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INTRODUCTION

Two types of stress-strain relations for concrete have been extensively studied:
(1) Plastic (1,36,43,44); and (2) hypoelastic (18,23,24,25,27,31,32,38,40,44,47).
However, the plasticity theory, which has been developed primarily for metals
with a well-pronounced yield plateau, is foreign to concrete; satisfactory hardening
rules and formulations of the inelastic dilatancy, of the hydrostatic pressure
sensitivity, of the strain-softening tendency, and of the cyclic straining, have
not yet been found. In the hypoelastic model, unloading behavior cannot be
easily represented, and to model stress-induced anisotropy without prohibitive
complexities, the dependence of the incremental moduli upon the stress compo-
nents must be simplified to a linear tensor polynomial which incorrectly implies
the strains at maximum stress to be infinite. An entirely different approach
to materials in which the inelastic strain accumulates gradually has been introduced
by Valanis (45) (see also Ref. 30). It consists in characterizing the inelastic
strain accumulation by a certain scalar parameter, z, called intrinsic time. whose
increment is a function of strain increments. An independent variable of this
type appears quite naturally as a length parameter of the trajectory traced by
the states of the material in a six-dimensional space whose coordinates are
the strain components (22,33.37). However, it was Valanis who was apparently
first to realize the tremendous possibilities offered by this approach in a practical
description of material behavior and developed for metals an endochronic theory
which correctly predicts stain-hardening, unloading diagrams, effect of pretwist
on axial behavior, contraction of hysteresis loops in cyclic loading, and the
effect of strain rate.

Extension of the endochronic theory to concrete requires several novel
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concepts, which were proposed in general terms in 1974 (3) and described
aumerically in a summary fashion in 1975 (12). They include: (1) The sensitivity
of intrinsic time increments (measuring the accumulation of inelastic strain)
10 hydrostatic pressure; (2) inefastic ditatancy due to shear straining: (3) description
of strain-softening teadency: (4) dependence of tangent moduli on dilatancy
(not on stress or strain tensor); and, if long-time nonlincar creep should be
modeled, also (5) introduction of more than one intrinsic time. The purpose
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FIG. 1.—Diagrams of Some Characteristic Functions
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FIG. 2.—Fit of Uniaxial Stress-Strain Data (20) for Concretes

of this paper is to develop these concepts in detail and demonstrate agreement
with experimental data. virtually over the full range of essential material properties

known at present.

Inrnsic Time

It is instructive to begin with a heuristic demonstration. Consider the uniaxiat
stress-strain relation for the Maxwell solid. de = do/E + o dt/EZ,. in which
t = time: € = strain; o = stress: E = clastic modulus: Z, = constant; and try
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what happens if dt is replaced with de. Then, multiplying by E/de, one gets
a linear differcatial equation for ¢ as a function of e, do/de +o/2Z, = E.
The solution for the initial conditiono =0ate =0iso = EZ,(1 -~ e”*/#), which
is a curve resembling the inclastic stress-strain diagram [curve a, Fig. a)).
Furthermore, to model unloading, try replacing de with dz = |de|, so that
do = Ede — da” with do" = o|de|/Z,. Let loading be suddenly reversed into
unloading. At that moment Ede changes sign to negative. while do” does not
change sign. This is graphically represented in Fig. 1(b) and it is clear that
the unloading branch is steeper than the loading branch. This is a very simple
way to model irreversibility at unloading, the salient aspect of all inelasticity.

Thus, it is of interest to analyze the preceding arbitrary manipulations in
a rational way and a three-dimensional form. Their basic feature is that the
actual time, f, has been replaced by a variable depending on strain. In this
light, it is natural to seek an independent variable z. called intrinsic time, such
that dz is a function of strain increments de ;. In a material exhibiting time-depen-
dent response, dz must also be a function of df. Assuming that the development
of inelastic strain is gradual (which excludes ideally plastic yielding), (dz)* as
a function of de, and dt (with an appropriate exponent, s) must be continuous
and smooth, so that it may be expanded in a tensorial power series in de
and dt, i.e.

(dz2)* = p@ + pPde, + pP dt + pFde de,, + p§ide, dit + pQ(di)?
b pDnde ey e+ e o m

The latin indices refer to the components in cartesian coordinates x,, i = |,
2, 3, and repeated indices imply summation. Since d: must vanish as de ;— 0
and dt — 0, it is necessary that p® = 0. Furthermore. - may never decrease,
or else the non-negativeness of the energy dissipation could not be ensured.
Therefore, it is necessary that p{* = 0 and that coefficients pi3,. piZ}, pii describe
a positive definite quadratic form in seven variables de ;. de,,, ..., dey,, dt.
Dividing Eq. 1 by (dt)* one obtains

dzy L de dey o de,
;'— =p{"(dt)'~* + | p3 o T+ PR T +p2 )+ ... (D)

in which no terms may be infinite. One possibility of meeting this condition
is to set s = 1; but then all quadratic terms are negligibly small and dz = p{’ dt,
which is of no interest. Thus. p{” = 0. The remaining possible choice is s = 2.
The terms of order higher than (wo are negligible with regard to the quadratic
terms.

To satisfy the conditions of isotropy, the quadratic form in Eq. | may involve
solely tht invariants of the tensor [de ;] = de. The third invariant. being cubic,
f:annot appear and the most general tensorially invariant quadratic form that
is positive definite is
(d2)? = P J,(de) + [P, I (de) + P,dt ]2+ Pyd)? . . . . . ... ... .. 3)

provided that P, and P, are non-negative. The term J,(de¢) = second invariant
of the deviator of tensor de. Furthermore. for instantaneous (dtf = 0). purely
volumetric deformations [for which J,(€) = 0] the inelastic strain is negligible,
and so dz must vanish. Hence, I,(de) (= de,) cannot be present. Thus,
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(dz)? must reduce to the expression, P,J,(de) + P,(dt)?, and noting that the
coefficients in this expression ought to depend in general on the state variables,
it is convenient to rewrite this expression as

dr \? dt\?
(dz)? = (_Z—) + (—) s di=f&e,0)dE . .. ... 4)

1 Ty

1
with dg = VT,i@de) =/ Sdegdey )

in which Z, = constant; and e, = €, — 8,;¢ = deviator of the strain tensor {e
= (1/3)e,, = volumetric strain; 3, = Kronecker delta); f, = hardening-softening
function. Variable £ will be called distorsion measure, so as to reflect the fact
that dt depends only on the deviatoric strain increments. Coefficient 7, has
the dimension of time and may be called relaxation time. For loading durations
much less than 7,, the term, dt/7, . in Eq. 4 may be neglected and the intrinsic
time is independent of time per se, as required. Note also that for uniaxial
strain and for dt = 0, Eqs. 4 and § yield dz ~ |de|V'1/3. which is proportional
to |de| as considered at the beginning. Egs. 4 and 5 with f, independent of
€ and g have been proposed by Valanis (45) (without the preceding derivation).

Previous authors have frequently used the term ‘‘damage’ to describe the
changes produced in the microstructure of concrete by microcracking, yet damage
has never been expressed quantitatively. It is proposed that { provides a possible
measure of damage. .

Stress-Strain ReLATiONS

Attention will first be restricted to short-time deformations for which creep
may be neglected. To satisfy the condition of isotropy. the incremental stress-
strain relations may be splitinto one relation between the increments of volumetric
components, € = (1/3)e,, and o = (1/3) o,,. and another relation between the
increments of deviatoric components, e, and s, . Expressing the strain increments
as a sum of elastic increments and inelastic increments dej;. de”, one has

ds, P
dey=——+dej: dej=——dz ........ ... (6a)
2G, 2G
do o dt
de=— +de"; de"=dA\+——+de® . . ... ... (6h)
3K 3K,

in which €° = stress-independent inelastic strain (thermal dilatation plus shrink-
age); and \ = inelastic dilatancy (to be distinguished from the elastic dilatancy
or Poynting effect). Inclusion of inelastic dilatancy is one of the basic generali-
zations as compared with Valanis' endochronic theory for metals (45). Note
that. for short-time deformations of concrete. de” does not depend upon «
because under pure volumetric stress the time-independent inelastic strain may
be neglected [see Fig. 1(c)]. which agrees with the absence of microcracking.
The time-dependent volumetric strain (creep) is represented by the term,
odt/3K7,. which, by contrast. must involve o because creep is linear at low
stress. The use of K in this term assures that the Poisson ratio for low-stress
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creep is the same as that for elastic strains. The time-dependent volumetric
strain (creep) is represented by-the term, odi/3K~,, which, by contrast, must
involve o becausc creep is linear at low stress. The use of K in this term
assures that the Poisson ratio for low-stress creep is the same as that for elastic
strains.

A refinement will be required for lightweight concrete, in which a further
mechanism, i.e., the collapse of pores and localized crushing of the material
between the pores also contributes to inelastic strain. Then, the expression
for de” in Eq. 6b may have to be augmented by a term of the type (o/3K)
dz’.in which dz’ = another intrinsic time such that dz' ~ |de| ~ |1, (d¢)|. Under
extremely high pressures, this might be also necessary for normal-weight
concretes. ‘

A fundamental difference from plasticity theory is the absence of the yield
function and the normality rule. However, normality relations are satisfied by
endochronic theories in a sense similar to viscoelasticity (30).

Strain-Hardening.—As the inclastic strain accumulates, its further increase
gets harder o be produced, for the potential locations of stress peaks in the
microstructure are getting exhausted. This is best apparent in cyclic loading
{Fig. 1(d)]). To account for this effect, coefficient f, in Eq. 4 must decrease
as the inelastic strain accumulates, and because { is herein adopted as a measure
of the accumulated inelastic strain (or damage), f, must decrease as [ increases.
To this effect. let

dnq
de=——: dn=Fle.o)dt . .. .. ... . ... .. . . ... ... ... )

ftn)
in which f(n) = strain-hardening function = certain continuous monotonically
increasing positive function; and Fle,a), = f(w) f,(£.€.0). f, being given
by Eq. 4. Eq. 7 may be integrated to yield { = {(n). which again may be inverted
10 yield n = q({). so that it would be equivalent to write di = f,({) dn. Because
d{ is in Eq. 4 divided by arbitrary constant Z,, there is no loss in generality
to set f(0) = 1. The simplest possible choice is a linear expression, f(q) =
1+ B,m (B, = 0), which leads to { = 87'In (1 + B,m)and 7 = (eBrt ~ 1)/B,.
This was applied with success to metals (45) and appears to be also satisfactory
for concrete, with the exception of large values of m that arise under cyclic
loading. The expression, f(n) =1 + B, 3 + B,7m%(B, = 0). seems to be acceptable
up to about 10¢ load cycles. Parameters B, and B, have also considerable effect
on the curvature of the stress-strain diagram at the peak. To ensure that after
passing the peak the stress-strain curves continuously decline, hardening must
be eliminated at large strain. For this purpose one may set

dv ay

dg = " Rl . 8
Byn+B,m’ a,
I+ —— F, I+ —}J,.(e)
l +a,F, w/ "

in which F, = function that goveras strain-softening and is given in the sequel:
;. dy. ay = constants; and F, = function that is added so as 1o cause the
cyclic stress loops at low cyclic deviator strains [low J,(e)] 10 contract more
strongly: this is needed only during the first few cycles. i.e.. for small v, and
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therefore a, is divided by m? in Eq. 8. For all other situations, F,=1,

Strain-Softening and Hydrostatic Pressure Sensitivity.—If coefficient F in Eq.
7 were constant, then the uniaxial stress-strain diagram [for f(n) as given]
would approach an asymptote of positive slope [curve b, Fig. 1(a)] and the
failure of the material could not be modeled. To obtain a gradual decrease
of slope on approach to peak stress [curve c, Fig. 1(a)], the inelastic strain
increments must be increased. which may be obtained by an increase in F
as a function of €: F will be called strain-softening function. [A function of
m rather than ¢ has been used for metals (46). but for concrete this would
give too much softening in low-stress cyclic loading. ]

Function F, however, serves also the important purpose of introducing the
hydrostatic pressure sensitivity of concrete (2,35). This sensitivity results from
the fact that hydrostatic pressure p = —o = —a,, /3 inhibits the formation as
well as the opening of microcracks and that the friction forces on closed microcrack
surfaces are larger at higher p. Indeed, at very high p. microcracks cannot
open, and so concrete (like rocks) becomes perfectly plastic.

In view of isotropy, F may depend on € only through the invariants, I,(e),
Jy(e). and I,(¢). For further simplification, consider the special case when
Jy(e) = 0.ie. (e, ~€)? + (e, — ) + (€, — €)> = 0(¢,.¢, and ¢, being
the principal strains); obviously, a zero value of J,(e) occurs only when €,
= €, = €, = ¢, i.e., when the strain is purely volumetric. When e is a compression
(e < 0). no microcracks should be present. and noting that the dependence of
F upon ¢ is due to microcracking. and that I,(¢) or I,(¢) is not necessarily
zero when J,(¢) = 0, one must conclude that F may depend neither upon
I,(¢) nor upon I,(e). Therefore. at € < 0. F may depend only upon J,(¢)
which reflects the effect of microcracking. This dependence must disappear
when p is very large. making concrete perfectly plastic. The dependence on
p must fade when J,(¢) = 0. (I, and I, = first and third invariants.)

For € >0 or o > 0 (tension) the cracking is. of course. possible even when
J,(¢) =0, and the most simple way to express the tensile strain-softening is
to postulate a dependence of F upon the maximum principal strain and stress,
max e and max o. This is admissible because max € and max o depend only
on the basic strain and stress invariants and are. therefore, invariants themselves.

The foregoing conditions for the strain softening function can be satisfied
by an expression of the form

. :
F(g.or)={~—°*——+ F,}F, .................... 9
. 1 - [a(,'j(q)]'“
a, [+ a1, (@)] VI, te)
{1 =a, I @)= [a, ;@] H1 + a,1,e) VI, ()]

[ max e maxo \]?
F.=1+ 50(!-— )(I—- )] ............... on
' € ~ fi

in which I,(g) = second stress invariant (i.e.. v, v, + 0,0, + 0,0, in terms
of principal stresses) (I, and I, are negative for compression): a,. a,. ...
a, = constants. of which a, must be such that F(e.g) can never become negative
prior to tensile failure: and f, = tensile strength.

with F, =
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Function F, in Eq. 9 [Fig. 1(h)] accounts for tensile failure. It equals unity
except when the maximum principal strain or stress is very close to a certain
fixed value, in which case it blows up to infinity. expressing the fact that
the rate of microcracking greatly increases as the failure is approached. Thus,
function F, is essentially equivalent to maximum tensile strain and stress cutoffs
in the failure criterion. Alternatively, function F, can be left out of Eq. 9
if the inequalities, max € < ¢, and max ¢ < f/, are imposed as conditions
of no failure. The strain cutoff is most likely appropriate for multiaxial stress
states and also enables describing the fact that the tensile strength diminishes
with load duration. However, to model failure when unloading after compression
reaches into tensile stress at compressive strain, the stress cutoff is necessary.

The term with a,, in Eq. 9 accounts for the plastic strain, which is independent
of deviator strain [and thus of J,(€)] and prevails under very high p. Parameter
a, adjusts this term to avoid a too rapid decline of the slope of stress-strain
curves at very high p; for all other situations, a, has a negligible effect. Parameter
a, is needed mainly for adjusting the initial slope of triaxial curves. Function
F, expresses the strain-softening due to microcracking, a mechanism that
dominates when p is low. In fact, n can be split as n =n, + 7m,,, in which
W, could be called measure of plastic slip and w,, measure of microcracking
(dn,, = F,dt). The appearance of I,(g) in the expression for F, causes the
softening due to J,(e€) (microcracking) to disappear at high p. To control the
relationship of biaxial and triaxial stress-strain curves to uniaxial ones, I,(g)
and I,(g) (with parameters a;, a,, and a,) are used in F, since they have
the convenient properties that I,(g) is zero only in uniaxial loading and I,(g)
is nonzero only in triaxial loading. Term a,I,(¢) in F, is needed mainly to
adjust the triaxial response at medium hydrostatic pressure p. Since the difference
between multiaxial and uniaxial tests is greater at larger strain, I,(g) may be
multiplied by VJ,(¢) (see Eq. 10). The associated parameters, a, and a;, affect
mainly the biaxial curves. Because the development of microcracking. as
characterized by J,(¢). makes strain-hardening impossible. terms B, n + B.n°
must disappear at large J,(¢), and this is achieved by placing F, in_Eq. 8.
If F, were absent from Eq. 8. the response curves would decline after the
peak only briefly and then they would resume rising again and tend to infinity.
With F,. on the other hand. a steady decline after the peak and an approach
to a horizontal asymptote are assured. The peak stress value is also strongly
affected by Z, and a,.

The fact that the intrinsic time increments depend not only upon de and
€, but also upon ¢ (though not dg), represents a basic difference with respect
to metals. It has been tried whether I,(g) could be replaced by I,(¢) in Eq.
10; but no acceptable fit of test data could then be obtained. chiefly for three
reasons: Firstly, I,{(g) and I,(¢) are not only produced by hydrostatic pressure,
but also by uniaxial or biaxial loading. In these tests, as strain-softening begins
to develop on approach to peak stress, I,(e) increases much faster than 1, (o).
which would make the denominator in Eq. 10 too large and the peak stress
in uniaxial tests too high as compared with triaxial tests. Secondly, on the
strain-softening branch, [,(¢) decreases while I,(€) increases, which would
disagree with the fact that microcracking is becoming more and more intense
along this branch. Thirdly, when creep under constant hydrostatic pressure is
considered. I, () is constant while I,(e) grows, and so the use of 1,(¢) would
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give a large increase in peak stress for a rapid uniaxial test performed after
creep under hydrostatic stress, which is not observed in reality.

Inclastic Dilatancy.—This effect is in uniaxial compression tests manifested
by the increase of Poisson ratio to and over 0.5 when failure is imminent,
Because dilatancy originates from microcracking due 1o deviator strains. it must
be governed by distorsion measure £. By intuitive arguments similar to those
which led to Eq. 9. one may arrive at the expression d\ = I\ L{T,(e), 1,(a),
A} dt. in which | may he called dilatancy hardening function: and L., dilatancy
softening function [Figs. I(e)-1(g)]. The relation between A and € is of the
same type as the relation between { and £ (Eq. 7). since f(n), with y = n({).
is an implicit function of {. The following expression has been devised:

A 1 Ay I,(e) !
dy =t - — ) ) S ) deodE ... (12)
Ao /= e i) Ag i+ Jte)

in which ¢,. ¢, ¢,. A, = material constants. Practical experience indicated
that A has a very profound effect on predicted behavior, especially on the
cyclic load response (shape of the hysteresis foops) and on the Poisson ratio
at cyclic load. Paramcter A, represents the maximum possible value to which
A gradually approaches. Such a maximum value must exist because there is
a certain maximum volume that a concrete fully broken up into gravel can
occupy. Presence of I,(g) reflects the fact that dilatancy must vanish at high
hydroslatic pressure, because no cracks can open. The term with J,(¢ ) assures
that there is no appreciable dilatancy in cyclic compression if strains are so
low that there is no dilatancy in the first cycle, and that the dilatancy is quite
pronounced but gradual when load cycles reach into high stress; J,(¢) is used
because it is the deviator strains that cause microcracking.

Dependence of G and K on Dilatancy.—Since the inelastic dilatancy consists
in opening of microcracks. the incremental elastic moduli should decrease as
A grows. It is proposed that {Fig. 1(g)]:

A A
(‘=Gn(l —0.25——): K=Ko(l—0.25—) ............. ajy
Aﬂ R0
in which G, and K, are the initial shear and bulk moduli:
: E E
Gy=——"— o (14

= : Ko:—_-~——
2() +v) 31 - 2v)

E, = initial Young's modulus; and v = Poisson ratio at low stress (elastic),
v = 0.18. Coefflicient 0.25 in Eq. 13 is deduced from the measurements of the
speed of sound in uniaxially compressed specimens. which reveal a drop in
speed of about 107-207% shortly before failure (14.41). Making G and K dependent
on a scalar, A, circumvents the tremendous difficultics that inevitably arise
in hypoelasticity when the incremental anisotropy due to the dependence of
clastic moduli on a tensor, g, is considered (see Ref. I8). Nevertheless. some
incremental anisotropy might have to be considered in 2 more accurate model,
because microcracks do exhibit a statistically prevalent orientation that depends
on the stress state. Choosing F and K to vary proportionally . the clastic Poisson
ratio is assumed to be constant and the changes in the observed Poisson ratio
are attributed solely to inclastic strains.
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Time-Hardening Simplification for Creep.—If 7, in Eq: 4-wcrc .con§lanl, thé
creep rate predicted by Eqgs. 6twould not change. while in reality it ‘dccays
roughly as the inverse of load duration. This fact may be approxnmglel y acc..ou‘me
for by making 7, increase with the load duration, 1 — 1. I, bem‘g thf: instant
of loading. This approximation, which may be called .umc—hardcnmg. is widely
used for approximate treatment of metal creep and is of the same nulurc’as
that in the rate-of-creep method for concrete cr‘ecp (4,7). The llme—hardfzmng
approximation is acceplable only if stress varies in time very slowly. A suitable

expression is

T,o= A, AT (=)

in which 1,, 7, = constants; 7, affects mainly the early stages of creep; and
T, the long-time creep. . o

Physical Sources of Inelasticity. —From the preceding analyS|‘s it is cl.ear lha'n
various terms in the constitutive law reflect the three mechanisms of inelastic
deformations of concrete: (1) Microcracking due to the presence of aggregate:;
(2) plastic slip in cement gel; and (3) low stress-creep, which is probably due
to microdiffusion of certain components of solids in cement gel (4,11). In a
highly porous concrete under extreme hydrostatic pressure. crushing of pore
walls may be added as a fourth mechanism, but this is not covered by the

present theory.
Sver-ay-Ster Numericat INTEGRATION OF STRuCTURAL RESPONSE

To solve structural analysis problems, the loads and enforced defor.mauor'ls
are incremented in small steps and in each step the following algorithm, in
which subscripts r — | and r refer to the beginning and end of rth step, may
be used (e.g.. in conjunction with the finite element method):

1. Assume that those of increments Aa, and Ae,. which are not directly
specified, are the same as those obtained in the previous step (for .aII elemcpls
of the structure). However. if there is a discontinuily of the prescribed loading
path at stage r — 1, assume them all to be zero. (In fact. zero values can be
assumed as a rule, but more iterations are then required.)

2. Estimate mean values inthe rthstepaso = a,  +(1/Dbo,.e,
=€, , +(1/2A¢,, and X, _,, ,, (for all finite elements).

3. Evaluate F(f.‘_’),_“/;p f('l'l),._“/z)- G,-u/z)‘ KrAll/Ii‘ and leru/zn (fl‘OlTl
Eqs. 8-15) and calculate AE, Ay, AL, Az, A\ (for all elements), and £, (=
g, + /DAL ., _gyne o Moayne

4. Calculate the volumetric and deviatoric components of tensors o, ., €, ;.
Then evaluate inelastic stress increments Asj = s, Az: Ag” = 3KAN +
O, am AU/T,, ,,, + 3KAE and Ao}y = As] + 3,407 (for uII. clcmcn'ns). .

5. Denoting As§, = 2GA ¢} und Ac” = JKAe€”, the stress-strain r‘elauo‘ns (Eqs.
6) yield 2G,_,,,,Ae; = Ax,; + Ash, 3K, 0 = Ao + Ac”, which mzy
be recast in the matrix form as Ao + Ag” = DA, in which Ag” = [Auj
= [As} + 8,Aa"] = matrix of inelastic stresses. This form is
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Ao, + Ad], (D, D, D, 0 0 07]/]ae,
Ac,, + Ac, D, D, D, 0 0 0{\ae,

Aoy +hos\ 1D, D, D, 0 0 0 JAe,( 16
o + Ao, 0 0 0 D, 0 0 Ae,,
Aoy, + Aol 0 0 0 0 D, 07jfAe,
Aoy, + Adj, | 0 0 0 0 0 D,j\Ae,

in which D, = (K + 4G/3),_,,5: D, = (K - 2G/3),. sy, and D, = 2G,_, ,,.
Because Acj; and the elastic coefficient matrix in Eq. 16 are known, one has
a quasi-elastic incremental stress-strain law and the increments, Ao ; and Ae,,
in all finite elements may be solved by an elastic analysis of the structure.
In case of specimens in a homogeneous state one just solves the six equations
represented by Eq. 16.

6. Steps 2-5 are iterated using the increment values from the previous iteration,
until the new values of Az and AN do not differ from the previous values
for the same step by more than about 0.1%. If more than four iterations are
required, it is better to decrease the size of step.

A theoretical investigation of convergence of this algorithm is difficult in
general. However, for the case of uniaxial deformation with f= F=1, it is
easy to show that the iterates of Ae for prescribed Ao represent sums of a
geometric progression whose quotient equals Ae”/Ae. Therefore. convergence
is assured when Ae” < Ae, i.e., on the whole rising branch. The peak stress
and the declining branch can be calculated only when Ae s specified. For multiaxial
stress and the actual functions, f and F, the convergence properties seem to
be alike.

In similarity to previous developments for creep (4.8.9), the limit on the step
size may be increased by using incremental relations based on exact integrals
of the differential equation (Eqs. 6) obtained under the simplifying assumption
that e, €, A, and €® vary linearly with z and t within the step. The integrals
of Eqs. 6 are then of the formo = A + Be™"~'-""1 5, = A, + B, e = %0
in which A, B, A, and B are constants. Imposing the initial conditions o
=0, 55 =Sy, € =€ _,.ande; =e, att=t _,, incremental quasielastic
relations with the following values result:

Ag” = '_|“ - e‘A'/n); AS:} = s'_i'_'(l —e -.\:) ............ (|7)

" Ty _At/e Y 1 _ »
K" = Kr—illzi—;(l —edmy G = G,_u/yr“ —edy) L. (18)

-~

These values replace Ao ;. K. and G in setting up Eq. 16. Note that for Az — 0
and At — 0, Egs. 17 and 18 are equivalent to steps S and 6. Egs. 17 and 18
are analogous to those derived in Ref. 9 for age-dependent viscoelastic behavior.
Noting that | — %% and | — ¢ 371 are bounded no matter how large Az
and At are, one can prove that numerical stability is independent of Az and
At. (Extension to the more general case of Egs. 22 can be made similarly
to Ref. 9.)
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foenmiRcatioN of MateriaL Paramevers From TesT Data

To identify material parameters from test data. a FORTRAN 1V program
based on the foregoing numerical algorithm has been written. For given values
of material parameters, the program computes the responses to the stress or
strain history inputs as prescribed for various particular types of tests. The
test specimen is presumed to be in a homogeneous state of stress and strain,
so that merely an integration of stress-strain relations is to be carried out

40
Kupher, Hilsdort, Rusch. 1969
> 4650 pu (3204 WN /)
30
-
[3
o
“ §
<
i o
&
0
L, tonsis |
0003 OOOg

+O! ° 500 Kupler, tesdort, Rusch, 1969

o

©
H
£
&

Stress/Strength, -0, /1;
8
0
Siress, psi
\\
- .
Strees, MN/m?

— ondochronc Wwory 200 4

3
s

o2t H100
Kupler, Mindar |, Rusch, 1969

1e = 4650 poi (32 04 MN/m?)

T
Q " 4 N Comprasncr anyor N - o]
- - o "y 0 4 2 0 2 & & 8 00
Volumetric Strom, €, m I10° Stran, 0 10

FIG. 4.—Fit of Data {26) on Volume Change in Uniaxial and Biaxial Compression
and of Tensile Uniaxial and Biaxial Test Data (26)

An automatic plotting of response curves (by Calcomp plotter or by simulation
on the printer) has been used on the output.

The values of material parameters are first arbitrarily varied to learn which
parameter affects what. Then, by trial-and-error approach. the values of material
parameters which give a qualitative agreement with known test results are found.
~ Finally. the whole program may be arvanged as a subroutine which computes
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the deviations of the response curves from the specified data points. This
subroutine is then hooked to a main program which calls a standard library
optimization subroutine (modified Marquardt algorithm or the Powell method)
for minimizing a sum of squares of nonlincar functions (the deviations) without
computing the derivatives with respect to the unknown parameters. The optimiza-
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FIG. 8.—Fit of Biaxial Failure Envelope (26) (Same Test Series as Fig. 3) and of
Torsion-Compression Failure Data (16,19}

tion subroutine automatically varies the material parameters until the optimom
fit of test dita is found. However, the optimization process converges to the
true optimum (rather than a local optimum) only if the starting values of material
parameters are sufficiently good estimates. and determination of these values.,
which must be done by trial-and-crror approach. is by fuar the most tedious
part of the whole endeavor.
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Interchangeable subroutines have been used to generate the input values for
various particular types of tests (e.g.. biaxial compression, triaxial test). From
each pair of values (Ae,,Ao,). one value is prescribed and the other one is
unknown (or a relationship between the two is given. as in the case of lateral
confinement by a steel spiral). The subroutine rearranges the terms in the six
algebraic equations defined by Eq. 16, in order to place all prescribed terms
and all o}, on the right-hand side and all unknown terms on the left-hand side.
As an example, consider the biaxial test in which the strain increments, Ae,,,
are prescribed and Ae,, = kAe,,, with k = given constant, while ,, =0, = o
= a,, = 0; rearrangement of Eq. 16 then provides

~1 0 D, 0 o0 07/a0, Aa’, — (D, + kD,) Ae,,

0 -1D, 0 0 0|\ao, Ac’, - (D, + kD,)A¢,,

0 0D, 0 0 0]Jac,l  Jach-0+Dae, | o
0 0 0 D, 0 0])ae, Ac’,

0 0 0 0 D, 0{fae, Ao,

[0 0 0 o o D,|\ae, Ao,

and this equation is solved at each step (item 5 of the foregoing algorithm).
Similar equations have been set up for strain-controlied uniaxial tests (in which
Ae,, is specified and Ao,, = Ao,, = Ac,, = Ao,, = Acg,, = 0); triaxial tests
(in which hydrostatic pressure is applied first and subsequently Ae ,, is incremented
keeping Ac,, = Ao,, = Ag,, = Aoy, = Ag,, = 0): shear (torsion)-compression
tests (in which Ae,, = kAe,,. Ae,,, k being prescribed, and Ag,, = Ao, =
Ao,, = Ao, = 0); and stress-controlled uniaxial tests, such as the cyclic
compression test,

For describing axial tests of sprially reinforced cylinders (Fig. 10), one must
substitute in Eq. 16 the relations, Ag,, = ~E,p,A€,,, Aoy, = —E, p, 8¢y, in
which E, = elastic modulus of steel; and p, = p, = spiral ratio (the ratio
of cross-sectional areas of spiral and concrete in axial sections of a cylinder).
Then, after inserting Aa,, = Ao,, = Ac,, = 0, the equations forming Eq. 16
are rearranged so as to include on the left-hand side as unknowns only the
quantities Ao,,, Ae,,, Aeyy, Aey,, Aeyy, and Ae,,; the controlled quantity is
Ae,,. In case of prestressed spirals (Fig. 10), the calculation of axial test is
preceded by a calculation of biaxial loading with prescribed Ae,, = Ae,, and
Ao, = 0, until the specified level of prestress is reached.

In cases with a large number of load cycles, the log N-scale (N = number
of cycles) was subdivided by points N =3, 30, 300. ..., 3 x 10® cycles into
intervals and the response cycle beyond the third cycle was computed only
for load cycles N=3V 10,30V 10, ... (the midpoints of intervals in log-scale),
rounded as N = 9, 95, 949, ... 948, 700. Assuming that cycle N =3 x 10"V 10
gives the average value of de}, /d(log N). for the interval (3 x 10", 3 x 10"*"),
Ae” per interval was obtained as (log 10) de}, /d(log N). Calculation of each
interval was iterated several times with improved values of €], and z for the
midcycle of the interval.

The failure envelopes were constructed by running a number of cases (e.g..
for various proportionality factors in biaxial tests) and collecting the peak points.
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This agrees with the method used by experimentalists themselves in constructing
the failure cavelopes from test results. However, it should be kept in mind
that this method need not give the correct failure loads for specimens very
much larger than the aggregate size (13), which may fail by brittle fracture
or by unstable propagation of a slip plane.

Note that for step-by-step structural analysis, a check for the peak value
of loud (or the point where the incremental stiffness matrix turns singular)
is at least as simple as the use of some separate failure criterion. It is also
more rational because the dependence of the failure criterion on stress path,
well established for concrete, is automatically accounted for.

Fits of various experimental data available in the literature are indicated in
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Figs. 2-10 by solid lines. Because for no single concrete complete data sets
exist, it was inevitable 10 assume that some material parameters are the same
for all standard-weight concretes. It is remarkable that among the parameters
for short-time response only ong, i.e., the cylindrical strength, ., had to be
varied from one data set to another. All remaining parameters are the same
for all fits in Figs. 2- 10 and their values are

Z,=0.0015; B,=30; B,=3500; a,=0.7; a,=06( )"
a, = 1.400: 4y =500(f) % a, =475(f)) 7 a,=08(f)7
a, =0.055(f1) % a;=20; a,=0.000125; «,=0.0015: A, =0.001;
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o= 1.0; ¢, =100(f)) " ¢, =00005 v =018

E, = (0.565 psi + 0.0001 ,)57.000 Vf. (psi) "/ . . .. ... ... ..., 20

in which | psi = 6,895 N/m? Exponents having values 1/2 and 1/3 in Egs.
9 and 10, and 2 and 3 in Eq. 12, have been also varied in searching for optimum

fits.
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The preceding formula for E, has been selected in order to give the optimum
fit of the whole stress-strain curve. The E,-value obtained from this formula
often differs from the measured E,-value; but the difference is very small,
and so is the deviation from the ACI formula E, = 57.000 \/f_. The peak.
£ ompm~ OF the uniaxial stress-strain curve calculated from the values in Eq.
20 may deviate slightly (up to 2% between 3.500-psi and 6.000-psi strengths)
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from the directly measured strength value, f. .. used for . in Eq. 20. It
has been found that f; .., = f.{1,0025 + [(f: - 5,600)/12,000]%}. By calculating
. from this formula, it would be possible to obtain the desired peak value
exactly, but then the averall fit of the stress-strain curves would be impaired.

The obtained values of parameters 1 and 7, which characterize the time-depen-
dent behavior have not been the same for different concretes, which is not
surprising because creep does nol possess a one-to-one relationship to strength.
The following values have been found: v, = 1 br, 7, = 20 (Fig. 8); +, =
I day, 7, = 2 (Fig. 9); 7, = 14.4 hr, and 7, = 0.75 (Fig. 10).
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The test data in Figs. 2-10 cover all essential known features of multiaxial
response of.concrete and it is seen that they are all adequately modeled by
one constitutive law. Moreover. one could show that this law also correctly
predicts the strain rate effect on the stress-strain diagrams and the long-time
strengthening of concrete due to low sustained compression stress. No constilutive
law of compariable scope has been known thus far.

Although the beginning slope of the unloading branch is in concrete higher
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than the initial tangent modulus, E,, of the loading branch, it is often not

quile as steep as the present theory indicates. An improvement is possible by -

replacing dt with k,d¢ whencver dJ,(€) < 0 (unloading criterion). k, being a
positive constant less than one.

Strain-Softening Behavior. —From the stability point of view, there are certain
difficulties in interpreting the declining branch of the @ — ¢ diagram (sec Ref.
13). Nevertheless, inclusion of the declining branch into the range of the
constilutive equation has important advantages. Firstly, by broadening the data
range, the behavior on the rising branch near the stress peak can be identified
more accurately from test data. Scecondly, a smooth continuation through and
beyond the peak stress point allows representing the failure by the o — € refation
itself (rather than by a separate failure criterion. as usual), and this brings
about automatically the dependence of failure upon the stress path.

Maxwerr Cuam Mooer rorn Nowunear Lona-Tive Creer

For sufficiently small stress levels, d{ is negligible in Fq. 4 and dz =~ dr.
d\ = 0. In this limit case, Eqs. 6 are identical with the stress-strain law for
the Maxwell solid. As is well known, Maxwell solid is insufficient to describe
long-term creep, unless the artifice of time-hardening is adopted. However.
this violates the principle of objectivity of the material and is inapplicable when
the stress strongly varies in time. Correctly, the long-term creep may be
characterized by a Maxwell chain (6.9) and the stress-strain relations must reduce
to those for Maxwell chain when d{ =0 and d\ = 0. This condition can be
met by considering that each Maxwell unit of the chain is characterized by
its own intrinsic time z, . which is given by Eq. 4 with 1, replaced by 1.
the relaxation time of the puth Maxwell unit. A propes choiceisr, =1, 10* '(6.9).

To examine whether it may be possible to use a simpler expression, z, =
z/t,. in which z is a single intrinsic time defined by Eq. 4. consider that
the time range of significant creep spans over many orders of magnitude of
time (30 - days-10* days). while the range of { in which nonlincarity occurs
is narrow (about 10-“-10-'). Consequently, Eq. 4 would yield = ~{/Z, for
<021, and z=1t/v, for t > 21 1, being a certain time. Thus, except for
a narrow time range, either the material would exhibit no creep or it would
be linearly viscoelastic. This consequence is incorrect. Thus. a single intrinsic
time cannot be used. .

To model the nonlinear long-time creep. the definition of distorsion measure.
£. must further be generalized so as to exclude the linearly viscoelastic parts
of inclastic strains. de},. for otherwise ¢ would increase (and would thereby
cause nonlinearity) even at the low-stress creep. which is known to be lincar
in stress and unrelated to microcracking or damage.

To sum up. Eqs. S, 7. and 4 must now be generalized as follows:

I 12 sy dt
dE, = {— de§) dejy vodef = de, — dely defy = ~—— — . ... 2n
2 2G, 1,
dn
dn, = Fle. o) dE,: dE, = . (pd)

[

" )
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g, \? dt \*]'2
o () (0] e

" »
in which subscript p has been appended to &, m, and {; and F and f are the
same as before. Extending the stress-strain relations for Maxwell chain by the
inclusion of z, . one has

2G, de=ds, +s, di,; s;= 2 Siiys

n=i
dt "
3K“(de-dh—de")=du“+ ¢, 0=20“ ............ 249)
Tu w=l

in whichG_and K = the shear and bulk moduli associated with the pth Maxwell
unit of the chain; and s; and o = the hidden stresses associated with the
pth unit. Moduli G, K, are age-dependent (4,6.9). The volumetric relation
in Eq. 24 involves again df rather than dz, because there can be no inelastic
decrease of volume due to microcracking or slip.

The short-time nonlinear deformations have been described herein satisfactorily
by a model corresponding to a single Maxwell unit (Eqs. 6). Such a limiting
case of Egs. 24 would be obtained for dt =0 only if all Z L-values were
approximately the same. However, it seems that Z should increase with p
(n = 1.2, ... n), for if it did not the long-term creep would exhibit much stronger
nonlinearity than the short-time deformation, by virtue of the fact that §, and
{, can reach after long-term creep much larger values. Parameters ¥, must
reduce to 1.0 when the stress level is low, so as to obtain the correct linear
viscoeleastic model as the limit: possibly all ¢, can be taken equal to one.

It has been tried to fit the present data with a standard-solid type model
(Maxwell unit parallel to a spring). This allowed slightly better description of
the first unloading but made de” much too small after a number of cycles.

Derivation from Hereditary Integrals.—Logically. it is quite natural to begin
with the assumption that the stress tensor is a quasilinear functional of the
history of the strain tensor. In view of isotropy, this assumption may be stated
as

1
s, = 2[ G 1) de (1'):

to

a(t) = 3[ Kua)de@t'y—druy —de®U’)] . . . . ... ... ... “(25)

in which G and K are kernels analogous to the relaxation functions (4). It
is well known (4,6.9) that the kernels can be approximated with any desired
accuracy by sums of exponentials. Noting that the independent variables in
which the functionals become quasilinear are z, and (. these sums may be
written (similarly to Ref. 4) as Gu.r') = T, G ('Y exp [-2,(0) + 2 ,(4)):
K.ty = 2 K (") exp [t — 1)/, ]. After substitution. Eq. 25 may be
cast in the form:

1
S, = 2 Siat N0 = 2[ G, e :»‘““:u“.)dt'i’-(")l a= 2 g,
M

o "
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t
o, ()= SJ K (te " de@’) — dN(') — de®(t)] . ... L. (26)
te
Now, substituting de,, = (de,; /dz,) (dz, /dt’)dt’. and inserting Eq. 26 into Egs.
24, one finds that Eqs. 24 are identically satisfied. Conversely, Eqs. 26 represent
the integral of Eqs. 24. Thus, Eqs. 24, as well as Eqs. 6, follow logically from
a rather plausible and general assumption about the functional dependence.
Remark on Variable Temperature and Humidity.—The Maxwell chain model
has been formulated in previous work to describe linear creep of aging concrete
at variable temperature (10), as well as creep and shrinkage at variable humidity
(11) along with the nonlinearities due to drying. These generalizations, which
have been carried out only for the low stress range, can also be made for
the present formulation having no stress range limitation,

ConcrLusions

The endochronic theory for nonlinear behavior of concrete provides a
rather complete model which is far better than other constitutive laws known
thus far. As compared with the previous formulation of the endochronic theory
for metals, three major extensions are necessary in order to model: (1) The
hydrostatic pressure sensitivity of inelastic strain: (1) the inelastic dilatancy;
and (3) the strain-softening tendency at high stress. By virtue of the last extension,
the theory at the same time provides the failure criterion. in which its dependence
‘on strain and stress paths is automatically accounted for. Furthermore, a number
of different intrinsic times should be considered when dealing with nonlinear
long-time creep.
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Areenoix |.—Apomonas InFormanon on Test Data Useo

For Fig. 2: 6-in. x 12-in. cylinders, age 14 days. type I cement, Elgin sand
and gravel, 1-1/2-in. maximum size, moist cured, then S days drying at 75° F
and 50%-80% relative humidity. For Fig. 3: Constant €, . maximum load reached
in =20 min; brush-bearing platens; slabs 20 cm X 20 cm x 5 cm, 28 days
old; moist cured 7 days, then drying at 65% relative humidity and 78° F: 190
kg of cement per cubic meter of concrete, gravel maximum size 15 mm. For
Fig. 5: 6-in. x 12-in. cylinders, water-cement-sand-gravel ratio 0.58:1:2.86:4.47,
cement type I, Grand Coulee aggregate maximum size 1.5 in., fog-cured 28
days at 70° F. then oven-dried: hydrostatic pressurc applied first, then axial
load superimposed. For Fig. 6: In torsion tests, compression applied first, then
torsion to failure. Ref. 16: Hollow cylinders 9 in. x 30 in.. LS5-in. thick, 28
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days old, wype 1 cement, water-cement-sand-gravel ratio 0.52:1:2.92:3.57, river :
gravel maximum size 0.5 in. Ref. 19: Hollow cylinders 8 in. x 36 in. hollow
on 26-in. length, 1-in. walls, type | cement, water-cement-sand-gravel ratio
0.45:1:1.6:2.4, river gravel maximum size 3/8 in., unmolded at 28 days, cured
in shower for § days at 66° F. For Fig. 7, Ref. 40: 6-in. x 12-in. cylinders,
fog-cured for 28 days, then drying at room temperature, capped, and tested
at age 2 months-4 months, | cycle/min. Ref. 39: Prisms 4 in. x 4 in. X 12
in., Type | cement, water-cement-sand-gravel ratio 0.54:1:2:4, aggregate maximum
size 3/4 in.; tested after 14 days of moist curing; 4 cycles/min. For Fig. 8;
Ref. 27: 15-cm % 60-cm cylinders. water-cement-aggregale ratio 0.44:1:4.5, drying
al 65% relative humidity; cube strength 498 kgf/cm?; after 20 slow cycles
(completed within a few minutes), 380 cycles/min. Ref. 46: Prisms 76 mm
x 76 mm x 203 mm, water-cement-sand-gravel ratio 0.5:1:2:4; quartzite gravel,
10-mm maximum size; fog cured at 20° C for 14 days; 585 cycles/min; first
a slow cycle to the limit stress, then rapid cycling with amplitude growing
from 0 gradually over first 500 cycles, zero time = 250th cycle. For Fig. 9:
Prisms 10 cm % 15 cm x 60 cm with widened ends, water-cement-aggregate
ratio 0.55:1:4.9; Rhine gravel (mostly quariz); 28-day cube strength 350 kgf /cm?,
moist cured for 7 days at 20° C, then drying at 65% relative humidity, 20° C,
loading rate—20 min to failure. For Fig.10; Ref. 24: Cylinders 150 mm x 300
mm, ordinary Portland Cement, granite aggregate, 18-mm maximum size, river
sand. Mix 1:water-cement-sand-gravel ratio 0.5:1:1.5:3, f. = 25.5 N/mm?
Mix 2: ratio 0.4:1:1:2, f. = 33.0 N/mm?. Cured 28 days in water, then drying,
cool storage, tested at 45-day age. Spirals 6.5-mm diam, yield strength 319
N/mm?2; p = 0.738, 0.983, 1.475, 1.965 for pitch from 45 mm-120 mm. Ref.
28: Cylinders 3 in. x 12 in., Platte River Valley sand and gravel, water-cement-
aggregate ratio 0.53:1:5.34, moist cured for I8 days, then drying; winding at
24-day age by wire of 0.51-mm diam, pitch 0.56 mm, p = 0.019, initial wire
tension 1600 N/ mm? (232 ksi) producing lateral stress 14.48 N/mm 2 (2,10 ksi).
Start of test at 40-day age, strength 38.2 N/mm? (5.54 ksi) at start of test.
L.oaded at strain rate 0.01/10 min, followed by constant-load creep.
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ABSTRACT: A gradual accumulation of inclastic strain can be most conveniently H
described in terms of the so-called intrinsic time, whose increment depends on the '
time increment as well as the strain increments. and was previously developed for '
mectals and is extended hercin to concrete. It is demonstrated that the proposed model !
predicts quite closely: (1)Stress-strain  diagrams for concretes of different strength; !
(2)uniaxial, biaxial. and triaxial stress-strain diagrams and failurc envelopes; (3)failure '
cnvelopes for combined torsion and compression; (4)lateral strains and volume !
cxpansion in uniaxial and biaxial tests; (5)the bchavior of spirally confined concrete; !
(6) hysteresis loops for repeated high compression: (T)cyclic crecp up to 10° cycles; '
(8)the strain sate cffect: (9the decrease of long time strength; and (10)the increase of !
short-time strength due to low stress crecp. !
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