CREEP OF ANISOTROPIC CLAY:
NEw MICROPLANE MODEL

By Zdenék P. Bazant,' F. ASCE, and Pere C. Prat,> S. M. ASCE

ABsTRACT: As a simpler alternative to a previous microplane model, a new
microplane model is presented, in which the relative slipping of clay platelets
is characterized by normal rather than shear strains on the microplanes. As is
the case for Batdorf and Budianski’s slip theory of plasticity, the microplanes
are constrained statically, i.e., the stress components on a microplane are the
resolved components of the macroscopic stress, while the previous model used
a kinematic constraint. This different type of constraint is needed to model cor-
rectly material anisotropy. The distribution function of normal strain rate in-
tensity for microplanes of various orientations is calculated from the frequency
distribution function of clay platelet orientations, which was approximately de-
termined by other authors from X-ray diffraction measurements. The 6 x 6 flu-
idity matrix is calculated from the principle of complementary virtual work on
the basis of deformations of individual microplanes and the current values of
the stress components. The activation energy approach, validated in previous
works, is used to quantify the dependence of the normal strain rates on the
microplanes of all orientations as a function of the stress level and temperature.
A numerical algorithm to calculate the fluidity matrix is given, and typical test
data from the literature are analyzed. With only two free material parameters,
good fits of the data are achieved, including their anisotropic features. The
modeling is limited to deviatoric creep, and volumetric response is left for sub-
sequent work. The proposed model could be used in finite element programs.

INTRODUCTION

Creep of clays in natural deposits often exhibits significant anisotropy
that has arisen through the previous long-time consolidation. The mi-
croscopic fabric of such clays is distinctly anisotropic, and microscopic
examinations reveal that the frequency distribution of the orientations
of the clay platelets is nonuniform. The objective of the present paper
is to formulate a constitutive law that is usable in finite element pro-
grams.

Each element of the fourth-order three-dimensional incremental flu-
idity tensor must be defined as a function of the stress tensor. This task
is not easy to accomplish without some micromechanics analysis. An
attempt along this line was made by Bazant, et al. (9), who based their
model on a triangular cell of three clay platelets sliding over each other.
Their model, however, was only two-dimensional, although a certain
approximate generalization to three dimensions was also proposed.

A truly three-dimensional constitutive model for deviatoric creep of
anisotropic clay, based on the activation energy approach, was recently
developed by BaZant and Kim (6). Pande and Sharma (22,23) used a
similar approach, although without the activation energy concept. These
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models were analogous to the slip theory of plasticity suggested by Tay-
lor (28) and developed by Batdorf and Budianski (3). In this classical
theory, the inelastic deformation is defined independently on planes of
various orientations in the material, presently called the microplanes (4,6
8). In addition, the interaction between the microplanes and the macro-
level is assumed to be characterized by an equilibrium (or static) con-
straint, which requires that the stress components on each microplane
are the resolved components of the macroscopic tensor.

The previous model by Bazant and Kim, however, used the opposite
assumption, namely that the microplanes are constrained kinematically
rather than statically, i.e., the strain components on a microplane of any
direction are the resolved components of the macroscopic strain tensor.
The original reason for choosing this dual constraint was that a kine-
matically constrained microstructural model is more stable in numerical
analysis, as transpired from the previous formulation of the microplane
model for concrete (7,8). However, another, more compelling, reason
was the finding that a statically constrained microplane model with shear
strains would give an incorrect picture of anisotropy; for the direction
in which there are more interparticle slip planes, it would give a lower
rather than a higher creep rate. We will nevertheless see that this in-
correct anisotropy of the kinematically constrained model is limited to
inelastic deformations that arise from shear deformations on the micro-
planes.

Our purpose in micromechanics modeling is to determine the inter-
action between inelastic phenomena on planes of various orientations,
but not to completely describe the deformations in the microstructure.
In particular, we do not attempt to introduce individual particles and
the slips among them. Thus, our relationship between the deformations
on the microplanes to the actual interparticle slips is essentially phe-
nomenological. In the previous work (6), it was assumed that interpar-
ticle slip corresponds to a shear deformation on the microplanes. This
is not necessarily so, however. The shear slip between particles may be
equally well imagined to result in normal strains on the microplanes, as
may be shown for some particle arrangements and movements; see Fig.
1. The reason for the possibility of two different interpretations is the
ambiguity in associating the microscopic particle displacements with the
deformation of the macroscopic homogenizing continuum.

Adopting in this study the assumption that interparticle slip results in
normal strains on the microplanes, we achieve a considerably simpler
model than in the previous work (6). In three dimensions, each micro-
plane has infinitely many possible directions of shear strain, but only
one direction of normal strain. This simplicity is perhaps the main rea-
son for introducing a new approach.

As already pointed out, the modeling of interparticle slip by shear de-
formations on the microplanes is limited to the kinematically constrained
approach. For a statically constrained microplane model, this would lead
again to an incorrect picture of anisotropy; the deformation rate on the
planes of an orientation for which there are more interparticle slip planes
in the microstructure, the model would predict a smaller rather than a
higher creep rate, which would be incorrect. Thus, the statically con-
strained model appears to be inevitable if the interparticle slip should
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CLAY
PLATELET

FIG. 1.—Particle Tips with Sliding Velocities v,, v,, v, Are Assumed to Follow
Displacements of Macroscopic Homogenized Continuum

be modeled by normal rather than shear deformations on the micro-
planes. This might be a source of difficulty if we intended to model strain-
softening, for which a kinematic rather than static constraint seems to
be necessary for stability reasons. In the present work, however, we do
not intend to treat strain softening.

DETERMINATION OF FLUIDITY TENSOR

We introduce the following basic hypotheses:

1. Only deviatoric deformations are modeled, i.e., the volume change
and the hydrostatic pressure effect are ignored.

2. The interparticle slip rate is introduced by means of its equivalent
normal deformation rate on a microplane normal to the slip direction.

3. The distribution frequency & (v) of the normal deformation rates on
the microplanes is given (as a function of orientation vector v).

4. The microplanes are statically rather than kinematically con-
strained, the same as in the classical slip theory of plasticity (3).

5. The rate of interparticle slipping depends on temperature and stress
as indicated by the activation energy concept of the rate process theory
(13,15).

The last hypothesis was introduced and partially verified during the
1960s by Christensen (12), Campanella (10,30), Mitchell (17,18,26), and
others (19-21,31). However, it was not used in three-dimensional triaxial
constitutive relations or micromechanics models until it was formulated
in Refs. 6 and 9.

The assumption that the interparticle slipping is modeled as a normal
strain rate may be justified if it is assumed that the particle tips follow
the macroscopic deformation of the homogenized continuum (Fig. 1).
On the other hand, if it were assumed that the particle centroids follow
the macroscopic deformation, then this hypothesis would not be appro-
priate.
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According to the hypothesis of a statically constrained microstructure,
the components of the stress vector on the microplane are the resolved
components of the macroscopic stress tensor; (¢,); = v;,0;, in which v;
= direction cosines of the unit normal to this microplane, imagined to
represent the direction of the interparticle slips that are modeled by this
microplane; and o; = macroscopic stress tensor components. Latin lower
case subscripts refer to Cartesian coordinates, x; (i = 1, 2, 3). Projection
of the stress vector &, onto the unit normal vector # yields the normal
stress on the microplane:

g, = V,*Vjo',"' ..................................................... (1)

According to the rate process theory, which is now generally accepted
for the creep of clays, the rate of sliding at interparticle contacts may be
expressed as

€, = k] sinh (kzo'v) .............................................. (2)

in which ¢, = rate of normal strain for the microplane, imagined to cor-
respond to the rate of interparticle slips in this direction; and

kT
k1 =2A <"];'> t_me_Q/RT = kgt_m .................................. (3)
V.
ke = @)

where T = absolute temperature; Q = activation energy of interparticle
bonds; R = universal gas constant; k = Boltzmann constant; # = Planck
constant; V, = activation volume; A = empirical constant characterizing
the number of active bonds for slip in this direction; m = empirical time
exponent describing the time decay of the creep rate (the stress being
assumed constant); and k, = coefficient depending on temperature.

To determine the compatibility relation between the microstrain rates
on the individual microplanes and the macroscopic strain-rate tensor,
the principle of complementary virtual work may be used. This principle
requires that the complementary virtual work done by the macrostrain
rates within a sphere of unit radius be equal to the complementary vir-
tual work done by all the microstrain rates on the microplanes of all
orientations:

41

3W = _3" E,]BO',’ =2 J; évﬁo',,q)(v)ds ............................... (5)

in which 4m/3 represents the surface of a unit sphere. The factor 2 is
introduced because the integration needs to be carried out only over the
surface S of a unit hemisphere, since the integrand values at two dia-
metrically opposite points are the same; ®(v) is the given distribution
function for the frequency of the slip directions associated with various
microplanes of unit normals v.

Substitution of Egs. 1 and 2 into Eq. 5 yields

4
? éijﬁo,-]- =2 J; kl sinh (kzc.,)v,»v]-SO',-jCI)(v)dS ....................... (6)
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Noting that 3¢;; may be moved in front of the integral in Eq. 6, and that
Eq. 6 must hold for arbitrary stress variations, do;, we conclude that

4
—3—“ & =2 L ki sinh (ko) vy, @W)AS ... @)

It is now convenient to introduce inside the integrand the factor o,/
VgV Ok, Which equals 1:

4m .
36" 2 ] ky sinh (ky0,)v;v;

ViV Tim

BWYAS o ®)

v

Again, oy, may be brought outside the integral since it is independent
of direction v. This yields

. 3 kl Slnh (kz (Tv)

€ = | ViViVe Ve — q)(V)dS O e v oo v o vtoessonsnnanen (9)
2m Js o,

This equation may be rewritten as

€ = Blikm [0 (10)

in which Py, = fourth-order tensor of the current fluidities, which rep-
resents the inverse of the viscosity tensor and is defined as

3 k, sinh (k;0,
Bjiom = ~— f vivyven AN K20 @ as (11)
2w s

"

As mentioned before, we attempt in this paper to model only the de-
viatoric creep of clay. The volumetric creep represents a more difficult
question that requires dealing with its coupling to the deviatoric defor-
mations and probably necessitates introduction of the key features of the
critical state theory of soil plasticity. Consideration of these aspects is
beyond the scope of the present study and is planned for a subsequent
funding period.

Since o is required to be the deviatoric part of the stress tensor, there
is no need to make a distinction between the total stress and the effective
stress, which takes into account the effect of pore pressure. The devia-
toric effective and total stress components are the same, regardless of
pore water pressure. As for the strain rate tensor ¢;, likewise only its
deviatoric components are predicted by the present formulation.

NUMERICAL SOLUTION

In practical applications, the integral in Eq. 11 has to be evaluated
numerically. It may be approximated by the finite sum

‘ k, sinh (k;0,
Bijem = 6 z W, [v,-v/ VeV k1 sinh (k;0,) (D(v)] ..................... (12)
a=1 a

v

in which subscripts a refer to the integration points on the surface of
the unit hemisphere at which the integrand is evaluated; and w, = the
weights (coefficients) of the numerical integration formula, such that Z,w,
= 0.5 for the hemisphere. McLaren’s integration formula (5,8,27), which
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involves 25 integration points per hemisphere and is of eleventh degree
(i.e., integrates exactly an eleventh-degree polynomial on the sphere
surface) is used in all the present calculations. For axisymmetric stress
states, many of the integrated values are equal, and the formula can
then be reduced to only six integration points. Other integration for-
mulas, which are more accurate but use more integration points, or
have some other special advantages, are listed in Ref. 8 and derived in
Ref. 5.

When all the stress components are prescribed and no conditions are
imposed on the strain rates, Eqs. 10-11 can be simply evaluated to ob-
tain the strain rates for given stresses. However, this is not the case in
simulating typical laboratory tests. For the tests of deviatoric (shear) creep,
the strain rates must satisfy the condition of constancy of volume, and
the values of the lateral stresses are unspecified and depend on this con-
dition. Therefore, a more complicated numerical algorithm is required
to obtain the strain rates and lateral stresses for a prescribed axial stress.
One must use small increments of axial stress to reach the prescribed
axial stress level gradually, thus being able to follow the dependence of
strain rates and lateral stresses on the axial stress. This has been done
according to the following algorithm:

1. Input ko, kz , ®(W)e, w,, t, m, and the tolerance for iterations. Eval-
uate k; = kot™™. Calculate coefficients v; v vkv,,, for all combmatxons of i,
jokom(=1,2, 3) and for all a. Imtlahze ¢ =0 = Ao = = A€" = 0,
in which ¢ = (011,02 ,033,012, 023, o) = column matrix of macroscopic
stress components; € = similar column matrix of strain-rate components;
and ¢” = column matrix of inelastic strain rates. Specify increment Aoy, .
Set 6™ = ¢' + Ac/2, of = &' + Ao (Superscripts I, M, and F refer to
the initial, middle, and final values for the step.)

2. Loop on loading steps.

3. Iteration loop.

4. Compute from Eq. 11 " based on ¢", and B’ based on ¢*. Com-
pute AR = Bf — B’ and A¢’ = —ABo™, in which B = 6 X 6 matrix of
components By, of the fluidity tensor. Now the equahon Ae = B Ao —-
A¢" is a system of six linear algebraic equations, in which some un-
knowns are the A¢ components on the left-hand side, and other un-
knowns are the Ao components on the right-hand side. These equations
must be rearranged so that all unknowns are on the left-hand side. For
our fitting of test data for clays, the value of Aoy, is specified; and Aoy,
= Aoy (axisymmetric tests), Aoy = Aoz = Aoy = 0, and Aey; + Aep +
Aez; = 0 (no volume change, since only deviatoric creep is modeled by
the present theory). This amounts to six conditions and suffices to solve
the unknowns Aozz , Aeyp, Aezz 2 A€y, A€y, and Aes . Then update &

& + A¢, of = ¢ + Ace, oM = ¢’ + Ao/2 and reset the newly calculated
values in AO'

5. Iterate the steps 3-4 until the change of Ao from the preceding
iteration meets the given tolerance, such that the sum of the square of
all stress changes is less than a glven number. Print the results as needed.

6. Reset € — ¢/, ¢! — o, ¢’ « o' + Ao, 0 <« o' + Ao /2. Then return
to 2 to start a new loading step unless the final strain has been reached.
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This algorithm can be used when the specimen is tranversely isotropic
and is loaded along the axis of transverse isotropy. To speed up con-
vergence, the foregoing algorithm may be modified by calculating new
Ao as tAg?D + (1 — 1)Ae® where superscripts i and i — 1 refer to the
last two preceding iterations; and 1 = an empirical parameter such that
O0<r=1

The foregoing algorithm has been used to calculate the responses for
various values of k, and k;, in order to find, in a trial-and-error fashion,
the k; and k; values that give the optimum fit of the test data.

FREQUENCY DiSTRIBUTION OF ORIENTATIONS

The anisotropy of clay microstructure is geometrically characterized by
the frequency distribution function f(n) of the clay platelet orientations;
n = (1,1, n3) = unit normal to a clay platelet (2,11,29). In the previous
work (6), it was assumed that the direction of interparticle slipping co-
incided with the direction of the clay platelets. This was, of course, a
simplifying hypothesis. First, the plane of shear strain on the microplane
need not exactly coincide with the direction of interparticle slipping, and
second, typically we may imagine a tip or edge-to-plane contact of two
platelets, in which case there is some ambiguity as to which of the two
platelets represents the plane of slipping.

We introduce a different hypothesis, assuming that interparticle slip-
ping is modeled by normal strains on the microplanes such that the di-
rection of the normal strain rates is parallel to the clay platelet on which
the slipping occurs; see Fig. 1. While, in the previous approach, the fre-
quency distribution function f(n) could be taken approximately as the
distribution function for the initensity of shear strain rates on micro-
planes of various orientations, for our present hypothesis we need to
modify this function to obtain the frequency distribution function & (v)
for the distribution of the intensity of the normal strain rates as a func-
tion of slip orientations v; v = (v;,v,,vs) = unit vector (Fig. 2). In terms
of the spherical coordinates (8, $) shown in Fig. 2, the unit vectors of
microplane normals and of clay platelets are

V1 =¢co80;, v,=cosdsin® vi=sindsin .................. (13a)
n =cos8; ny=cosd sin®’; ny=sind' sin® ............... (13b)

According to our hypothesis number 2, we may assume that slipping
over all the clay platelets that are normal to the given microplane of
orientation v makes the same contribution to the normal strain rate on
this microplane. Therefore, we can calculate ®(v) as the integral of f(n)
over a circle of radius 1 (Fig. 2) on the plane perpendicular to v:

D) = kff(n)ds’ or ®(8,d) = kff(e',d)’)ds’ ................ (14)
T T

in which T = the circumference of the unit circle; and k = a normalizing
factor. Since v | n, i.e., v-n = 0, we have cos 6 cos 8’ + cos ¢ sin 0
cos &' sin 8’ + sin ¢ sin 8 sin ¢’ sin 8’ = 0, which may be rewritten as

G(',¢') =cosBcos® +cos(b—d')sin@sin® =0............. (15)
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2

FIG. 2.—Slip Vector v as Normal to Microplane; All Clay Platelets with Unit Normal
n Perpendicular to v Contribute to Slip in this Direction

This defines function G(8’, ¢').
Except for two special cases to be considered later, Eq. 15 provides a

unique relation between 8’ and ¢, for each given pair (8,¢), i.e., 8’ =
8(¢"). Hence

fO,G) =fI(D ) DT =F(d') e ev e (16)
where F(¢') is introduced as a notation for this function. Also
ds' = (A0 + sin® 0'dd'D) /2 (17)

Furthermore, by differentiation of Eq. 15 we have dG = (8G/968')do’ +
(0G/ad")do’ = 0, from which

oG
9’
TEdd e 18
4o’ = —=dé (18)
80’
Finally, substituting Eqs. 16-18 into Eq. 14, we obtain
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FIG. 3.—Special Cases: (a) Horizontal Slipping, 6 = w/2; (b) Vertical Slipping,
0=0

v

3 — ’ : : ’ 1/2
q>(e,¢)=kf F(d)’)[ Sn( — ) sin 6 sin § ] b e (19)

_ cos (b — ¢') sin 8 cos 8’ — cos 0 sin 6’

The integrand of this equation is a function of ¢’ only because 8’ = g(¢’).
This integral is evaluated numerically. The normalizing factor is calcu-
lated from the condition (in which S denotes a unit hemisphere):

f DO, BYAS = 1. (20)
s

There are two special cases for which the foregoing calculation is im-
possible:

1. 8 = w/2 [Fig. 3(a)]. In this case, ¢’ is irrelevant; d’ = 0, ds’ = do’,
f(6',¢") =F(0'), ¢' = ¢ + w/2; and

+m

D06,0) = [ [f(0,0)d0" = f

-

+m /2

F(8')de’ = 4[ F)de' ......... (1)

0

-

+2. 8 = 0 [Fig. 3(b)]. In this case, ds’ = do’, ¢’
L7 f(e,0")de’ = [T F(6')de’. But F(8') = F(90°)

®(8,9) = 2wF(90°)

w/2, and ®(0,¢) =
constant, and so

ComPARISON WITH TEST DATA

Figs. 4-8 show fits of various test data on deviatoric creep of aniso-
tropic clays that are available in the literature (1,9,10,18,20,24,26). In some
of these data, the frequency distribution function of clay platelet ori-
entations has been measured by X-ray scattering (11) and is shown in
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) SKA-EDEBY (1) 0.88 195.0 1.00 x 1073
il Stre Rate (1072 SKA-EDEBY (2) 0.89 175.0 1.75 x 107
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Fig. 2 of Ref. 6. Although such measurements are very difficult and might
not yield a very accurate estimation of this distribution function, we
nevertheless use it for the present calculation, considering it better than
having no information at all on the distribution function.

Fig. 4 represents data for anisotropic clay obtained from Ref. 9. The
clay specimens were prepared using the method developed by Edil (14),
Krizek, et al. (16), and Sheeran and Krizek (25). Two kinds of specimens
were obtained from the same anisotropically consolidated clay, one kind
trimmed horizontally and another kind trimmed vertically. The values
of f(n)* are obtained from Ref. 11 and are used as explained earlier to
compute the values of ¢ (v)°.

Good agreement is found for all specimens except the specimen hor-
izontally trimmed from sample FA-2, which exhibits excessively large
deformation during creep. It is the opinion of the authors (9) that, since
this was a very soft sample, the specimen was probably disturbed while
setting up the test.

Figs. 5~7 exhibit comparison with test data for isotropically consoli-
dated clays from Refs. 1, 9, 10, 18, and 26. Again, two kinds of speci-
mens were used for the data set of Fig. 5, as described earlier. The actual
frequency distribution f(n) was not available and, therefore, true iso-
tropy was assumed, i.e., f(n) = ¢(v) = 1.

Fig. 8 shows comparison with data from the vane test. Since no other
information was available, isotropy was assumed for this data set. One
can observe (Table 1) that the values of k, are much higher for these
data than for the preceding ones. The reason is the way the strain rate
is reported; the authors (24) used the average strain rate, i.e., the current
strain divided by the current time.

CONCLUSIONS

1. The present microplane model for creep of anisotropic clays models
interparticle slipping through normal strain rates on the microplanes.
This is simpler than the previous microplane model (6), which described
interparticle slipping by shear strain rates on the microplanes.

2. The present model based on normal strain rates on the microplanes
describes material anisotropy correctly only if the microplanes are as-
sumed to be statically constrained, i.e., the stress components on each
microplane are the resolved components of the macroscopic stress ten-
sor. This contrasts with the previous microplane model based on shear
strain rates on the microplanes, for which material anisotropy was de-
scribed correctly only if a kinematic constraint of the microplanes was
used.

3. Material anisotropy is characterized by a distribution function for
the normal strain rates, which can be approximately estimated from the
frequency distribution function of the clay platelet orientations.

4. The fluidity matrix of anisotropic clay may be calculated from the
principle of complementary virtual work, which expresses in the average
sense the condition of compatibility of the strain rates on various mi-
croplanes.

5. The present calculations again confirm the previous conclusions that
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the creep rate of clay follows the activation energy concept (rate process
theory).

6. The typical test data available in the literature can be described by
the present model with a good accuracy.

ACKNOWLEDGMENTS

Financial support under the United States National Science Founda-
tion Grant No. CEE 821-1642 to Northwestern University is gratefully
appreciated. '

APPENDIX.—REFERENCES

1. Arulanandan, K., Shen, C. K., and Young, R. B., “Undrained Creep Behav-
iour of a Coastal Organic Silty Clay,” Geotechnique, Vol. 21, No. 4, 1971, pp.
359-375.

2. Baker, D. W., Wenk, A. R,, and Christie, J. M., “X-ray Analysis of Preferred
Orientation in Fine Grained Quartz Aggregates,” Journal of Geology, Vol. 77,
1969, pp. 144-172.

3. Batdorf, S. B., and Budianski, B., "“A Mathematical Theory of Plasticity Based
on the Concept of Slip,” National Advisory Committee for Aeronautics (N.A.C.A.),
Technical Note No. 1871, Washington, D.C., Apr., 1949.

4. Bazant, Z. P., and Oh, B. H., "Microplane Model for Progressive Fracture
of Concrete and Rock,” Journal of Engineering Mechanics, ASCE, Vol. 111, No.
4, Apr., 1985, pp. 559-582.

5. Bazant, Z. P., and Oh, B. H., “Efficient Numerical Integration on the Surface
of a Sphere,” Zeitschrift fiir Angewandte Mathematik und Mechanik (ZAMM),
Vol. 66, 1986, No. 1, pp. 37-49.

6. Bazant, Z. P., and Kim, J. K., “Creep of Anisotropic Clay: Microplane Model,”
Journal of Geotechnical Engineering, ASCE, Vol. 112, No. 4, Apr., 1986, pp.
458-475.

7. Bazant, Z. P., and Oh, B. H., “Microplane Model for Fracture Analysis of
Concrete Structures,” Proceedings, Symposium on the Interaction of Non-nu-
clear Munitions with Structures,” U.S. Air Force Academy, Colorado Springs,
Colo., May, 1983, pp. 49~55.

8. BaZzant, Z. P., “Microplane Model for Strain-Controlled Inelastic Behavior,”
Chapter 3, Mechanics of Engineering Materials, C. S. Desai and R. H. Gal-
lagher, Eds., John Wiley & Sons, New York, N.Y., 1984, pp. 45-59.

9. Bazant, Z. P., and Ozaydin, K., and Krizek, R. J., “Micromechanics Model
for Creep of Anisotropic Clay,” Journal of the Engineering Mechanics Division,
ASCE, Vol. 101, No 1, Feb., 1975, pp. 57-78.

10. Campanella, R. G., and Vaid, Y. P., “Triaxial and Plane Strain Creep Rup-
ture of an Undisturbed Clay,”” Canadian Geotechnical Journal, Vol. 11, No. 1,
Feb., 1974, pp. 1-10.

11. Chawla, K. N., “Effect of Fabric on Creep Response of Kaolinite Clay,” thesis
presented to Northwestern University, at Evanston, IIl., in 1973, in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

12. Christensen, R. W., and Wu, T. H., ““Analysis of Clay Deformation as a Rate
Process,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 90,
No. 6, Nov., 1964, pp. 125-127.

13. Cottrell, A. H., The Mechanical Properties of Matter, John Wiley & Sons, Inc.,
New York, N.Y., 1964.

14. Edil, T. B., “Influence of Fabric and Soil Water Potential on Stress-Strain
Response of Clay,” thesis presented to Northwestern University, at Evans-
ton, IIl,, in 1973, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

15. Glasstone, S., Laidler, K. J., and Eyring, H., The Theory of Rate Processes,
McGraw-Hill Book Co., Inc., New York, N.Y., 1941.

1063



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Krizek, R. J., Edil, T. B., and Ozaydin, I. K., “Preparation and Identification

of Clay Samples with Controlled Fabric,” Engineering Geology, 1975, Vol. 9,
. 13-38.

I}\)/Ipi,tchell, J. K., “Shearing Resistance of Soils as a Rate Process,” Journal of

the Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. 1, Jan., 1964,
. 29-61.

&Pi,tchell, J. K., Campanella, R. G., and Singh, A., “Soil Creep as a Rate

Process,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94,

No. 1, Jan., 1968, pp. 231-253.

Murayama, S., and Shibata, T., “On the Rheological Character of Clay,”

Transactions of the Japan Society of Civil Engineers, Vol. 19, No. 40, pp. 1-31.

Murayama, 5., and Shibata, T., “Rheological Properties of Clays,” Proceed-

ings, 5th International Congress on Soil Mechanics and Engineering Foun-

dations, Paris, France, 1961, pp. 269-273.

Murayama, 5., and Shibata, T., “Flow and Stress Relaxation of Clays (Rheol-

ogy and Soil Mechanics),” Proceedings, Symposium on Rheology and Soil Me-

chanics, International Union of Theoretical and Applied Mechanics, Greno-

ble, France, Apr., 1964, pp. 99-129.

Pande, G. H., and Sharma, K. G., “Multi-Laminate Model of Clays—A Nu-

merical Evaluation of the Influence of Rotation of the Principal Stress Axes,”

Report, Dept. of Civil Engineering, University College of Swansea, U.K., 1982,

Pande, G. N., and Sharma, K. G., ““A Micro-Structural Model for Soils under

Cyclic Loading,” International Symposium on Soils under Cyclic and Tran-

sient Loading, Swansea, U.K,, Jan., 1980, pp. 451-462.

Schwab, E. F., and Broms, B. B., “Pressure-Settlement-Time Relationship by

Screw Plate Tests in Situ,” 9th International Conference on Soil Mechanics and

Foundation Engineering, Vol. 1, Tokyo, Japan, 1977, pp. 281-288.

Sheeran, D. E., and Krizek, R. J., “Preparation of Homogeneous Soil Sam-

pling by Slurry Consolidation,” Journal of Materials, American Society for

Testing and Materials, Vol. 6, 1971, pp. 356-373.

Singh, A., and Mitchell, J. K., “General Stress-Strain-Time Function for Soils,”

Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. 1,

Jan., 1968, pp. 21-26.

Stroud, A. H., Approximate Calculation of Multiple Integrals, Prentice Hall, En-

glewood Cliffs, N.J., 1971.

Taylor, G. 1., “Plastic Strain in Metals,” Journal of the Institute of Metals, Vol.

62, 1938, pp. 307-324.

Tullis, T. E., “Experimental Development of Preferred Orientation of Mica

During Recrystallization,” thesis presented to the University of California,

at Los Angeles, Calif., in 1971, in partial fulfillment of the requirements for

the degree of Doctor of Philosophy.

Vaid, Y. P., and Campanella, R. G., “Time-Dependent Behaviour of Un-

drained Clay,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103,

No. 7, Jul.,, 1977, pp. 693-709.

Wu, T. Y., Resendiz, D., and Neukirchner, R. J., “Analysis of Consolidation

by Rate Process Theory,” Journal of he Soil Mechanics and Foundations Division,

ASCE, Vol. 92, No. 6, Nov., 1966, pp. 229-248.

1064



