidity and with a temperature at approxi-
mately 25 C. To reduce errors in comparing beams of
different sizes, each whole series of beams of all sizes
was cast from a single batch of concrete. For the same
~ reasons, the specimens were all cured side by side.

The specimens were tested at the age of 28 days in a
closed-loop MTS machine under constant stroke rate,
which was chosen 10 achieve the maximum load for
each size within about 7 min.

TEST RESULTS AND THEIR EVALUATION

The measured values of maximum (ultimate) loads
for the individual specimens are given in Table 1, which
also reports the nominal stresses at maximum load, v,
= gy = P,/2bd, as normalized by v, {see Eq. (3)] (¢, =
1/2, which means oy is chosen to represent the average
shear stress).

The observed types of failure are also indicated in
Table 1. In most cases, the failure was of the diagonal
shear type, as planned. However, for the smallest spec-
imens of the first series, failure occurred essentially by
bending combined with pullout of the bars from the
end parts of the beams; therefore, these results were not
used in the analysis. In the second series, the pullout
was prevented by right-angled hooks. But the failure of
the smallest specimens was still not entirely of the di-
agonal shear type; rather, the cracking pattern of these
specimens appeared as a combination of diagonal shear
and bending, while for all the larger specimens it ap-
peared as typical diagonal shear.

_In most cases, one main diagonal crack, at one side
of the beam, developed during failure (maximum load)
and the secondary peak due to the diagonal crack at the
other side (if registered) was smaller. However, in a few
instances (indicated in Table 1), the overali maximum
load corresponded to the second large diagonal crack.
In those cases, a major crack developed first at one side
but was later arrested at the compression zone; after
that the load dropped, but started to rise again as an-
other large crack developed at the other side. During
the growth of the second large crack, a higher peak
load was reached. Only the first of the two main peak
loads agreed reasonably well with the overall trend of
the size effect, and was therefore considered in the
analysis given in Table 1. It would in any case be un-
reasonable to design a beam for the second main peak,
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Fig. 2—Size-effect plots for the first series and size
range 2:8 (1 in. = 25.4 mm, 1 psi = 6895 Pa)

regardless of which main peak is higher. In practice, the
peak-load state due to the first large diagonal shear
crack must be considered to be catastrophic failure.
The failure mode at this state is the same as that for the
majority of the beams tested, for which a large diago-
nal crack developed only at one side under the maxi-
mum load. This occurred in the first series for one and
in the second series for two specimens, all with height
h = 203 mm (8 in.).

ANALYSIS OF TEST RESULTS

The constants in Eq. (2) can be conveniently deter-
mined by linear regression, since the advantage of Eq.
(2) is that it can be rearranged to a linear plot ¥ = AX
+ C, with X = d,Y = (f,/on) = (v/v), A = C/d,,
and C = B Thus, plotting Y versus X, and deter-
mining the slope and vertical intercept of the regression
line, one obtains d, and B.

These regression plots are shown in Fig. 2(a) and
3(a), which also give the resulting optimal values of d,
and B. From this, the size-effect curve may be plotted
in the form of logarithm of the nominal stress versus
the logarithm of the brittleness number, which is a
measure of size. Such plots are shown for both series in
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Fig. 3—Size-effect plots for the second series and en-
tire size range, 1:16 (1 in. = 25.4 mm, 1 psi = 6895 Pa)

: —Bu v,=175.8 psi |
00T B=3.93

Fig. 4—Size-effect plot for the second series without
the smallest size; size range 2:16 (I in. = 25.4 mm, 1
psi = 6895 Pa)

Fig. 2(b) and 3(b). The size effect according to linear
elastic fracture mechanics is in these plots represented
by a straight line of slope —1/2, as shown. This
straight line represents the asymptote of the size-effect
curve for 8 — oo,
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Fig. 5—Size-effect plot for the second series without
the smallest and largest sizes, size range 2.8 (I in. =
254 mm, 1 psi = 6893 Pa)

[t is interesting to note that for the first series the re-
sults were relatively far from the linear elastic fracture
mechanics asymptote and for the second series they
were very close to it. Apparently, the possibility of
bond slip with bar pullout contributes to ductility of
failure, and its prevention tends to increase the brittle-
ness of response. From Fig. 2 and 3 it is evident that
there is a significant size effect and that the size effect
agrees relatively well with the size-effect law in Eq. (2).

In Fig. 3, all the observed failure loads for the sec-
ond series were analyzed. Due to the fact that the spec-
imens of the smallest size exhibited a different failure
mode, the results for all the sizes except the smallest
one are reanalyzed in Fig. 4. However, the optimal fit
by the size-effect curve is found to differ little from that
in Fig. 3. It is interesting that the peak loads measured
on the smallest specimens agreed quite well with the
overall trend of the size effect, even though the failure
mode was not completely diagonal shear. This might be
due to the fact that the beam depth was only four times
the maximum aggregate size. in which case different
tyvpes of failure mode must blend because the cracking
pattern is dominated by the random locations of aggre-
gate pieces.

Since the first series did not involve the largest size of
d = 330 mm (13 in.), the three middle sizes of the sec-
ond series are analyzed separately in Fig. 5, which may
be compared to Fig. 2. In this case the optimal size-ef-
fect curve is somewhat more remote frem the linear
elastic fracture mechanics asymptote and is somewhat
closer to the optimal curve from the first series.

Comparing Fig. 2 to 5 with similar size-effect plots
constructed in previous works®* that were based on the
test data extracted from the literature, one must note
that the width of the scatter band is far narrower for
the present tests, as expected. The reason for this is that
the specimens in the present tests did satisfy the condi-
tion of geometrical similarity and that the size range
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was considerably broader. This makes it possible to
draw stronger conclusions.

IMPLICATION FOR CODE DESIGN FORMULA

At present, the design codes generally ignore the size
effect (although some include a mild size effect, the
correctness of which is questionable). The present for-
mula for the nominal strength of concrete in diagonal
shear, given by ACI 318, reads

v, = min{ 1.9Jf; + 25000 Zd, 3.5\/1’_;} 3)

where f. and v, are in psi (1 psi = 6895 Pa); p is the
reinforcement ratio; and M, is the moment occurring
simultaneously with shear force V, at the cross section
considered. In our case, V, = P,/2 and the moment at
the distance 4 from the supports is M, = (a, — d)P,/2.
For the present test specimens, V.d/M, = d/(a, — d)
= 0.5, and then v, = 1.222 MPa (177.2 psi) and 1.212
MPa (175.8 psi) for the first and second series, respec-
“tively; a, is the shear span of the beam (Fig. 1).

Eq. (3) gives the ultimate capacity without any size
effect. According to the size-effect law in Eq. (2), it
appears that Eq. (3) should be adjusted by multiplying
it with the factor B(1 +8)~"2, i.e., the nominal strength
of concrete in diagonal shear (v, = ¢,) should be taken
as

d

g = a. 4)
with v, defined by Eq. (3). For beams of sizes d > d,,
where d. = (B* — 1)d, (which corresponds to v, = v),
the ACI relation [Eq. (3)] will not meet the required
safety margin. For d < d., the design will be unecon-
omic. The value of d.of course depends on the value of
B. For the first test series (Fig. 2), d. = 355 mm (14.0
in.), and for the second series (Fig. 3), d. =150 mm
(5.9 in.). Note, however, that we are concerned here
with the ultimate loads, while the ACI formula is in
fact intended to reflect the diagonal crack-initiation
load. Perhaps both Eq. (3) and (4) should be consid-
ered. For smaller sizes (d < d.), Eq. (3) will govern,
and for larger sizes, Eq. (4) will govern.

Eq. (3) and (4) represent the necessary adjustment
that is closest to the current ACI Building Code. A bet-
ter formulation involving the size effect was presented
in References 2 and 4. Comparisons of the present data
with this and other formulations are planned.

For beams with stirrups, the shear capacity due to
stirrups (calculated in the usual manner and not sub-
jected to any size-effect correction) must be added to
that in Eq. (4), as is the current practice. However, note
that the presence of stirrups affects to some extent the
carrying capacity (i.e., the nominal strength at failure)
due to concrete, as became apparent from the study in
Reference 4, but this remains to be explored experi-
mentally. The simple formula obtained in the earlier
paper might be used; however, the problem deserves
deeper investigation.
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V, = Bvr (1 + ﬁ)—l/Z,

To apply Eq. (2) [or Eq. (4)] with the size effect, one
needs to determine the brittleness number. In the ab-
sence of measurements, this can be done according tc

one of the following two formulas™'®*
_~d Bi(a)d

B - d() - Cfl Fu (5)
d g (ag) d

B=—F == 6

d, g’ (ap) ¢ (6)

in which G, = fracture energy, ¢, = effective size of the
fracture process zone, £ = Young’s modulus of elas-
ticity, £, = EG,/v, glap) = nondimensionalized en-
ergy release rate for the relative crack length a, = a,/
d, where a, = length of the part of main crack at fail-
ure that is traction-free (i.e., free of bridging stress),
and g’ () = derivative of g(a).

Eq. (5), derived in Reference 7 and discussed in Ref-
erence 10, is more accurate for small specimen sizes
(near plasticity). On the other hand, Eq. (6), derived in
Reference 12, is more accurate for large sizes (near lin-
ear elastic fracture mechanics). If these differences are
ignored, the size-effect parameters B and d, can be es-

timated approximately as
Fu 172
B =c | —> o)
g’ (ag)e,

g’ (a0)
= @

If B can be estimated from plastic analysis, then [ac-

cording to Eq. (5)] the length parameter in the size-ef-

fect law may be calculated as d, = cf,/B%g (o).

However, it is not presently completely clear how Eq.
(5) and (6) should be applied in design. Parameters G,
¢,, and E are material constants that can be deduced
from simple experiments; however, a more serious
question arises with regard to the meaning of g(c). The
shape and length of the equivalent linear elastic crack
at the moment of diagonal shear failure must be deter-
mined, as must how g(a,) depends on the steel ratio p
and the shear span a,/d. These questions require fur-
ther investigation. Numerical finite element analysis
could of course be employed,” but even that is of lim-
ited value due to limited knowledge of the material
laws. In the meantime, a practical alternative might be
to develop some empirical equations for the values of
B and d,, from which the brittleness number 3 would
follow . >4"

The value of parameter d,, which is required to de-
termine the brittleness number, is no doubt related to
some length property of the microstructure of con-
crete. This might be, at least partially, the maximum
aggregate size d,. However, the length of the effective
fracture process zone at failure ¢, might be more im-
portant; ¢, is a material parameter whose value can be
obtained from size-effect tests of notched fracture
specimens of different sizes.'”"

Using previous fracture tests'’ done on a similar con-
crete, it was estimated® that ¢, = 1.7 mm (0.067 in.).
According to the present tests, d, = 95¢, (range 2:8, see
Fig. 2) for the first series with unanchored bars, and d,
= 5.2¢, (range 1:16, see Fig. 3) or d, = 39¢, (range 2:8,
Fig. 5) for the second series with anchored bars. But
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Fig. 6—Weibull-type size effect for the second series (1
in. = 254 mm, | ksi = 6.895 MPa)

these values of d, are too scattered to consider as a gen-
eral property.

Statistical scatter might not be the only reason for
these differences of the values of d, for different sizes.
For example, disregarding the main crack that leads to
complete fracture of the beam, there are prepeak cracks
which may also have some influence, affecting func-
tion g(a,). The number of these cracks is greater for
larger beams,'" ¥ which might make function g(«,) size
dependent in effect. Further, for smaller beams, the
aggregate interlock on crack'® and mixed-mode effect’>"
(crack opening with shear) play a greater role in carry-
ing the load.

One must keep in mind the various abnormalities of
the present tests. Due to the need to scrupulously en-
force geometric similarity, the steel cover of the largest
beams has been uncharacteristically thick at the bottom
and thin at the sides. The diameters of the reinforcing
bars could not be scaled exactly (which may affect the
size effect through bond slip'®). The steel bars were of
high strength. Probably, these aspects should not sig-
nificantly alter the size-effect results, but this remains
to be proven. Finally, the most serious limitation of the
present tests is that the concrete was of reduced aggre-
gate size.

In some types of brittle failure, e.g., the Brazilian
split-cylinder test, measurements revealed an upper size
limit on the validity of the size-effect law in Eq. (2), af-
ter which the size effect disappears and there is a tran-
sition to a different failure mechanism."” The range of
applicability of Eq. (2) is probably also limited for the
case of diagonal shear, but if such a limit exists, it ap-
pears to lie beyond the range 1:16.

The size effect in diagonal shear should be of partic-
ular concern for high-strength concrete' since the re-
sults of Reference 20 showed that the higher strength
concrete has a smaller ¢, than normal concrete.

274

WEIBULL-TYPE SIZE EFFECT AND OTHER
ASPECTS

It has been widely believed that the size effect in
concrete structures can be explained by Weibull-type
weakest-link statistical theory. This theory, however,
ignores the large stress redistribution that happens be-
tween the crack initiation load and the ultimate load.
This redistribution makes Weibull’s statistical strength
theory inapplicable to concrete structures,”** unless the
failure occurs at the initiation of cracking (strictly
speaking, at the initiation of macroscopic cracking,
since microcracks can and do exist at lower loads).

The test results of the second series in Fig. 6 make it
possible to check the applicability of Weibull-type the-
ory to diagonal shear. This theory yields the most se-
vere size effect when the threshold of strength distri-
bution ¢* is taken as g, = 0. In that case, the theory
predicts the plot of log g, versus log d to be a straight
line of slope — Y if there is two-dimensional similarity
and the value of Weibull modulus m is taken according
to uniaxial test results for concrete (which typically give
m = 12). Fig. 6 clearly shows how the Weibull theory
disagrees with the present tests, giving too weak a size
effect in the large size range. So far the evidence against
the application of Weibull theory to structures with
large fracture growth prior to failure has been theoret-
ical,”® and this seems to be the first experimental evi-
dence.

If the Weibull threshold o, is taken as g, = 0.5 v,
[Eq. (3)], then the Weibull theory (with m = 12) pre-
dicts the dashed curve, which disagrees with the present
tests even more. One could also adjust the Weibull
modulus m to yield an optimal fit of the present tests,
but such a value of m would disagree with direct ten-
sion tests. Nonlinear regression of the equation g, =
A,;7*" + o, yields m = 3.15, g, = 0.52 MPa (75.4 psi),
and A’ = 0.199 MPa - m¥™ [297 psi (in.)*™] as the op-
timum fit. It should be added that if there is size effect
in g, at crack initiation, it may have to be explained by
a Weibull-type theory, since the size-effect law in Eq.
(2) does not apply to oy crack initiation."

For two- and three-dimensional similarity, Weibull
theory with zero threshold and m = 12 indicates that
o, should be proportional to d-'* and d'*, respec-
tively. Factor d~"* was proposed by Kani'' on the basis
of his experiments. Shioya et al. {see Reference 16)
proposed the factor [(d/d\)""* —1] where d, = con-
stant. Factor d "¢ was also suggested by Gustafsson
and Hillerborg,® based, however, not on statistics but
on approximating their calculation results according to
the fictitious crack model for the range of 0.3 < d/¢,
< 5 (where £, = EG/f and f, is tensile strength). A
similar size-effect trend, based on nonlinear fracture
mechanics calculations, was obtained by Jenq and
Shah.” The aforementioned authors'’ consider the ef-
fect of thickness to be negligible, as indicated by Kani’s
tests (which contradict Weibull theory). Keep in mind
though, that when the size-effect range is too limited or
the scatter of test data is too large, different size-effect
laws can fit the available test data equally well.
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After the review of this paper,”’ Walraven published
a series of diagonal shear tests.'* He concluded that the
size-effect law in Eq. (2) can be used for diagonal shear
of beams with different ratios of shear span to beam
depth (although for a,/d = 1 the failure was com-
pletely different than diagonal shear). This reinforces
the conclusions of this study.

Although concrete is not a deterministic material, a
statistical size effect should nevertheless exist.® The
question is how significant it is, and how to calculate it.
This question was recently studied by BazZant and Xi,”
who showed that for materials with a large fracture
process zone in which a large crack grows in a stable
manner prior to ultimate load, a nonlocal generaliza-
tion of Weibull theory is required. In this theory, the
failure probability of the material at a certain point
does not depend on the stress at that point but on the
average of stress (or strain) from a certain nejghbor-
hood of the point. This theory leads to the following
formula

oy = Bf, (8" + B, B = ®)

a
dy

where m = Weibull modulus (m = 12) and n = num-
ber of dimensions (n = 2 for two-dimensional similar-
ity and n = 3 for three-dimensional similarity). Eq. (2)
is obtained as the deterministic limit of Eq. (8) for m —
. In the plot of log ay versus log 8, Eq. (8) describes
a smooth transition from a straight line of slope —n/m
(rather than from a horizontal line) to a straight line of
slope — V4. In practice, the difference between Eq. (2)
and (9) becomes significant only if the size range is very
broad and includes very small sizes. As for the present
test results, Eq. (8) fits them better, but only slightly
better, than does Eq. (2).

It has been proposed that the classical Weibull-type
theory of size effect should apply to the loads at crack
initiation. Strictly speaking, that would be exactly true
only if upon reaching the strength limit of the material,
the cracks formed instantly. In reality, they form grad-
ually; before any microcrack is fully formed, the stress
must localize. The localization inevitably causes some
size effect of deterministic type, even for the crack-ini-
tiation loads. It is unclear whether this size effect, su-
perimposed on a statistical size effect, is Teally negligi-
ble for practical purposes.

CONCLUSIONS

1. The diagonal shear failure exhibits a strong size
effect of fracture mechanics type, due to differences in
the stored energy that can be released to drive the fail-
ure propagation.

2. The present test results are in good agreement with
the size-effect law proposed in Reference 6 [Eq. (2)].

3. Prevention of bond slip of bars by providing an-
chorage at the ends increases the brittleness number.

4. Application of Weibull’s (weakest-link) statistical
failure theory to diagonal shear failure is disproved by
the results of the test series with anchored bars.
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5. Since for the ultimate load there is a strong size
effect, while for the first diagonal crack-initiation load
the size effect is small or negligible, imposition of a
certain margin of safety against the crack-initiation
load does not insure a uniform margin of safety against
the ultimate load. Consequently, a requirement based
on the ultimate load has to be introduced into design
codes, which means the size effect (of fracture mechan-
ics type) has to be considered. (However, the present
criterion based on the diagonal crack-initiation load,
involving little or no size effect, should perhaps be re-
tained as a second design requirement, to insure serv-
iceability; it might govern for small sizes, while the ul-
timate load criterion with the size-effect law would
govern for large sizes.)
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