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ABSTRACT 
Several models for the prediction of creep and shrinkage of con- 

crete are compared statistically with test data available in the 
literature. The models are algebraically transformed into a lin- 
earized form and statistical regression is then carried out. Although 
the BP Model performs distinctly better than the ACI and CEB-FIP Models, 
the scatter is large for all models, due to the difficulty in pre- 
dicting material parameter values without any tests of the given 
concrete. 

Introduc t ion 

Practical probabilistic analysis of concrete creep and shrinkage has 
recently been rendered meaningful by extraction of an extensive body of 
statistical information from the literature; see Ref. i and 2, in which test 
data for 80 different concretes from various laboratories throughout the world, 
consisting of over 800 experimental curves and over i0,000 data points, have 
been analyzed statistically. It has been shown that, if no measurements for a 
given concrete are made, the uncertainty of its creep and shrinkage prediction 
on the basis of the chosen concrete mix parameters and the chosen design 
strength is enormous (and is much larger than for strength). From all the data 
considered in Ref. i, it was determined that, on the whole, the prediction 
errors that are exceeded with a 10% probability (90% confidence limits) are, 
for the best known practical prediction models, as follows: BP Model [I]: 
~90 = 31%; ACI - 1971 Model [3]: ~90 = 63%; CEB-FIP - 1978 Model [4]: ~90 = 70%. 

The first of these models is to a greater extent than the others based on 
physical considerations and is applicable over a much wider range of condi- 
tions. However, it is relatively complicated. The second model is much 
simpler, and still represents probably the optimum prediction method at its 
degree of simplicity. The desire for simplicity should not be exaggerated, 
however. Since the errors in the prediction of creep effects in structures are 
caused more by errors in prediction of creep properties than by simplifica- 
tions of structural analysis, the designer should spend more time on careful 
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determination of material characteristics than he does on structural creep 
analysis per se. 

The purpose of this brief study is to report the results of some further 
statistical analysis of the creep and shrinkage data available in the litera- 
ture. In addition to simple statistics of the population of errors obtained 
in Ref. 1 and 2, statistical linear regression is applied here. The advantage 
of the linear regression approach is that it allows for the variation of the 
standard deviation or coefficient of variation with time. In particular, it 
yields, as it should, a larger uncertainty for long-time extrapolations than 
it does for predictions at times corresponding to the centroid of available 
data. 

Processin$ of Data 

As for the measurement error, this error represents an uncertainty that 
is not "felt" by the structure, but only by the observer; therefore, this 
error should not be included in the creep and shrinkage prediction models for 
design, and should be eliminated from the measured data. 

Before undertaking statistical analysis, test data reported in the 
literature have to be processed first, for two reasons (i) The reading times 
have not been selected in a manner which would assure an unbiased weighting 
of successive time intervals; and (2) the data contain random fluctuations due 
to measurement error. 

To eliminate the aforementioned effects (i) and (2), it is convenient 
and perhaps sufficient to smooth the reported data points by hand, and then to 
take the data points for statistical analysis as the ordinates of the hand- 
smoothed curves at intervals spaced regularly in the logarithm of creep dura- 
tion or shrinkage duration, normally two points per decade in the logarithmic 
scale. This approach to the processing of raw data from the literature has 
been followed in Refs. i and 2 as well as the present study. A fully computer- 
ized data bank, involving essentially all the test data analyzed in Refs. i 
and 2, has been developed at Northwestern University. 

In this data bank, the data points are organized in subscripted arrays, 
in which the first subscript refers to the number of the data point on the 
creep curve, the second subscript to the number of the creep curve within 
a certain data set, and the third subscript to the number of the data set. 
One array gives the creep durations for all data points and one array gives 
the strain values. Another array gives the ages at loading for all curves. 
A further integer array defines the number of all data points on each creep 
curve, the number of all curves in a given data set, and the number of all 
data sets in the data bank. Two data banks were generated; one for the points 
taken from the hand-smoothed data curves at properly spaced time intervals, 
and one for the unprocessed original data as reported. The data bank tremen- 
dously reduces the labor in extracting various statistics. 

The analysis in Ref. i and 2 established the statistics (principally, 
the coefficient of variation) of the collection of deviations of hand- 
smoothed data from the prediction formulas for the compliance function and for 
the shrinkage strain. Statistically a more fundamental approach would be to 
analyze the variability of the parameters of the prediction formulas and use 
it to determine the variation of various characteristics, such as the co- 
efficient of variation, with the independent variables such as the load dura- 
tion or the age at loading. Such an approach is, however, difficult because 
of the nonlinearity of the prediction formulas for the compliance function 
and the shrinkage strain. 



Vol. 13, No. 6 871 
CREEP, SHRINKAGE, MODELS, STATISTICAL REGRESSION 

Linear Regression 

To facilitate statistical regression, one needs to transform the pre- 
diction formulas into a linear form to which the standard linear regression 
analysis could be applied. In a linear form, a prediction formula for creep and 
shrinkage may be written as: 

y = a + bx +e (i) 

in which x and y are the transformed independent and dependent variables, b is 
the slope, a is the y-intercept, and e is the error. The transformation is 
such that for a perfect model b = I and a = O. 

Consider now basic creep, i.e., the creep at constant water content. The 
double power law for fasic creep [i, 5] may be transformed to the following 
form: 

y = E 0 J(t,t') - i (= creep coefficient) 

x = ~i (t'-m + ~) (t - t') n (2) 

in which J(t,t') = creep compliance (also called the creep function), repre- 
senting the strain at age t caused in concrete by a constant uniaxial unit 
stress acting since age t'; E0, ~i' n, m, and ~ = material parameters defined 

in Ref. i or i0. The most important test data on basic creep, including those 
of L'Hermite et al., Hanson and Harboe (Shasta Dam, Ross Dam, and Canyon Ferry 
Dam), Browne et al. (Wylfa vessel), Pirtz et al. (Dworshak Dam), and Rostasy 
et al. (for references, seeRef, i), have been subjected to regression analysis 
according to Eqs. 1-2. The resulting regression line (Eq. i), as well as the 
90% confidence limit for the mean prediction and for the individual data points, 
are shown in Fig. la. The corresponding statistics are listed in Table I, in 
which ~, y is the centroid of all data points, s , s are the standard devia- 

polnts, s b is the standard devlati~n of tions of the data " " x slope b, Sylx is the 

standard deviation of the data points from the regression llne, and r is the 
corr elat ion coef f ic lent. 

There are other ways to transform the double power law to a linear form. 
One is 

~/J(t't')~ m 0 - i~ 
= logq~ ~ ,i m +--'-- ,~) x = n log (t - t ') (3) Y 

and the regression analysis of the same data based on this equation is shown 
i~ Fig lb. The statistics are again given in Table i. 

The ACI Model [3, 5] can be transformed to a linear form as follows 

y = E(t') J(t,t') - I, x = C [i + 10(t - t')-0"6] -I (4) u 

in which E(t') is the conventional elastic modulus at age t', and C is a 
U 

material parameter calculated as a product of six other empirical parameters 
[3]. Regression analysis of the same test data according to this equation is 
shown in Fig. ic, and the statistics are again summarized in Table I. 

The CEB Model [4, 5] can be transformed to a linear form (Eq. i) as 
follows 

E28 
Y = E28J(t't') - E (t'-----~ - Ba(t')' x = ~d~d.(t,t ~') + ~f[Bf(t) - Bf(t')] (5) 

C 
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FIG. i 

Regression of Basic Creep Data for the BP Model 
(a, b), the ACI Model (c), and the CEB-FIP Model (d). 
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in which E28 , Ec, 6a, ~d' 6d' ~f' and 6f are material parameters and functions 

defined in Ref. 6 graphically, by means of sixteen curves. The results of the 
regression analysis for the same test data as before are shown for this model 
in Fig. Id, and the corresponding statistics are listed in Table i. 

The BP Model for shinkage can be brought to a linear form in various ways, 
and one is 

y = log - , x = log Tsh^ (t = t - t o ) (6) 
t 

For the ACI Model, linerization may be achieved as follows 

y -- log /0.007____8 , x = log 55 - log t 

~". esh 

and for the CEB Model as follows 

(7) 

y log I esh I (t) - 6s(tO) ] (8) = - -  , x = log [6 s 
gso 

In these equations, esh is the shrinkage strain, t is the duration of drying, 

t o is the age at the start of drying, Tsh is the shrinkage-square half-time, 

proportional to the effective thickness square, and e , Tsh , e and B are 
SO' S 

material parameters and functions defined in Refs. i, 2, 4, and 6. The most 
important shrinkage data from the literature, involving those of Hansen and 
Mattock, L'Hermite et al., Kesler et al., Troxel et al., and Keeton (for 
references cf. Ref. i), have been used in regression analysis. The results for 
Eqs. 6, 7, and 8 are shown in Fig. 2a, b, c, respectively. The corresponding 
statistics are listed in Table i. 

A similar regression analysis could be carried out for creep during drying 
In this case the linear regression plots are, however, less relevant, because 
creep at drying is a sum of a basic creep term and a drying creep term, both 
of which cannot be simultaneously varied in the regression plot. One of these 
terms must be fixed, and linear regression may then be carried out for the 
other term. For this reason, linear regression analysis of creep at drying 
for the BP Model would not be very informative. 

The regression plots in Figs. 1 and 2 visually demonstrate the degree of 
agreement of the three models with the test data. Quantitatively, the degree 
of agreement is reflected best by the correlation coefficient r in Table i; for 
perfect correlation r = i, and the more r differs from i, the poorer is the 
representation of test data. From these comparisons it appears, similarly to 
the conclusions of Ref. 1 and 2, that the BP Model agrees with test data better 
than the other models. 

The linear regression analyses in transform~ variables must, however, be 
regarded with reservation since the transformation of variables generally in- 
troduce some bias, due to a change in weighting of various time intervals as 
well as possible superimposition of a deterministic dependence. Therefore, 
in spite of certain advantages already mentioned, the comparisons in terms of 
the regression in Figs. 1 and 2 should be cons~ered secondary to the com- 
parisons in terms of the deviations of the compliance values or the shrinkage 
values [i, 2]. 
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Regression of Shrinkage Data for the BP Model (a), 
the ACI Model (b), and the CEB-FIP Model (c). 
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TABLE 1 

Linear Regression Statistics of Test Data 

Statistics ~ ~ a b 

a) Basic Creep 

BP 

Eq. 2, Fig. la 
Eq. 3, Fig. ib 

ACI 

Eq. 4, Fig. ic 

CEB 

Eq. 5, Fig. Id 

b) Shrinkage 

BP 

Eq. 7, Fig. 2a 

ACI 

Eq. 8, Fig. 2c 

CEB 

Eq. 9, Fig. 2c 

Sx Sy Sb Sy I x r 

0.495 0.464 0.351 0.306 0.019 0.999 0.005 0.304 0.820 
2.559 2.739 1.713 1.916 0.180 1.062 0.003 1.92 0.933 

0.630 0.520 0.335 0.521 -0.109 0.822 0.004 0.522 0.521 

1.703 -1.004 0.862 0.173 -2.107 -0.485 0.005 0.173 0.265 

1.423 1.484 

-0.495 0.166 

-0.154 -0.204 

2.855 1.912 0.240 0.899 0.004 1.915 0.870 

1.973 0.185 0.411 0.044 0.005 0.185 0.479 

0.866 0.459 -0.050 0.116 0.012 0.460 0.146 

Concluding Remarks 

The reason for the error of all models for the prediction of creep and 
shrinkage is not a poor knowledge of the governing law but the difficulty of 
predicting the values of material parameters in the governing model. If a 
few short-time measurements are taken, creep prediction can be drastically 
improved [2]. Bayesian approach is effective for this purpose [6, 7]. 
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